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Abstract 

When the Gram-Charlier series expansions for the velocity 
correlations are used to close the set of Reynolds-Averaged 
Navier-Stokes (RANS) equations, no assumption on Gaussian 
turbulence is invoked and no unknown model coefficients are 
introduced into the modelled equations. In such a way, this 
closure procedure reduces the modelling uncertainty of fourth-
order RANS closures (FORANS). Models are still required for 
the interaction of turbulent velocity and pressure fluctuation 
fields and dissipative processes. The current paper describes new 
linear models for the second-, third-, and fourth-order 
velocity/pressure-gradient correlations applicable to two-
dimensional incompressible turbulent wall-bounded flows. DNS 
data for high-order statistics in two-dimensional (2D) fully-
developed channel flow and zero-pressure gradient boundary 
layer over a flat plate are used to verify the model expressions. 

 

Introduction  

To improve the performance of RANS turbulence models, one 
has to improve the accuracy of models for three physical 
processes: turbulent diffusion, interaction of turbulent pressure 
and velocity fluctuation fields, and dissipative processes. In one- 
and two-equation RANS models, all turbulence effects are 
modelled based on empirical/intuitive considerations rather than 
on physics-based assumptions about the flow dynamics. This 
class of models is the least accurate and is not considered in our 
current study.  

The accuracy of modelling the turbulent diffusion depends on the 
order of a statistical closure chosen as a basis for a RANS model. 
In second-order closures (or Reynolds-stress transport models), 
gradients of third-order velocity moments that describe the 
turbulent diffusion in the Reynolds-stress transport (RST) 
equations are usually modelled using the semi-empirical 
generalized gradient-diffusion hypothesis [2,10]. This hypothesis 
is not derived from the analysis of general physical properties of 
a turbulent flow field. Hence, models based on this hypothesis or 
of similar kind (see, for example, [4]) are not physics-based.  

In third-order closures, a model for turbulent diffusion can be 
derived by assuming the quasi-Gaussian turbulence.  That is, all 
velocity moments of the fourth- and higher-orders can be 
determined from the Gaussian distribution of the probability 
density function (PDF) of the turbulent velocity field 
(Millionshtchikov’s hypothesis of quasinormality [9]). However, 
a turbulent velocity field is generally non-Gaussian [14].  

A rigorous procedure for closing the set of RANS equations 
without assuming Gaussian correlations was suggested in [6] for 
FORANS and higher-order closures. In such expansions, a non-

Gaussian PDF is given in the form of a series in Hermite 
polynomials with respect to the Gaussian distribution. The Gram-
Charlier series expansions are used to represent fifth- and higher- 
order velocity moments in terms of lower-order velocity 
moments without unknown model coefficients [3]. The 
applicability of Gram-Charlier series expansions was 
successfully tested experimentally in several flows (see reviews 
in [3,11]). DNS data for high-order statistics were successfully 
used in [5,11] to validate the closing procedure in a 2D zero-
pressure gradient boundary layer over a flat plate and in a 2D 
fully-developed channel flow. Overall, available evidence 
provides a sufficient basis for choosing Gram-Charlier series 
expansions to accurately model the turbulent diffusion in 
transport equations for fourth-order velocity moments. No 
modelling is required for turbulent diffusion in transport 
equations for second- and third-order velocity moments in 
FORANS closures.    

The current paper addresses modelling the interaction of 
turbulent velocity and pressure fluctuation fields, one of the two 
remaining physical processes in FORANS equations to model. In 
transport equations for velocity moments, this process is 
represented by the velocity/pressure-gradient correlations of 
different orders. 

Models for Velocity/Pressure-Gradient Correlations 

The correlations of interest in FORANS equations are
, /i ju p ρ< > , , /i k ju u p ρ< > , and , /i k l ju u u p ρ< > . Hereafter, 

Cartesian notations are used, u and p are velocity and pressure 
fluctuations, ρ is the density, i j i jf f x= ∂ ∂, . Initial ideas for 
modelling such correlations were developed in [1], but no model 
suitable for practical applications was proposed at that time. 
Starting from [13], the modelling effort was shifted towards 
relevant, but different pressure-containing correlations: pressure/ 
velocity-gradient (pressure-strain) correlations , /i jpu ρ< > . 
Although it simplifies a mathematical formulation of the 
problem, this approach limits the ability of RANS models to 
adequately describe turbulent flows. The substitution of velocity/ 
pressure-gradient correlations with pressure-strain correlations is 
only valid in homogeneous turbulence. Moreover, this 
substitution is of no use for modelling higher-order correlations.   

