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The accuracy and reliability of turbulence models based on the Reynolds-Averaged 
Navier-Stokes equations depend on accuracy of modeling turbulent diffusion, interaction of 
turbulent pressure and velocity fields, and dissipative processes. In fourth-order statistical 
closures (FORANS models), the turbulent diffusion needs to be modeled only in transport 
equations of the fourth-order velocity moments. When the Gram-Charlier series expansion 
is used, such modeling can be achieved without unknown model coefficients and assuming 
the Gaussian turbulence. In the current paper, a consistent approach to modeling the 
velocity – pressure-gradient correlations of second, third-, and fourth-order velocity 
correlations with a limited number of model coefficients is discussed. New models for “slow” 
and “rapid” terms of the velocity – pressure-gradient correlations of different orders are 
proposed. The model expressions are verified using available DNS data in a two-dimensional 
channel flow and a zero-pressure gradient boundary layer over a flat plate.  

Nomenclature 
uτ =   friction velocity 
Ui =   mean velocity component in the i-direction 
U              =   mean velocity in the streamwise direction in two-dimensional planar flows 
Πij, Πijk,     =   velocity – pressure-gradient tensors of second-, third-, and fourth ranks in FORANS equations 
Πijkl 
ui = velocity fluctuation in the i-direction 
u, v, w = velocity fluctuations in streamwise, normal-to-wall, and spanwise directions in two-dimensional     
                       planar flows  
x, y, z = streamwise, normal-to-wall, and spanwise directions in two-dimensional planar flows 
δij = Kronecker delta tensor 
ν = kinematic viscosity 
p               =    pressure fluctuation 
r                =   distance between two points in a flow 
y+              =  /yuτ ν  

i jf ,          =   i jf x∂ ∂  
n∂ ∂          =   normal derivative  

<…>         =   ensemble averaging  
 

I. Introduction 
hen it comes to the accuracy of turbulence representation, the approach based on solving Reynolds-Averaged 
Navier-Stokes (RANS) equations has an unlimited potential . Indeed, the solution of the complete set of exact 
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RANS equations, velocity moments of different orders n m l
i j ku u u< > , where 2n m l+ + ≥ , and n, m, and l

0 1, ,...,= ∞ , completely describe a turbulent flow structure1. In the general case, finding the accurate solution of the 
complete set of RANS equations is impossible, because it requires solving an infinite number of equations. 
However, for practical purposes, only some flow characteristics and their accurate representation are of importance. 
Thus, only velocity moments linked to the flow characteristics of interest should be reproduced accurately. This has 
been a motivation for developing the “closure” procedure and statistical closures of various orders. The first works 
in this direction can be traced back to Refs. 2-4.  

The entire family of RANS closures can be viewed as a hierarchy. The higher the closure order, the more 
accurate the approximation is to the solution of the complete set of RANS equations. One- and two-equation RANS 
models, a popular choice for simulating industrial turbulent flows, are first-order closures. Since all turbulence 
effects are modeled in such closures, the accuracy of solutions obtained with these models is by definition the lowest 
from all possible RANS models.  

In our research, we are looking for a closure order general enough to be applicable to a wide range of 
aerodynamic flows, and also able to serve as a foundation for developing lower-order closures in a rigorous manner. 
Reducing a higher-order closure to a lower-order closure is a physics-based alternative to the existing practice of 
introducing empirical functions into the transport equations for lower-order turbulence statistics.  

In second- and higher-order statistical closures, three processes – turbulent diffusion, dissipation, and 
interaction of turbulent velocity and pressure fields – have to be modeled. In second-order closures (or Reynolds-
stress transport models), terms that describe the turbulent diffusion in the Reynolds-stress transport (RST) equations 
are usually modeled using the semi-empirical generalized gradient-diffusion hypothesis1,5. This hypothesis is not 
derived from the analysis of general physical properties of a turbulent flow field. Hence, models based on this 
hypothesis or of similar kind (see, for example, Chs. 4.3.6 and 4.6 in Refs. 6 and 7) are not physics-based. 

