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Abstract In the arid and semiarid regions of North
America, discrete precipitation pulses are important
triggers for biological activity. The timing and magnitude
of these pulses may differentially affect the activity of
plants and microbes, combining to influence the C balance
of desert ecosystems. Here, we evaluate how a “pulse” of
water influences physiological activity in plants, soils and
ecosystems, and how characteristics, such as precipitation
pulse size and frequency are important controllers of
biological and physical processes in arid land ecosystems.
We show that pulse size regulates C balance by
determining the temporal duration of activity for different
components of the biota. Microbial respiration responds to

very small events, but the relationship between pulse size
and duration of activity likely saturates at moderate event
sizes. Photosynthetic activity of vascular plants generally
increases following relatively larger pulses or a series of
small pulses. In this case, the duration of physiological
activity is an increasing function of pulse size up to events
that are infrequent in these hydroclimatological regions.
This differential responsiveness of photosynthesis and
respiration results in arid ecosystems acting as immediate
C sources to the atmosphere following rainfall, with
subsequent periods of C accumulation should pulse size be
sufficient to initiate vascular plant activity. Using the
average pulse size distributions in the North American
deserts, a simple modeling exercise shows that net
ecosystem exchange of CO2 is sensitive to changes in
the event size distribution representative of wet and dry
years. An important regulator of the pulse response is
initial soil and canopy conditions and the physical
structuring of bare soil and beneath canopy patches on
the landscape. Initial condition influences responses to
pulses of varying magnitude, while bare soil/beneath
canopy patches interact to introduce nonlinearity in the
relationship between pulse size and soil water response.
Building on this conceptual framework and developing a
greater understanding of the complexities of these eco-
hydrologic systems may enhance our ability to describe
the ecology of desert ecosystems and their sensitivity to
global change.
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Introduction

The availability of water, like other resources limiting
biological activity, is spatially and temporally heteroge-
neous on multiple scales (Lambers et al. 1998). Although
water availability changes over short (hourly and daily)
and long (seasonal and yearly) time scales, most studies
have focused on the ecological implications of long-term
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dynamics. Differences in plant functional type abundance
and life history diversity across the four North American
deserts is influenced by seasonal and annual water
availability (Ehleringer 1985; Smith et al. 1997; Smith
and Nobel 1986). Similarly, seasonal and annual precip-
itation inputs explain much of the variation in ecosystem
processes, such as primary production (Webb et al. 1978;
Gutierrez and Whitford 1987; Knapp and Smith 2001;
Huxman et al. 2004a, b) .

Surprisingly, how short-term fluctuations in water
availability influence ecological processes has not been
evaluated to the same extent as other environmental
variables. For example, the importance of light distribution
has been critically evaluated across multiple temporal and
spatial scales from the tropics to the tundra (Pearcy et al.
1985; Pearcy 1990; Smith and Knapp 1990). Similarly,
seasonal, monthly and diurnal variations in temperature
have been cited as important drivers of physiological
processes in many biomes (Mooney and Billings 1961;
Valentini et al. 2000; Huxman et al. 2003; Enquist et al.
2003). Infrequent, discrete, and largely unpredictable
precipitation events (pulses; e.g., Schwinning and Sala
2004, this issue) have been suggested to be an important
driver of arid land ecosystem structure and function (Noy-
Meir 1973; Ehleringer et al. 1999), yet only now is a
mechanistic understanding of their role in ecological
processes emerging (Weltzin and Tissue 2003). The focus
of this paper is to consider how variation in precipitation
characteristics, such as pulse size or frequency, affects
ecosystem C fluxes in semiarid and arid regions, and how
those flux patterns may be influenced by variation in the
edaphic, microbial and vegetation components of these
ecosystems.

While we are beginning to understand how plant
function and productivity are influenced by variation in
episodic precipitation inputs (Osmond et al. 1987; Smith et
al. 1997; Ehleringer et al. 1999; Schwinning and
Ehleringer 2001; Whitford 2002; Huxman et al. 2004a,
b), we still lack information on how the large-scale fluxes
of CO2 in arid lands are controlled by changes in water
status. For example, Reynolds et al. (2004, this issue)
suggest that our understanding of plant function in the
North American deserts would be improved by consider-
ing multiple precipitation pulses (storms) as single,
biologically relevant events. Additionally, Austin et al.
(2004, this issue) point out that even fairly small rain
events influence soil biogeochemical processes. It is the
combination of these plant and microbial processes that
combine to influence ecosystem C pools and fluxes; here
such factors as seasonal rainfall event size distribution
may be critical to ecosystem function. Understanding how
precipitation events differentially influence these ecosys-
tem components may shed light on the ecosystem CO2

exchanges of arid ecosystems, and how these regions may
respond to climate changes, which may include shifts in
the magnitude, seasonal timing and event size pattern of
precipitation pulses (Weltzin et al. 2003).

This paper addresses two fundamental questions about
CO2 exchange dynamics: (1) how does a “pulse” of water

availability influence C metabolism from microbes and
leaves to whole ecosystem and (2) how do pulse
characteristics, such as size and frequency, control C
dynamics in arid lands?

Ecosystem component responses to precipitation
pulses

As with all other biological activities, the ability of
organisms to acquire and utilize C depends on the
presence of sufficient water. Since the organisms facilitat-
ing different components of the C cycle are partially
separated in space, the physical distribution of soil water
following rainfall links ecosystem C exchanges to precip-
itation patterns. The vertical distribution of soil moisture
likely exerts overwhelming control on patterns of ecosys-
tem C exchange. For example, as several contributions in
this issue have pointed out (e.g., Austin et al. 2004;
Schwinning and Sala 2004), microbes located on or just
beneath the soil surface are hydrated most frequently, and
even minute rainfall events may enhance the microbial
contribution to ecosystem activity, while being ineffective
for triggering the autotrophic processes of vascular plants.
Even biological soil crusts require fairly large-sized events
to achieve net C gain (Belnap et al. 2004a, b; Cable and
Huxman 2004, this issue). Often overlooked, the hor-
izontal distribution of soil moisture may be equally
important in determining ecosystem C fluxes. Runoff
and runon patterns redistribute precipitation from the plot
to the landscape level (Loik et al. 2004, this issue) and,
other processes, such as canopy interception may
significantly interfere with ecosystem water use, particu-
larly of small rainfall events. Both the vertical and
horizontal distributions of precipitation-derived water in
the soil are strongly influenced by edaphic factors;
however, our understanding of these complexities are
still quite limited.

