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 State the hypotheses: What is the null hypothesis 
(Ho)? What is the alternative hypothesis(HA)?

 Test the null hypothesis at the desired p value 
using the appropriate statistical test: Since this 
problem compares a single sample mean to a 
population mean where the population SD is 
known, we can use the one sample z-test

 State your statistical conclusion regarding the null 
hypothesis (i.e., reject or fail to reject Ho)

 Provide an interpretation of your statistical 
conclusion
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 To determine if the difference between a single sample 

mean and a known or estimated population mean (or ) 

is statistically significant

 When the population SD (or ) is unknown and

 When the data are of at least interval or ratio scales
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 Suppose the average annual rainfall for the local area 

was previously known to be 8 inches. A local 
meteorologist believes there was above average 
rainfall from 1997 thru 2001 and argues that the 
average annual rainfall during this period was 
significantly different from the overall average annual 
rainfall of 8 inches. The average annual rainfall 
recorded from 1997 thru 2001 are given below.

SD  1.30 Sample Mean= 6.2 N = 5
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YEAR 1997 1998 1999 2000 2001

InchesRain 8 5 7 5 6
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 We’re comparing a single sample mean (6.2 inches) to a 

known population mean (8 inches)

 We only know the sample SD (1.30 inches)

 The data are ratio scale
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 Null Hypothesis:

• The average annual rainfall from 1997 thru 2001 is the same 

as the overall average annual rainfall of 8 inches. Any 

observed difference is solely due to random error.

 Alternative Hypothesis:

• The average annual rainfall from 1997 thru 2001 was not the 

same as the overall average annual rainfall of 8 

inches, but was significantly higher. The observed 

difference is not solely due to random error, but 

indicates a real difference in average annual rainfall.
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 Sample Mean = 6.2 inches    SD = 1.30 inches    N = 5
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 The null hypothesis is rejected when:

is equal to or

more extreme than

• Where t.025 is the critical value from the t distribution 

and is found using:

OR
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 The null hypothesis is rejected since the obtained value 

is more extreme than the critical value (p = .05)
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 “Since t (4) = -3.10, p < .05; Reject the null hypothesis.”

• Where p < .05 means that if the null hypothesis is 

true, the probability in the long-run, of obtaining a t -

value of -3.10 or more extreme due to random error 

alone is less than 5%.”

• Remember, the critical value, t.025 , is the point where 

5% or less of all scores are at or beyond (or more 

extreme)
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 “It appears that there was less-than average rain 

in the local area from 1999 to 2001. The 

observed average rainfall for this period does not 

appear to be due to random error alone, but 

suggests that the weather pattern for the local 

area was different during the period studied.”

Chapter 8

The One-Sample t - test



 Suppose a sample of 16 light trucks is randomly selected 

off the assembly line. The trucks are driven 1000 miles and 

the fuel mileage (MPG) of each truck is recorded. It is found 

that the mean MPG is 22 with a SD equal to 3. The previous 

model of the light truck got 20 MPG.

 Questions:

• State the null hypothesis for the problem above

• Conduct a test of the null hypothesis at p = .05. BE SURE TO 

PROPERLY STATE YOUR STATISTICAL CONCLUSION.

• Provide an interpretation of your statistical conclusion using 

the variables from the description given
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We expect the sample of 16 light trucks to 

get the same average MPG as the 

previous model. Any observed difference 

in MPG between the new light trucks and 

the previous model is assumed to be 

solely due to random error.
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 Sample Mean = 22MPG    SD = 3 MPG    N = 5

Population Mean = 20 MPG
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 The null hypothesis is rejected when:

is equal to or

more extreme than

• Where t.025 is the critical value from the t distribution 

and is found using:

OR
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1 Ndf 15116 
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 The null hypothesis is rejected since the obtained value 

is more extreme than the critical value (p = .05)
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 “Since t (15) = 2.67, p <.05; Reject the null hypothesis.

➋ The observed difference between average MPG for the 

new model truck and average MPG for the previous 

model truck is not solely due to random error (p = .05). It 

appears that, on the average, the new model light truck 

gets slightly better gas mileage compared to the previous 

model (p = .05). 
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 If the null hypothesis is really true:

• In the long-run (p = .05) we will reject the null 

hypothesis when we should have failed to reject it

• This is known as a TYPE I Error

➋ If the null hypothesis is really false:

• In the long-run (p = .05) we will fail to reject the null 

hypothesis when we should have rejected it

• This is known as a TYPE II Error
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 By reducing the p value from .05 to .01 we reduce the 

chance in the long-run of committing a Type I error, but 

we increase the chance of committing a Type II error

➋ By increasing the p value from .01 to .05 we reduce the 

chance in the long-run of committing a Type II error, but 

we increase the chance of committing a Type I error

HOW DO WE SOLVE THIS DILEMMA?
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 Statistical Power is the probability of detecting a real 

effect of the independent variable if a real effect exists

➋ What affects statistical power?

• Effect size

• Sample size

• Measurement error

• p value (.05 versus .01)

• Outliers
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 Increasing the effect size of the IV

➋ Increasing sample size

➌ Reducing measurement error

 Increasing the p value from .01 to .05
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 Just because a result is significant doesn’t mean it’s 

applicable to everyday life (not practical)

➋ Very large sample size can result in statistical 

significance but not be practical to everyday life
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THAT’S IT FOR CHAPTER  8