Models for , /i ju p ρ< >  and for the excess factor were proposed 

in [7,12]. A review of models for , /i k ju u p ρ< > can be found in 
[8]. No integrated approach was previously proposed for 
modelling second, third-, and fourth-order correlations. Further, 
the number of model coefficients was an issue for some of the 
earlier modelling attempts. In the current paper, a new integrated 
approach is proposed for modelling velocity/pressure-gradient 



correlations of different orders, based on separating the rapid and 
slowly decaying correlations.  

The exact integral-differential expressions (without the surface 
integrals) for velocity/pressure-gradient correlations are:  
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(2) 

[1]. Here, “ ’ ” above a flow variable indicates that it should be 
evaluated at a point Y'  with coordinates ix' , which ranges over 
the region of the flow; r is the distance from Y'  to the point Y 
with coordinates ix ; dV'  and dS'  are the volume and surface 

elements, respectively; and n'∂ ∂  denotes the normal derivative. 
The velocity/pressure-gradient correlations on the left side of (2) 
are evaluated at point Y, whereas all derivatives on the right side 
are taken at Y' . Terms with the mean velocity gradients are 
usually called “rapid”. The second integrals on the right side of 
(2) are called “slow”.  

An integrated approach to modelling “slow” terms in (2) was 
proposed by the authors in [11]. Models were derived by 
analysing tensor properties of the integrals. However, due to the 
scope of the paper and the length of derivations, all derivations 
are omitted here. Only models in their current form are reported: 
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(3) 

In (3), tensors Π represent terms describing the interaction of 
turbulent pressure and velocity fluctuation fields in FORANS 
equations. Expressions (3) differ slightly from those in [11] 
where results were obtained at 2 0B = . In [11], good agreement 
between the model and DNS profiles was observed in wall-
bounded flows at 10y+ >  with 2B  = 0, but as discussed in the 
Results section, non-zero 2B is essential for accurate modelling of 
Π to the wall.  The parameter y+ is defined as /u yτ ν , where uτ
is the friction velocity, ν  is the kinematic viscosity, and y is the 
distance from the wall.   

The first terms on the right side of (3) can be linked to terms 
describing turbulent diffusion, 𝐃(𝑇), in RANS equations. 
Similarly, the second terms can be related to the production terms 
by turbulence, 𝐏(𝑇). Then, (3) can be re-written as 
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Tensor-invariant models proposed in [11] for the “rapid” terms in 
(2) were developed under the assumption of the pressure 
fluctuation dependence on the local mean velocity gradients [1]. 
This assumption holds true when the mean velocity gradients 
vary more slowly than the two-point velocity correlations within 
the volume determined by the two-point velocity correlation 
length scale. Then, the first integrals on the right side of (2) can 
be simplified. For , /i ju p ρ< > , for example, it yields  
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(5) 

This assumption is violated in the wall proximity and is a cause 
of the discrepancy of the model Π-profiles in that region in  [11]. 
Therefore, a new integrated approach to modelling “rapid” terms 
was suggested in [11] based on the analysis of the DNS budgets 
of transport equations and a relevance of different budget terms 
to modelling velocity/pressure-gradient correlations. Here, 
updated model expressions for the Π-components in 2D wall-
bounded flows are given that further clarify a mechanism of the 
energy transfer between velocity moments that involve 
turbulence production by the mean flow field and the interaction 
of turbulent velocity and pressure fluctuation field. The “rapid” 
parts are linear functions of the production terms, but the 
mechanism is more complex even for Reynolds stresses than 
thought earlier. Below, the model expressions for “rapid” and 
“slow” terms are combined together for each Π-component as the 
coefficient values are interdependent for some correlations: 