Below, we briefly review both the microbial and higher
plant responses to soil moisture pulses. Both phenomena
are covered in depth by other contributions in this special
issue (e.g., Austin et al. 2004; Belnap et al. 2004; Cable
and Huxman 2004; Huxman et al. 2004b; Ogle and
Reynolds 2004; Schwinning and Sala 2004; Snyder et al.
2004). Here, we expand on the question how precipitation
pulse patterns, interacting with physical and edaphic site
factors, impact the balance of respiration and assimilation
in arid/semiarid ecosystems. We also present a simple
model to conceptualize the role of precipitation patterns in
influencing ecosystem C cycling, using the example of the
three North American warm deserts.

Microbial response to precipitation pulse

In arid ecosystems, a precipitation pulse into dry soil
immediately alters the C balance of the system in several
ways. First, high concentrations of CO2, built up from
inorganic C sources and soil microbial activity during the
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previous dry period (interpulse), are physically displaced
as percolating water fills soil pore spaces. The amount of
CO2 efflux is a function of soil texture and soil macropore
structure. Second, precipitation pulses can liberate C held
in large soil pools of inorganic carbonates (Schlesinger
1985; Monger and Gallegos 2000). Third, by increasing
access to substrate, soil re-wetting can rapidly increase
decomposition, N mineralization, and microbial activity
(Austin et al. 2004). Thus, high respiration rates from
biological processes can occur quickly following a
precipitation pulse resulting in substantial CO2 release to
the atmosphere (Kessavalou et al. 1998; Tang et al. 2003;
Huxman et al. 2004b; Scott et al. 2004). Together these
CO2 effluxes may outweigh the subsequent photosynthetic
CO2 accumulation, so that a precipitation pulse, or indeed
an entire rainy season, may result in a net loss of C from
an ecosystem (Emmerich 2003).

Heterotrophic activity of microbial communities can
make up a substantial portion of respiration activity in
many ecosystems (Law et al. 2002) and probably responds
most rapidly to moisture input of all the different biotic
components of an ecosystem. However, intervals of high
microbial respiration are typically of short duration, as the
near-surface soil microbial environment also tends to dry
out quickly. As a consequence, measuring the microbial
contribution to ecosystem C exchange is difficult. The few
data that describe the ecosystem C flux dynamics
following precipitation pulses in arid zones show that
large effluxes of CO2 occur within hours of rainfall. The
contribution of physically displaced CO2 versus microbe-
respired CO2 to these effluxes is currently unknown as
long interpulse periods associated with these events allow
for the accumulation of a high CO2 concentration in soil
pore space (Frank and Dugas 2001; Emmerich 2003;
Huxman et al. 2004b; Scott et al. 2004).

Leaf and whole-plant responses to precipitation pulses

Arid and semiarid ecosystems commonly contain a large
fraction of species that are dormant during the drier parts
of the year, and which become active with the first rain
events of the growing season. Thus, seasonal trends in leaf
area development are critical to controlling the magnitude
of C fixation (Flanagan et al. 2002). A precipitation pulse
when functional leaf area is low can only be converted into
positive C accumulation after substantial canopy develop-
ment. For example, early growing season precipitation
pulses may trigger germination of annual plants (e.g.,
Death Valley in the Mojave Desert), but may not translate
into ecosystem C accumulation, unless subsequent rain
events allow seedlings to survive and grow or significant
water is stored in the soil. Similarly, in a semiarid
grassland and shrubland, the greatest net CO2 accumula-
tion was observed in the middle of the rainy season, at
peak leaf area index (Emmerich 2003).

Ecosystem leaf area has a large and immediate effect on
ecosystem C exchange, however, leaf-level photosynthetic
capacity also commonly varies during the season. For

example, while leaves developed early in the growing
season are often retained until late in the season, they
typically have lower photosynthetic capacity than younger
leaves (Mooney 1972; Chabot and Hicks 1982). Thus,
though leaf area on a landscape may change little, a late
precipitation event may result in a smaller proportional
increase in gross photosynthetic activity of the ecosystem
compared to an early precipitation event, constraining the
net response of CO2 exchange to late season rainfall
events.

A more complex and largely unknown factor is the
degree to which the photosynthetic capacity of leaves
covaries with leaf area production, and how this might
affect the magnitude and sign of landscape-scale C
exchange (Baldocchi et al. 2002). Plants may increase
photosynthetic rates in response to precipitation through
an increase in leaf-level CO2 exchange or through the
incremental addition of more leaf area, or both. While the
effect on gross photosynthetic fluxes may be largely
indistinguishable, there may nevertheless be quite different
outcomes for net exchange of ecosystem C over the course
of a season.

In addition to the annual cycle of leaf area development
and physiological activity, plants in arid and semiarid
systems are regularly exposed to short-term fluctuations in
water availability within the growing season. Under these
conditions, the severity of the water stress experienced
during interpulse periods, and the speed of recovery after
rain should have major effects on the average response of
plants to water inputs. Interpulse duration and stress
severity determine the physiological status of a plant at the
onset of rain, which in turn determines its rate of recovery
of photosynthesis and transpiration (Yan et al. 2000;
Schwinning et al. 2002). Plant water status can exert an
overriding effect on photosynthesis through its influence
on stomatal conductance (Boyer 1985; Passioura 1988;
Zhang and Davies 1990; Nobel 1994; Kozlowski and
Pallardy 1997; Lambers et al. 1998). With increasing
interpulse length, photosynthesis is progressively con-
strained as stomatal closure influences not only CO2

diffusion into chloroplasts (Kaiser 1987; Mansfield et al.
1990) but also key photosynthetic pathways, such as
photophosphorylation and ribulose 1,5-biphosphate regen-
eration (Kozlowski and Pallardy 1997). Belowground,
progressive soil drying reduces active absorbing root area
due to cavitation (Alder et al. 1996; Sperry et al. 1998),
abscission and suberization (North and Nobel 1991). Such
belowground effects, particularly dieback of woody roots,
may limit plant C assimilation during times of intermittent
water supply by diminishing water transport capacity.

Although occasional pulses during severe drought may
not elicit net C gain, they may nevertheless alleviate stress,
foster tissue repair and rehydration and maintain limited
plant activity under water-limited conditions (Sala and
Lauenroth 1982). Thus, small pulses may help plants
survive or maintain leaf area, which increases their
capacity to respond to larger events, as was shown for
Larrea tridentata (Yan et al. 2000). In addition, plant C
gain after a pulse may depend on the way that previous
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pulse history has influenced other elements of the
ecosystem (Austin et al. 2004), such as fungal and
bacterial activities that influence nutrient availability and
plant water status (Yan et al. 2000). Through these
mechanisms, even subtle differences in the timing and
amount of rain, may produce interannual variation in the
rain response of vascular plants (Leffler et al. 2002). For
example, Juniperus osteosperma (Utah juniper) responds
to summer precipitation during some years but not others
(Flanagan et al. 1992; Donovan and Ehleringer 1994).
Variation in pulse response has also been observed across
gradients in summer precipitation (e.g., Williams and
Ehleringer 2000), suggesting that the long-term exposure
to summer rain events can affect the ability to respond to
summer rain, either through evolutionary mechanisms or
the acclimation of individuals to the predominant precip-
itation regime.