The turbulent diffusion modeling can directly be linked to the statistical properties of a turbulent flow field in 
third-order RANS closures. Millionshtchikov’s hypothesis of quasinormality8: 

 
                 i j k l i j k l i k j l i l j ku u u u u u u u u u u u u u u u< >=< >< > + < >< > + < >< > ,                                   (1)        

 
is based on the assumption of the Gaussian distribution of the probability density function (PDF) of the turbulent 
velocity field for fourth- and higher-order order velocity moments. When using (1), there is no need for modeling 
the turbulent diffusion terms in the RST equations; no unknown model coefficient is introduced into the system. In 
this regard, the accuracy of third-order closures in representing the flow physics has been increased to compare with 
the accuracy of second-order RANS closures. 

The validity of the quasinormality hypothesis was demonstrated for one-point statistics in some experiments 
starting from [9] and for two-point statistics in [10]. However, a turbulent velocity field is generally non-Gaussian 
(for detailed discussion, see Ch.6 in Ref. 11). Thus, this closure level should be deemed as insufficient for the most 
of practical applications. 

Fourth-order RANS (FORANS) closures, on the other hand, have all attractive features of third-order closures, 
but can be closed without assuming Gaussian turbulence. Initial ideas for FORANS closures were considered in Ref. 
4. In Ref. 12 various possibilities of representing PDF of a non-Gaussian turbulent velocity field in terms of the 
degree of its deviation from a Gaussian form were analyzed. The Gram-Charlier series expansions were proposed 
for this purpose. In such expansions, non-Gaussian PDF is given in the form of a series in Hermite polynomials with 
respect to the Gaussian distribution. When the Gram-Charlier series expansions are applied to the RANS equations, 
velocity moments of fifth and higher orders can be represented in terms of lower-order velocity moments in a 
rigorous manner without any unknown model coefficients15: 

 
5 2 310i i iu u u< >= < >< >  

 
                                                    4 2 2 36 4i j i i j i i ju u u u u u u u< >= < >< > + < >< >                                                   (2) 

 
2 3 2 2 3 2 26 3i j i j i j i j i j ju u u u u u u u u u u< >= < >< > + < >< > + < >< > . 

 
Expressions (2) are derived by truncating the Gram-Charlier series expansions to the fourth order.  
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The applicability of Gram-Charlier series expansions was successfully tested experimentally in several flows13-

17. DNS data was used to validate expressions (2) in a 2D channel18. Currently, DNS data for higher-order statistics 
in a two-dimensional (2D) zero-pressure gradient (ZPG) boundary layer over a flat plate are also available 19,20 . 
Figure 1 shows the comparison of DNS profiles for some of the velocity moments with those obtained from (2) 
using DNS data for lower-order velocity moments in the ZPG boundary layer. The comparison for the other 
moments (not shown here) is similar. Although more experimental and DNS data in inhomogeneous flows are 
desirable, available evidence provides a sufficient basis for choosing Gram-Charlier series expansions to close the 
set of FORANS equations.   

 
Modeling the dissipation tensor in the RST equations is not a goal of our current research. In transport equations 

for third- and fourth-order velocity moments, modeling dissipation processes seems to have a negligible effect. This 
was theoretically predicted in Ref. 4. Later, simulations of the atmospheric boundary layer21 and of a fully-
developed turbulent flow in an axially rotating cylindrical pipe22,23 confirmed this finding. This strategy is currently 
proposed for the use in FORANS models, but will further be scrutinized in a separate study. The focus of the current 
paper is on modeling the interaction of turbulent velocity and pressure fields.  