( )0.1 0.02T
xx xx xx xyD P PΠ = − + + , ( )0.5 0.02T

xy xy xx xyD P PΠ = − − − ,
( )0.5 0.025 0.45T

yy yy xx xyD P PΠ = − − − , 
( )0.5 0.025 0.55T

zz zz xx xyD P PΠ = − + − ,
( ) ( )0.1 0.3 0.05 2.5T T

xxx xxx xxx xxx xxyD P P PΠ = − − − + ,
( ) ( )0.1 0.05 1.1 0.8T T

xxy xxy xxy xxy xyyD P P PΠ = − + − + ,
( ) ( )0.5 0.2 0.1T T

xyy xyy xyy xyyD P PΠ = − + + ,
( ) ( ) ( )0.5 0.4 0.9 0.25 2T T T

yyy yyy yyy xyy xxy xyyD P P P PΠ = − − − − − ,
( )0.1 0.08 1.6T

xxxx xxxx xxxx xxxyD P PΠ = − + + ,
( ) ( )0.5 0.4 0.65 0.5T T

xxxy xxxy xxxy xxxy xxyyD P P PΠ = − + − + ,
( ) ( )0.5 0.8 0.35 0.15T T

xxyy xxyy xxyy xxyy xyyyD P P PΠ = − + − + ,
( ) ( )0.5 1.6 0.15 0.28T T

xyyy xyyy xyyy xxyy xyyyD P P PΠ = − + + − ,
( ) ( )0.5 3.2 0.22 1.5T T

yyyy yyyy yyyy xxyy xyyyD P P PΠ = − + − − . 

(6) 

In (6), x, y, and z are streamwise, normal-to-wall, and spanwise 
directions respectively; P is the tensor of production by the mean 
velocity field. The components of tensors are not shown here due 
to the scope of the papers, but they are straightforward to derive 
in a standard way for RANS equations. 



The value of 1B  is 0.1 for the correlations in the streamwise 

direction and for xxyΠ . The behaviour of  yyΠ  and zzΠ is less 
sensitive to this parameter: it does not change dramatically for 
the values between 0 and 0.5 for both correlations. One of the 
conclusions to be made from (6) is that correlations between 
velocity and pressure-gradient fluctuations in the streamwise 
direction have a weaker link to the turbulent diffusion processes 
than correlations of the fluctuations in other directions. Notice 
also that velocity/pressure-gradient correlations participate in the 
energy exchange between velocity moments through the 
production due to mean shear in the entire plane, not simply 
along a single direction. Expressions (6) should be considered as 
a proof of concept rather than the final model formulation.  

Results 

Expressions (6) were validated against DNS data [5] in a 2D 
fully-developed channel. In a zero-pressure gradient boundary 
layer over a flat plate, the budget terms are currently available 
only for the second-order correlations. The results for this flow 
will be reported at the conference. Based on our previous results 
[11], they are expected to be as good as in a channel flow.  

In figure 1, model profiles obtained from (6) using the DNS data 
for the budget terms in the transport equations for corresponding 
velocity moments are shown by solid lines. DNS data for the 
velocity/pressure-gradient correlations are shown by black 
circles. The agreement between the models and the DNS data is 
good everywhere in the flow including the near-wall area.  

Although some improvement is possible and more study is 
required to finalize the model expressions, the results obtained 
demonstrate that velocity/pressure-gradient correlations can be 
modelled up to the wall in terms of turbulent diffusion and 
production terms without introducing any empirical/damping 
functions.   

Conclusions 

The paper presents new linear models for second-, third-, and 
fourth-order velocity/pressure-gradient correlations in transport 
equations of FORANS closures applicable to 2D wall-bounded 
flows. Models for the “slow” parts of exact integral-differential 
expressions for the correlations are tensor-invariant and 
applicable to an incompressible turbulent flow in any geometry. 
Tensor-invariant models for the “rapid” terms were developed as 
well and presented in [11], but their validation in wall-bounded 
flows revealed their deficiency at 50y+ < . Thus, to improve the 
description in the near-wall area, the analysis of the DNS budgets 
of transport equations for velocity moments and a relevance of 
different budget terms to modelling velocity/pressure-gradient 
correlations was conducted using DNS data [5]. In the current 
paper, models for the “rapid” terms based on that analysis are 
given. The models reveal new physical mechanisms of the energy 
exchange between different velocity moments. That is, 
velocity/pressure-gradient correlations participate in the energy 
exchange between velocity moments through the mechanism of 
production due to mean shear in the entire plane, not simply 
along a single direction. 

Comparison of the model profiles for velocity moments with 
DNS data in a fully-developed channel [9] shows good 
agreement for all correlations everywhere in a flow including the 
near-wall area. Similar results are expected in a zero-pressure 
gradient boundary layer over a flat plate at different Reynolds 
numbers as preliminary study [8] demonstrated. They will be 
presented at the conference.  

The results presented in the paper demonstrate that 
velocity/pressure-gradient correlations can be modelled up to the 

wall in terms of turbulent diffusion and production terms without 
introducing any empirical/damping functions.   
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Figure 1. DNS and model profiles for the second-, third-, and fourth-order velocity/pressure-gradient correlations obtained using expressions 
(6) in a fully developed channel flow ( Re 391.68τ = ). Notations: ••• DNS .data [5];  model profiles. 

 