Plant functional types and precipitation pulses

So far, we have discussed plant responses to rain only in
general terms. However, several contributions in this issue
have highlighted how the precipitation responses of
various species or plant functional types might differ
(e.g., Ogle and Reynolds 2004; Chesson et al. 2004). We
need not repeat these insights here, other than to discuss
how these species-specific differences, and by extension,
differences in the functional composition of dryland
communities, may influence the impact of precipitation
on ecosystem C exchanges.

Photosynthesis in shallow-rooted species (e.g., herbs,
grasses, and succulents) is known to recover rapidly after
rain and grasses have been found to respond to rainfall
events as small as 5 mm (Sala and Lauenroth 1982; Sala et
al. 1982). Likewise, succulents quickly produce new rain
roots (Nobel and Sanderson 1984; Nobel 1988) and
increase stomatal conductance (Szarek and Ting 1975;
Nobel 1976; Green and Williams 1982) and stem water
storage after small pulse events (Nobel 1988; Dougherty et
al. 1996). These characteristics would confer a relatively
high rain use efficiency to these classes of plants by
minimizing delay times during which water would only be
lost by evaporation, and by utilizing a greater portion of
the rainfall size distribution. However, interpulse photo-
synthetic rates would be quite low, due to lack of access to
soil moisture stored in deeper soil layers.

In contrast, deep-rooted plants often experience less
water stress during dry interpulse periods than shallow-
rooted plants, because of their ability to draw on deep
water reserves left over from previous rainy seasons, but
may also respond more slowly and less extensively to
present precipitation pulses (Davis and Mooney 1985;
Schwinning et al. 2002; Ogle and Reynolds 2004, this
issue). For example, the relatively shallow-rooted L.
tridentata (creosote bush) responded more rapidly to
rainfall than the deeper-rooted Prosopis glandulosa
(mesquite; BassiriRad et al. 1999). As compared to the
shallow-rooted species, photosynthetic and respiratory

activity are expected to be greater during interpulse
periods in this functional type.

How important is community composition to ecosystem
rain use? These functional type differences in precipitation
pulse use would suggest that communities with large
differences in plant functional type composition use
precipitation in quite different ways, with consequences
for the effects of precipitation on the dynamics of
ecosystem C cycles. However, water-limited ecosystems
as a whole have a remarkably conservative relationship
between rainfall input and primary production (Le
Houerou et al. 1998). Most recently, Huxman et al.
(2004b) showed that a wide range of biomes, receiving
precipitation of between 50 and 3,000 mm year−1,
converge on the same maximal rain use efficiency during
the driest years experienced at each. It is possible that
differences in functional type composition between
ecosystems show compensatory rain-use responses
through the trade-off between interpulse activity level
and pulse responsiveness. Thus, while the temporal
dynamics of water use may differ between communities,
cumulative annual water consumption and its use
efficiency could be similar. However, while net production
by plants may have similar dependencies on rainfall inputs
across communities with different plant functional type
compositions, net ecosystem production may not be the
same if there are characteristic differences in heterotrophic
activity.

What is the influence of precipitation patterns on
ecosystem C fluxes?

In recent years, there has been a renewed interest in the
question of how precipitation patterns, rather than just
total seasonal or annual precipitation, may influence
ecosystem processes in arid and semiarid systems.
Groundbreaking experiments such as by Knapp and co-
workers (e.g., Knapp et al. 2002; Fay et al. 2003) have
provided solid evidence that differences in precipitation
patterns alone, independent of rainfall amount, can have a
large impact on community composition and possibly
ecosystem structure and function. However, there have
been few experimental evaluations of this question in the
context of ecosystem C cycling. Where experiments have
considered C exchange, they have not specifically mea-
sured each ecosystem component through time in corre-
lation with changes in water status. There are of course
considerable logistical challenges associated with an
approach where precipitation is controlled on a scale that
represents an entire ecosystem, and also the capacity to
measure ecosystem C fluxes year-round and with high
enough resolution to capture rapid respiratory bursts
associated with the end of the dry and beginning of the
growing season. An alternative to this direct experimental
approach is the comparison of rainfall effects on
ecosystems across regions with different natural precipi-
tation patterns (see also Weltzin et al. 2003; Huxman et al.
2004b; Loik et al. 2004).
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A third alternative is the development of models.
Although several biogeochemical ecosystem models are
currently in use and development, none of them are yet
capable of addressing the question of precipitation pattern
effects in a satisfactory manner (see Weltzin et al. 2003 for
review). A major weakness across models is the
representation of rainfall size effects that, as suggested
above, should affect the balance between gross photo-
synthetic activity in the ecosystem by vascular plants
(gross ecosystem exchange, GEE) and ecosystem respira-
tory activity (Re), which consists of both autotrophic (Ra)
and microbial heterotrophic (Rh) sources. Here, we
construct a simple working hypothesis to address the
question of rainfall size effects on C exchange compo-
nents. Our purpose is to explore the plausible conse-
quences of shifts in rainfall patterns for ecosystem C
exchange, and perhaps most importantly, identify the
major gaps in our knowledge, along with important
directions for future ecosystem experiments.