II. Modeling the velocity – pressure-gradient correlations 
The exact integral-differential expressions for velocity – pressure-gradient correlations of different orders in 
incompressible flows include “rapid” and “slow” terms along with the surface integrals4. In the current study, only 
modeling the “rapid” and “slow” terms is discussed. The surface integrals can be neglected under the assumption 
that the length scale of the two - point velocity – pressure correlations is much less than the distance from 
considered flow points to any flow boundary. Thus, near a wall, the surface integrals should be taken into account 
and their role there is not negligible24.  

For the second-order correlations, the exact expression that includes both “rapid” and “slow” parts takes the 
following form: 
 

, , , , ,
1 1 1 1 1' ' ' ' ' ' ' ' '

2 4j i m n n i m j m n i mnjp u U u u dV u u u dV
r rρ π π

− < >= − < > − < >  ∫∫∫ ∫∫∫ .                      (3) 

 
Expressions for higher-order correlations are similar: 
 

[ ], , , , ,
1 1 1 1 1' ' ' ' ' ' ' ' ' ' '

2 4j i k m n n i k m j m n i k m n i k mnjp u u U u u u dV u u u u u u u u dV
r rρ π π

− < >= − < > − < > − < >< >  ∫∫∫ ∫∫∫ , 

           (4) 
 

 

 
 
Figure 1. Profiles of fifth-order velocity moments in the ZPG boundary layer over a flat plate ( Reθ =
4100). Notations:    DNS data18, - - profiles calculated from the Gram-Charlier series expansion 
representation (2) using DNS data18,19 for lower-order velocity moments. 
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[ ], , , , ,
1 1 1 1 1' ' ' ' ' ' ' ' ' ' '

2 4j i k l m n n i k l m j m n i k l m n i k l mnjp u u u U u u u u dV u u u u u u u u u u dV
r rρ π π

− < >= − < > − < > − < >< >  ∫∫∫ ∫∫∫         (5) 

 
Here, Cartesian tensor notations is used; “ ’ ” above a flow variable indicates that it should be evaluated at a point 
Y'  with coordinates ix' , which ranges over the region of the flow; r is the distance from Y'  to the point Y with 

coordinates ix ; dV'  and dS'  are the volume and surface elements, respectively; and n'∂ ∂  denotes the normal 
derivative. The velocity – pressure-gradient correlations on the left side of (3)-(5) are evaluated at point Y, whereas 
all derivatives on the right side are taken at Y' . 

A. Models for the “rapid” terms 
A traditional approach to modeling the “rapid” terms in (3)-(5), that is, integrals with the mean velocity 

gradients, is based on two fundamental assumptions.  One assumption, applicable to all three expressions (3)-(5), is 
that pressure fluctuations depend on the local mean velocity gradient4. This assumption holds true when the function 

m,nU'  varies more slowly than the two-point velocity correlations within the volume determined by the two-point 
velocity correlation length scale. Then, to a first approximation, the “rapid” term of expression (3) can be re-written 
as  

 
( )

, , , , , ,
1 1 1 1 1' ' ' ' ' ' ' '

2 2
r

j i m n n i m j m n n i mjp u U u u dV U u u dV
r rρ π π

− < > = − < > ≈ − < >  ∫∫∫ ∫∫∫ .                   (6) 

 
“Rapid” terms in (4) and (5) can be simplified in the similar manner. The assumption is expected to be violated close 
to the wall in boundary layers, which was confirmed in Ref. 24 by analyzing DNS data. It was also shown there that 
(6) performs well in the logarithmic layer.  
 The other assumption used in modeling the “rapid” term in (3) is stronger than (6). This is the assumption of 
turbulence homogeneity25, which imposes an additional condition on the tensor function 

,
1 1' ' '

2nmji n i mja u u dV
rπ

=≈ − < >∫∫∫ , such as symmetry under permutation of the indices i and j: 

 

, , ,
1 1 1 1' ' ' ' '

2 2nmji n i mj n m i ja u u dV u u dV
r rπ π

= − < > ≈ − < >∫∫∫ ∫∫∫  .                                   (7) 

 
Various models, linear and non-linear, were proposed for (7) over years including the classical Launder-Reece-Rodi 
(LRR) model26. However, turbulent flows are usually inhomogeneous. Therefore, to improve the accuracy of 
simulation results, assumption (7) has to be released. Moreover, this assumption does not help in modeling third- 
and fourth-order velocity – pressure-gradient correlations.  
 