Conceptual response of ecosystem components to a
pulse

The conceptually strongest link between ecosystem C
fluxes and precipitation patterns, in our view, is based on
the relationship between precipitation amount, infiltration
depth, the location of the soil microbial fauna and plant
roots in the soil, and the response time differences of
microbes and plants to wetting events: we would expect
shallowly located soil microbial communities to be highly
responsive to even small rainfall events [down to 2 mm
(Austin et al. 2004, this issue)], while larger events
(≥5 mm) should be required to infiltrate to a depth where it
becomes plant-available and can trigger assimilation
processes (Reynolds et al. 2004, this issue). Furthermore,
we would expect some delay between the arrival of water
at a given soil depth and peak photosynthetic rates, due to
physiological acclimation and the growth of new roots and
leaves (Ogle and Reynolds 2004, this issue). As a

Fig. 1a–d Ecosystem CO2 exchange [ecosystem respiration (Re);
gross ecosystem exchange (GEE); net ecosystem exchange (NEE)]
following a pulse through time. a Re, GEE and NEE as a percentage
of maximum achievable rates (Max) following a small hypothetical
precipitation pulse (at arrow and of sufficient size to stimulate
autotrophic activity). b Similar to panel a, this figure illustrates the
response expected with an increase in pulse size. The primary driver
of differences in cumulative flux rates is the extended period of high
GEE activity as a result of greater infiltration with a larger rainfall
event rather than changes in instantaneous flux rates. c The activity
period for GEE, heterotrophic respiration (Rh ) and autotrophic
respiration (Ra) following precipitation events of different sizes. Rh
increases up to a maximum duration of activity of 2 days from very
small pulses to 10 mm (duration=event size×0.2). Ra and GEE have
a small pulse size threshold of 5 mm which activates each for a

period of 1 day, up to a maximum of 7 days at a very large pulse size
(40 mm; duration=event size×0.17+0.14), when processes such as
overland flow dominate the hydrologic cycle. These functions relate
pulse size to duration of activity in our simple model for a seasonal
distribution of event sizes. d Composite functions of NEE for the
primary growing season (June, July and August) for two different
ecosystem types; a coniferous forest [Niwot Ridge (see Monson et
al. 2002)] and a desert grassland [Jornada Experimental Range (see
Mielnick et al., in press)]. Composite functions are constructed from
the probability distribution of fluxes for multiple years (Niwot
Ridge, 4 years; Jornada, 4 years), and plotted as a function of the
probability in time that a flux value will be exceeded (see
Appendix). In a, b and d, rates are plotted such that negative
values represent flux into the ecosystem and positive values
represent efflux to the atmosphere
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consequence, the cumulative fluxes of CO2 attributed to
either Re or GEE measured over a pulse interval would
have different functional responses to rainfall size, with
small events favoring ecosystem C loss chiefly through
microbial respiration, and larger events being necessary to
elicit net C gain through autotrophic components in the
ecosystem. As pulse size and infiltration depth increase,
we expect a close positive relationship between GEE and
pulse duration, i.e., the time that water remains biologi-
cally available to plants (see also Schwinning and Sala
2004), but Re should be independent of pulse duration
because the microbial community’s environment at the soil
surface dries relatively quickly and is fairly independent of
pulse size.

Empirical evidence, as far as it has been measured,
supports this scenario. We generalize the response of
ecosystem CO2 exchange to a precipitation pulse in
Fig. 1a, that is relatively small, but of sufficient size to
stimulate autotrophic activity (ca. 5 mm). This is based on
measured patterns from a number of different ecosystem
types [semiarid grasslands (Emmerich 2003; Huxman et
al. 2004b; Mielnick et al., in press), coniferous forests
(Monson et al. 2002; Huxman et al. 2003), temperate
grasslands (Flanagan et al. 2002), semiarid shrublands
(Emmerich 2003), and a Mediterranean grassland (Xu and
Baldocchi 2004)]. In a system that has not experienced
rainfall for some time, where physiological activity is very
low (essentially zero), rainfall first triggers a burst of
positive CO2 flux, caused by the mixture of mechanisms
discussed above, including the physical displacement of
CO2-rich soil air and microbial respiration.

If water infiltrates to such a depth and persists for
sufficient time to stimulate plant water uptake (possibly
requiring root and leaf growth), ecosystem photosynthesis
eventually increases, lagging by several days behind the
respiration response. At some point following a pulse, a
period of net ecosystem accumulation of CO2 should
occur, in part because of increasing rates of ecosystem
photosynthesis (through plant acclimation and/or leaf
growth), and because the declining water potential in
shallow layers will begin to restrict microbial activity.
Both semiarid grasslands and semiarid shrublands appear
to exhibit this behavior following rainfall events that are
isolated in time (Emmerich 2003).

It is more difficult to deduce how rainfall event size is
likely to modify these dynamic patterns in ecosystem C
exchange. We are suggesting a tentative working hypoth-
esis in Fig. 1b, where we make the simple assumption that
increases in rainfall event size beyond the threshold for
plants (ca. 5 mm) increases the duration of peak
photosynthetic fluxes, but not necessarily microbial respi-
ration. Fig. 1c describes how these assumptions would
affect the duration of activity of Rh, Ra and GEE,
integrated over the entire pulse period, as pulse size
increases. Note that the Ra response parallels that of the
GEE response, since both depend on the activity of
vascular plants.

We make several assumptions in formulating this
conceptual model. First, we assume that the duration of

physiological activity is proportional to pulse size (e.g., as
depicted by the width of the gray boxes in Fig. 1a, b).
Second, total flux associated with a pulse is given by the
duration of activity×the peak flux rate (as depicted by the
area of the gray boxes), where duration of activity has an
overwhelming effect on cumulative flux values. Third,
there is a lower threshold on pulse size such that Re and
GEE do not substantially respond to the precipitation
event. Fourth, the lower threshold differs for Re (insignif-
icant below 2 mm) and GEE (≅5 mm). Fifth, likewise,
there is an upper threshold on pulse size where Re and
GEE are at their maximal flux rates and large pulses do not
increase Re and GEE beyond their maximum rates. Finally,
the upper pulse threshold also differs for Re and GEE such
that the threshold for Re is less than that for GEE.
Together, these assumptions result in a linear relationship
between pulse size and cumulative GEE and Re for pulse
sizes between the lower and upper thresholds. Though
these assumptions minimize complexity, they are in fact
quite robust in the light of observation. For example,
Schwinning et al. (2002) observed just such a linear
threshold response for three species of the Colorado
Plateau desert for infiltration amounts of 2–20 mm.
Furthermore, the generally linear relationship between
seasonal rainfall input and primary production at the
ecosystem scale (e.g., Huxman et al. 2004a, b) is
consistent with a first pass linear relationship between
single event precipitation inputs and the production
attributed to them.

We can extend this conceptual framework to a simple
quantitative model to estimate the cumulative fluxes of C
into and out of an ecosystem for a fixed season, given
maximum and reference state flux values for GEE,
autotrophic respiration and heterotrophic respiration,
along with a precipitation pulse size distribution. The
size distribution of pulses determines the duration of
maximum activity of GEE, Rh, and Ra (specific relation-
ships between pulse size and duration given in Fig. 1c),
summed across all events of all sizes throughout a season.
The season length (in this case 100 days) minus the
duration of maximal activity gives the duration of
reference state activity. The seasonal sum of GEE, Ra,
Rh (combining both maximal and reference periods)
combine to produce a season-specific value of net
ecosystem CO2 exchange (NEE).

The model takes the point of view that deserts tend to be
in only three activity states: a low activity reference state
reflecting the availability of only the ecosystem reserve
pools, e.g., water stored in plants or deeper soil layers, a
high activity state for respiration, triggered by small
rainfall events, and a high activity state for GEE, triggered
by larger rainfall events. Though this assumption is
extreme, it does capture a characteristic feature of water-
limited ecosystems. Data from long-term assessments of
CO2 fluxes from the Jornada Experimental Range support
this notion when compared to an ecosystem that
experiences relative steady-state declines in soil water
availability through time [a coniferous forest (Niwot Ridge
AMERIFLUX site)]. Peak growing-season (June–August)
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values of NEE observed over 4 years have different
frequency distributions that illustrate these three states and
that differ between the two sites (Fig. 1d, Appendix). At
the desert grassland site, long interpulse periods with
limited ecosystem activity (NEE values near zero) are
punctuated by infrequent episodes of high rates of
ecosystem activity (large NEE values, both positive and
negative). The resulting composite flux duration curve is
steep around NEE near zero and relatively flat through its
extremes. In contrast, the Niwot Ridge curve has a gentle
slope near zero, which reflects an ecosystem experiencing
a steady-state decline in soil water conditions through the
growing season (a high frequency of mid-range NEE
values), where ecosystem processes are also controlled by
seasonality in temperature and light (Huxman et al. 2003).

Simulated NEE-precipitation relationships for the
three North American warm deserts

We use three long-term (85 year) precipitation records for
the Mojave, the Sonoran and the Chihuahua Deserts to
simulate the components of C flux using our model
(summarized in Fig. 1a–c). These data sets were the same
as used by Reynolds et al. (2004), kindly provided by the
authors, and are based on analyses of data obtained from:
http://www.wrh.noaa.gov/lasvegas/lasvegas_records.htm
(Mojave); http://www.wrh.noaa.gov/Tucson/climate/cli-
mate.html (Sonoran); http://jornada-www.nmsu.edu/ (Chi-
huahuan) (Fig. 2). We focused our analysis only on daily
precipitation between July and September, an interval
characterized by brief convective, monsoonal storms.
Consistent with rainfall patterns typical for summer
events, we equate an “event” with any day in which rain
was recorded.

These three deserts differ not only in total summer
precipitation, but also in event size distribution for
summer [see also Reynolds et al. (2004) for distributions

Fig. 2 The cumulative size
distribution of daily precipita-
tion events for July through
September (Sept) from an 85-
year data set from the Sonoran,
Mojave and Chihuahuan De-
serts. Data were provided by
Reynolds et al. (2004, this
issue), and based on analyses of
data obtained from http://www.
wrh.noaa.gov/lasvegas/lasve-
gas_records.htm (Mojave);
http://www.wrh.noaa.gov/Tuc-
son/climate/climate.html (So-
noran); http://jornada-www.
nmsu.edu/ (Chihuahuan).
Plotted here is the average size
distribution for the driest 25% of
years, middle 25% (mid) of
years and wettest 25% of years.
These size distributions are used
with the functions given in
Fig. 2c to determine periods of
high ecosystem activity
(GEEmax, Rh, max, Ra, max, see
Table 1) and periods of refer-
ence state activity (GEEref, Rh,

ref, Ra,ref, see Table 1) in order to
calculate seasonal NEE. For
other abbreviations, see Fig. 1

260



of alternative event classifications]. In all three deserts,
total seasonal precipitation is strongly, and for the most
part, linearly, correlated with the total number of events
>5 mm, i.e., those event classes that we expect to affect
both microbial dynamics and vascular plant activity
(Fig. 3a). Furthermore, the relationships between total
precipitation and the number of events >5 mm are almost
indistinguishable between the three deserts, except for
small differences in the average size of events >5 mm
(Chihuahua, 13.3; Sonoran Desert, 14.2; Mojave, 14.0).
By contrast, there is no statistically significant relationship
between total precipitation and the number of events
≤5 mm (Fig. 3b). However, the average number of events
≤5 mm declines in the order Sonoran Desert (22)
>Chihuahua (14)>Mojave (ten). The question is, can
these differences in precipitation patterns be expected to
affect the C exchange patterns of the different deserts?

As discussed before, a major unknown for any simu-
lation of ecosystem C balance is the question of how much
leaf area is triggered at the onset of the growing season
and how much of the respiratory efflux of CO2 is
attributable to the growth of new leaves and roots. We

sidestep this and other unknowns by assuming a fully
developed canopy at peak potential photosynthetic capac-
ity, therefore focusing on the more limited question of how
precipitation patterns may affect mid-season NEE. We
further assume that each ecosystem can be characterized
by minimum [reference state (interpulse values)] and
maximum (pulse) flux rates for respiration (Ra and Rh) and
GEE. The values used here were taken from the literature
(Sonoran and Chihuahuan Deserts) or, where unavailable,
estimated by scaling known canopy and bare soil C
exchange rates by plant cover (Mojave Desert). Table 1
summarizes the estimates used. To evaluate the influence
of total seasonal precipitation for the three locations, we
divided the rainfall data set into three classes representing
dry (lower quartile), average (mid quartile) and wet (upper
quartile) seasons, and calculated an average event size
distribution for each quartile, as well as an average event
number and size (Table 2). These distributions were used
to estimate the duration of maximal and reference activity
of GEE, Ra and Rh (as in Fig. 1c) to produce seasonal
totals allowing for a calculation of NEE.

The analysis shows that the three deserts have a
coherent relationship between NEE and seasonal precip-
itation, although the component fluxes were more similar
for the Sonoran and Chihuahuan Deserts than for the
Mojave (Fig. 4). The overall relationship between NEE
and precipitation is slightly nonlinear, with rainfall
increments in a low rainfall regime having less impact
on NEE than an increment of the same size in a high
rainfall regime. However, it is difficult to assess whether
this nonlinearity occurs because of inherent differences in
ecosystem flux rates or because of differences in rainfall
size distributions. To separate the issue of flux rates from
the issue of rainfall size distribution we recalculated
seasonal fluxes for each desert using the precipitation
regimes for all three deserts and compared all combina-
tions of flux and rainfall patterns in Fig. 5. This analysis
illustrates this slightly nonlinear relationship, primarily as

Fig. 3a, b The relationship between total seasonal precipitation
(July–Sept) and the number of small (<5 mm) versus large (>5 mm)
rainfall event sizes for the Sonoran, Mojave and Chihuahuan
Deserts. Data were provided by Reynolds et al. (2004, this issue),
and based on analyses of data obtained from http://www.wrh.noaa.
gov/lasvegas/lasvegas_records.htm (Mojave); http://www.wrh.noaa.
gov/Tucson/climate/climate.html (Sonoran); http://jornada-www.
nmsu.edu/ (Chihuahuan)

Table 1 Initial model flux rates associated with either the reference
state (interpulse values) or the active pulse state (maximal values)a.
All values are given in μmol CO2 m-2 ground s-1. Negative values
represent fluxes into the ecosystem, while positive values values are
fluxes to the atmosphere. When combined with the precipitation
distributions to produce seasonal totals, these values were scaled to
24-h estimates [gross ecosystem exchange of CO2 (GEE) was
adjusted by a 12-h photoperiod]. Ra Autotrophic respiration, Rh
heterotrophic respiration, ref reference state, max maximal values

Desert GEEref Ra,ref Rh,ref GEEmax Ra, max Rh, max

Mojave −0.9 0.225 0.25 −6.0 1.5 1.0
Sonoran −2.0 0.5 0.25 −12.0 3.0 3.0
Chihuahuan −2.0 0.5 0.25 −14.0 3.5 3.5
aData are taken from an experimental Sonoran Desert grassland
(Huxman et al. 2004b; T. E. Huxman et al., unpublished data) and a
Chihuahuan Desert grassland (Mielnick et al., in press) both of
which were assessed by whole-system flux measurements. The data
from the Mojave Desert represents small-scale assessments of flux
(soil collar and leaf level) that are scaled based on leaf area index
and plant cover (Hamerlynck et al. 2000; T. E. Huxman
unpublished data)
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a result of the fluxes from the Sonoran and Chihuahuan
Deserts under the driest rainfall regime combinations. As
such, the nonlinear response is likely due to the shift in
rainfall size distributions from one dominated by small
rainfall events in dry years to one dominated by frequent,
larger events in wet years. The predicted ecosystem
response in the Mojave Desert is the least nonlinear of the
three because respiration estimates are proportionally
smaller than for the other two deserts, thus the shift to
small rainfall events in low precipitation years has a
smaller impact on NEE.

At their native precipitation regimes, the Sonoran and
Chihuahuan Deserts were capable of accumulating a
substantial amount of C in summer. For the Mojave
Desert, this occurred only during the moderate and high
rainfall years. However, this estimate considers only mid-
season conditions, so incorporation of the dynamics of
canopy construction and non-growing season respiratory
effluxes may result in actual NEE for the annual period to
be considerably lower.

In summary, our model indicates that NEE can be
sensitive to changes in the event size distribution of
rainfall. In natural environments, this sensitivity may
explain both local changes in NEE between wet and dry
years, typically characterized by different numbers of large
storms, and inter-site differences in NEE across the three
North American warm deserts. Using 5 mm as the
threshold for a large storm, total summer precipitation is
strongly related to the number of large storms (Fig. 3a) and
this relationship is similar among the three deserts. Thus,
according to this analysis, differences among deserts in
their NEE response to precipitation are almost entirely due
to differences in the characteristic ecosystem flux rates

(see Table 1). Dissimilarities between the deserts (primar-
ily the Sonoran and Chihuahuan contrasted with the
Mojave) in their ecosystem-level reference and maximum
flux rates may be due to several factors including
differences in both canopy cover and the timing and
magnitude of previous rain events, which may have the
potential to modify the current physiological state of
leaves, roots, and microbes.

Our findings suggest that future research should focus
on measuring components of ecosystem C exchange to
better understand their relationship to rainfall amount and
distribution both within and across seasons. For example,
base rates for vascular plant activity during interpulse
periods probably depend on the amount of water stored in
deeper soil layers from fall to spring recharge. However,
regional differences in rainfall event size distributions,

Table 2 Average event number for rain pulses >3 mm, average size
of these rainfall events, and average season (July–September) total
precipitation for the wettest (Wet) , mid 25% (Mid) and driest 25%
(Dry) 25% of years from long-term (85 years) daily records of
rainfall from the three warm deserts of North Americaa

Desert Effective event
no.

Effective event
size

Season total
precipitation

Mojave
Wet 4.8 13.1 69.0
Mid 2.2 10.1 36.2
Dry 0.5 5.1 7.0
Chihuahuan
Wet 14.1 13.8 205.3
Mid 11.1 10.1 125.7
Dry 7.1 8.5 71.8
Sonoran
Wet 13.2 13.7 197.6
Mid 8.8 10.9 113.6
Dry 5.1 8.1 56.5
aData were provided by Reynolds et al. (2004, this issue), and based
on analyses of data obtained from http://www.wrh.noaa.gov/
lasvegas/lasvegas_records.htm (Mojave); http://www.wrh.noaa.
gov/Tucson/climate/climate.html (Sonoran); http://jornada-www.
nmsu.edu/ (Chihuahuan)

Fig. 4 Plotted are the seasonal cumulative C fluxes of respiration
(summed Ra and Rh) and photosynthesis for the three warm deserts
of North America. Each data point is constructed from either the
driest 25% (open symbols), mid 25% (gray symbols) or wettest 25%
(black symbols) of the precipitation record (from Fig. 2). The size
distributions in Fig. 2 are translated into time by the relationships
given in Fig. 1c, and used to determine the time period of maximum
flux rates for a season. The season length (in this case 100 days)
minus the duration of high activity gives the time period of reference
state activity. The sum of these high and low flux totals gives
seasonal GEE and Re (Re=Ra+Rh). NEE=GEE+Re. Flux rates used
here, associated with each desert are given in Table 1. Negative
values represent C flux into the ecosystem, while positive values
represent C loss from the ecosystem. In the bottom panel, the
compensation point is illustrated with a dashed line. Circles
represent the Sonoran Desert, squares represent the Chihuahuan
Desert, and triangles represent the Mojave Desert. For other
abbreviations, see Fig. 1
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within the range observed across the three North American
warm deserts in summer, may not have a significant effect
on the relationship between NEE (or its component fluxes)
and total precipitation.

These relationships highlight the importance of design-
ing rainfall manipulation experiments to incorporate
realistic relationships between precipitation amount and
event size distribution when considering questions about
ecosystem C balance. Experiments that explore the effects
of contrasting event size distributions while maintaining
precipitation amount constant across treatments may be
artificial because amount and event size tend to change
concomitantly. In fact, such experiments could result in
overestimating the importance of rainfall patterns in
natural environments, unless care is taken to stay within
realistic bounds of rainfall variation. Likewise, experi-
ments that modify total seasonal precipitation, but do not
account for wet versus dry year changes in event size
distribution may not reflect realistic scenarios.

These statements derive partially from an assumption of
the model that individual precipitation pulses act inde-
pendently, but it is likely that the sensitivity of ecosystem
C dynamics to a given storm will depend on antecedent
soil water (e.g., Reynolds et al. 2004; Ogle and Reynolds
2004, this issue), which will be partly determined by the
timing and size of previous storm events. Only now are
researchers beginning to characterize the temporal correla-
tions of rainfall patterns (Davidowitz 2002), and the
prediction of these correlations would be a very useful
output of climate models. Ultimately, more complex
dynamic models will be necessary to understand the

relationships between climate change, precipitation pat-
terns and ecosystem C exchanges. Given the difficulty of
manipulations of rainfall on such a large scale, research
programs that incorporate reasonable field experiments,
with high-resolution measurements of ecosystem compo-
nent activity, historical data, and modeling are perhaps the
most feasible and powerful approach to understanding the
linkage between precipitation and ecosystem C exchange
in semiarid and arid ecosystems.

Since the assumptions taking us to these conclusions
were quite simple, possible sources of error should be
carefully considered. First, the degree of nonlinearity in
the relationship between NEE and precipitation is clearly
affected by the choice of ecosystem flux parameters
(Table 1) and by the assumptions regarding pulse duration.
Small pulse–interpulse differences in the flux rates, or a
bias towards a small heterotrophic/autotrophic activity
ratio (Rh, max/GEEmax), would tend to minimize nonlinea-
rities by weakening the effect of shifts in rain event size
distribution. Similarly, either very short periods of micro-
bial activation or patterns of microbial respiration that are
more similar to those of vascular plants would make the
relationship between NEE and seasonal precipitation more
linear. These relationships can be easily tested in the field,
as assessments of maximum and minimum flux rates are
fairly straightforward to make.

Second, above the threshold for vascular plant activity,
the relationships between GEE and pulse size were
assumed to be linear over a wide range, so that the
combined effects of all event sizes above 5 mm depended
only on total precipitation. There may be several
mechanisms, some of which are discussed below, that
would introduce nonlinearities also in this range of rainfall
sizes.

Future challenges

Hydraulic redistribution

One of the major challenges today is to quantify the effect
of hydraulic redistribution, not just on the water use
patterns of vascular plants, but also on the microbial
community and hence the balance of microbial respiration
and plant photosynthesis. Plant roots can redistribute water
upward or downward. Upward redistribution of water (i.e.,
hydraulic lift) occurs during interpulse periods when the
soil close to the surface has dried out but soil moisture at
depth is still high (Richards and Caldwell 1997; Caldwell
and Richards 1989). Hydraulic lift increases water
availability to understorey plants that grow underneath
the hydraulic lifters during interpulse periods (e.g.,
Caldwell and Richards 1989; Dawson 1993), thereby
sustaining less drought-tolerant species and increase their
capacity to respond to subsequent rainfall pulses. By the
same token, hydraulic lift may also prolong the activity of
microbial communities near the soil surface. Downward
redistribution occurs during pulse periods when surface
soil is nearly saturated and deeper soil layers are partially

Fig. 5 NEE as a function of the seasonal precipitation event size
distributions for the Sonoran, Chihuahuan and Mojave deserts
(given in Fig. 2). In this analysis, the precipitation characteristics of
each region (dry, mean and wet) are applied to the ecosystem
component flux characteristics of each region in a factorial manner
so that, for example, the Mojave Desert flux values are applied to
the precipitation record of both the Sonoran and Chihuahuan
Deserts. Circles represent the Chihuahuan Desert specific flux
characteristics, squares represent the flux characteristics of the
Sonoran Desert, and triangles illustrate the Mojave Desert all given
in Table 1. The different precipitation regimes are: black filled
symbols Chihuahuan Desert, gray filled symbols Sonoran Desert,
and open symbols Mojave Desert
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depleted (Burgess et al. 1998, 2000; Schulze et al. 1998;
Smith et al. 1999; Ryel et al. 2002). It has been argued that
this downward redistribution of water may slow the
depletion of deeper water stores that sustain the activity of
growth forms with deeper rooting depths (Ryel et al.
2002). What has not been considered so far is whether this
redistribution also has the capacity to accelerate the onset
of dry conditions near the soil surface, thereby suppressing
microbial activities.

Eco-hydrologic effects of vegetation structure

In most aridland systems, vegetation cover rarely exceeds
75% and bare soil is always a significant feature (e.g.,
Schlesinger et al. 1990; Vinton and Burke 1995). Infiltra-
tion capacity is typically greater in sub-canopy soil
compared to bare soil because of differences in soil
texture (Dunkerley 2002), soil organic matter content
(Kelly and Burke 1997) and root system development
(e.g., Devitt and Smith 2002). A comparison of rainfall
effects in a grassland (~50% plant cover and small,
discrete interspaces) and a shrubland (~30% plant cover
and large, connected interspaces) showed less infiltration
under bare soil in both systems, and greater sub-canopy
infiltration under shrubs than under grasses (Bhark and
Small 2003). Surface microtopography may also favor
infiltration in sub-canopy versus bare soil areas (e.g.,
Dunne et al. 1991; Bergkamp 1998), and may be modified
by cryptobiotic crusts (Eldridge and Greene 1994). Local
physical structure can thus strongly influence the final
horizontal and vertical patterns of water availability to the
microbes and plants that so influence ecosystem pulse
responses.

Ecosystem structure may also affect the functional
response of ecosystem C fluxes to rainfall size, via
modification of the infiltration patterns (Fig. 6). Plant
canopies intercept a fraction of incoming precipitation
(e.g., Kropfl et al. 2002). If the rainfall events are small,

intercepted water may evaporate rapidly and never reach
the soil (Tromble 1988). Although bare soil infiltration is
typically less than in sub-canopy soil, small rainfall events
may only recharge bare soil (e.g., Bhark and Small 2003).
As pulse size increases, throughfall occurs and stem flow
may focus some intercepted water at the base of the plant
(e.g., Whitford et al. 1997). Thus, small rainfall events
would primarily trigger microbial respiration in the canopy
interspaces, while larger rainfall events would be required
to funnel water to support vascular plant photosynthesis.

In addition, pooling of water in bare soil areas may
initiate horizontal redistribution of water. Runoff may not
occur at larger spatial scales (Bergkamp 1998) suggesting
that locally redistributed water eventually infiltrates in the
sub-canopy areas, which also receive throughfall and stem
flow inputs. As a result, larger pulses should lead to
disproportionately greater sub-canopy soil water content
than smaller pulses (Loik et al. 2004). Field data confirm
that small pulses lead to greater bare soil infiltration and
that sub-canopy infiltration surpasses bare soil as pulse
size increases, and that these relationships are modified by
the community structure (Bhark and Small 2003). Overall,
these patterns of horizontal redistribution of precipitation
would enhance the nonlinearity in the relationship
between NEE and precipitation (Fig. 2), because a
disproportional amount of precipitation in a low rainfall
regime would stimulate only bare soil microbial respira-
tion, with a tendency to reverse this trend as total
precipitation, and thus the proportion of large rainfall
events, increases. Furthermore, we would expect the shape
of this relationship to change with vegetation structure.
For example, the nonlinear trend between NEE and
precipitation would be expected to increase with the
encroachment of shrubs into grasslands, potentially
reinforcing the loss of primary production in low rainfall
years. Even if climate remains relatively constant, such
changes in ecosystem structure can affect the frequency
with which the system is a net sink or source for C.

Fig. 6 Hypothesized relative soil water content and subsequent C
fluxes under bare soil and sub-canopy areas of an arid or semiarid
ecosystem are shown following a pulse of one of the three size
classes (I–III) defined by the distribution of water on the surface.
Under bare soil, water content after the pulse is roughly proportional
to pulse size. Sub-canopy water content increases only above the
threshold, when canopy interception allows throughfall and stem

flow to wet the sub-canopy soil. Above an additional size threshold,
water redistribution from bare soil to sub-canopy leads to increased
water content in sub-canopy soil, a response that favors large
photosynthetic responses by plants. Soil water content and depth is
shown by shading in the soil box, while fluxes of CO2 are shown
from bare soil areas, sub canopy and plants with arrows where
length is proportional to the flux response
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Geomorphic and edaphic variability

Edaphic characteristics translate precipitation pulses into
biologically available water in the soil (McAuliffe 2003).
In aridland ecosystems, variation in soil surface and
subsurface layer development influences patterns of water
infiltration, runoff, deep soil recharge and water content/
water potential relationships (Noy-Meir 1973; McAuliffe
2003). For example, the presence of cemented subsurface
calcic horizons and surface vesicular components affect
soil water balance, and thus, plant water-relations and net
primary productivity (Cunningham and Burke 1973;
Hamerlynck et al. 2002). The interaction between plants
and soil characteristics are important for hydrological
processes, such as runoff and sediment transport (Wain-
wright et al. 2002). Variation in soil characteristics can
modify precipitation events into differential biological
activity, impacting vegetation composition and perfor-
mance (McAuliffe 1994, 1999; Parker 1995; Smith et al.
1995; Hamerlynck et al. 2002, 2004). Thus, whole-
ecosystem C dynamics can be substantially influenced by
the manner in which surface and subsurface soil
characteristics modify precipitation pulses, through im-
pacts on the infiltration response of the vertically stratified
microbial and autotrophic components of ecosystem C
exchange.

Summary and future directions

In summary, pulse size plays an important role in
regulating C balance of arid ecosystems through its
differential effects on ecosystem respiration and photo-
synthesis (Fig. 1). Small, shallowly infiltrating storms
primarily increase microbial respiration while larger
storms infiltrate to sufficient depth to increase plant gas
exchange. Importantly, the physical structure of the system
frequently acts to strengthen this pattern because surface
redistribution of water leads to greater infiltration and a
disproportionate increase in plant activity following large
pulses (Fig. 6). Because of the differential rates of
response of respiratory and photosynthetic processes in
arid land ecosystems, the frequency of high levels of
biological activity becomes important in regulating C
balance. All things being equal, a pulse results in a large
initial efflux of C from the ecosystem that can be several
orders of magnitude larger than rates of CO2 exchange
during the interpulse. This net loss is followed by a period
of C accumulation as soil layers dry and water becomes
increasingly scarce for shallowly located microbial com-
munities while deeper soil water remains available to
plants. As a result, the frequency distribution of ecosystem
fluxes in arid systems, versus systems with a gradual
decline in soil moisture, can be characterized by frequent,
large oscillations between short periods of high activity
and protracted periods in a low activity reference state.

We have summarized what we think is critical for
understanding how climate influences biological processes
in arid ecosystems, but our conclusions are somewhat

limited due to a general lack of quantitative information.
In order to accurately gauge the potential impacts of
changes in precipitation and temperature associated with
global climate change scenarios, a more detailed series of
studies across a range of arid systems addressing the above
issues is required. Of particular interest are those studies
which address: (1) the separate contributions of autotroph-
ic or heterotrophic activity to soil CO2 efflux following a
rain event, (2) the influence of microtopography and
vegetation structure on the relationship between precipi-
tation pulses and biological activity, and (3) the interaction
of precipitation effects on ecosystem C balance over both
short (within season) and longer (interannual to decadal)
time scales in an eco-hydrological system.
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Appendix

We compiled flux duration curves [analogous to the stream
flow duration curves (Searcy 1959)], to illustrate the
differences in ecosystem CO2 exchange characteristics for
a pulsed ecosystem [a desert grassland (Jornada Experi-
mental Range; Mielnick et al., in press)] and an ecosystem
that experiences a relatively steady-state decline in soil
water availability in time [a coniferous forest (Niwot
Ridge AMERIFLUX site; Monson et al. 2002)]. We used
30- and 20-min averaged (Niwot Ridge and Jornada,
respectively) peak growing season (June–August) NEE
values observed over 4 years (1999–2002 and 1997–2000,
Niwot Ridge and Jornada, respectively). Briefly, NEE data
for the period of interest at each site were assigned a rank
(r) in order of descending magnitude, positive to negative.
A probability of exceedance (F) was calculated for each
ranked NEE value (r) according to the formula:

F ¼ ½r=ðnþ 1Þ� � 100

where n is the number of ranked NEE values for the period
of interest. Like flow duration analysis in hydrology
(Searcy 1959; Vogel and Fennessy 1995; Potts and
Williams 2004), flux duration analysis provides a
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convenient and repeatable standard for comparing patterns
of ecosystem exchange between sites and between years at
the same site. By ranking and assigning a frequency to
ecosystem exchange values, flux duration analysis in-
corporates episodic high activity periods, such as those
associated with precipitation pulses, and sustained low
level fluxes during interpulse periods into a single
calculation. As additional ecosystem scale flux data sets
become available, it may be possible to broadly classify
ecosystem flux duration curves as “pulsed-dominated” and
“steady-state” similarly to the way hydrograph-derived
flow duration curves can be described and classified by the
physical, biotic and anthropogenic factors controlling
stream flow (e.g., Vogel and Fennessey 1995; Smakhtin
2001).
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