1.  Models based on the local mean velocity gradient assumption.  
 In this section, modeling expression (6) and similar ones for higher-order velocity – pressure-gradient 
correlations 
 

( )
, , , ,

1 1 1' ' '
2

r
j i k nmjik m n m n n i k mjp u u a U U u u u dV

rρ π
− < > = = − < >∫∫∫ ,                                     (8) 

( )
, , , ,

1 1 1' ' '
2

r
j i k l nmjikl m n m n n i k l mjp u u u a U U u u u u dV

rρ π
− < > = = − < >∫∫∫ .                                  (9) 

 
 are considered.  
 The properties of nmjia were discussed in Refs. 27, 28 and its model: 
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( )

( ) ( ) ( )

( )

1

2

1 4
5 5

1 2
2
1 3
2 2

nmji i j mn i m jn i n jm

i j mn i m jn ij mn im jn i n jm j m in j n im m n ij

i j mn i m jn j n im m n ij in jm j m in

a u u u u u u

C u u u u k u u u u u u u u

C u u u u u u u u k u u

δ δ δ

δ δ δ δ δ δ δ δ δ δ

δ δ δ δ δ δ δ

= < > + < > + < > +

 + < > + < > + + + < > − < > − < > + < > + 
 + < > + < > − < > − < > + − < >  

    (10) 

  
was derived there. Expression (10) leads to the following model for the “rapid” part of the velocity – pressure-
gradient tensor in the RST equations: 

                                

( ) ( )

( ) ( ) ( ) ( )

1 2

1 2 1 2 1 2

1 1
5 2

4 1 4
5 2

( r )
ij nmji nmij m,n i m m, j j m m,i

i m j ,m j m i ,m i , j j ,i m n m,n ij

a a U C C u u U u u U

C C u u U u u U k C C U U C C u u U .δ

 Π = + = − + + < > + < > + 
 

 + − − < > + < > + ⋅ + + − + < > 
       (11)                   

 
Model (11) transforms to the LRR model26 in homogeneous turbulence28.  

The fifth- and six-order tensor functions nmjika and nmjikla have properties similar to those of nmjia : 
(i) symmetry under permutation of indices m and j; 
(ii) if m n= , then 0mmjik mmjikla a= =  ; 
(iii) if m j= , then 2njjik n i ka u u u= < >  and 2njjikl n i k la u u u u= < > . 

The first property is obvious. The second property follows rigorously from the continuity equation for the two-point 
velocity correlations4: 0n i k ,n n i k l ,nu' u u ' u' u u u '< > =< > = . The third property results from Green’s theorem under 
the assumption that the length scale of the two - point velocity correlations is much less than the distance from 
considered flow points to any flow boundary. Then, the surface integrals can be neglected in Green’s theorem. Close 
to walls, this assumption may be violated.  
 Additional property should be imposed on nmjika and nmjikla : symmetry in permutation of i and k for the former 
and of i, k, and l for the latter. Imposing these conditions on the general linear form of the fifth - rank tensor function 

nmjika  (not shown here) yields the following model expression  
 

1 4( )
5 5nmjik i j k mn i k m jn i k n jma u u u u u u u u uδ δ δ= − < > + < > + < > .                                    (12) 

 
Then, the model for the “rapid” part of the velocity – pressure-gradient tensor in transport equations for third-order 
velocity moments is  
 

( )( )
, , , ,

, , ,

1 ( )
5

4 ( ).
5

r
ijk nmijk nmjik nmkij m n i k m m j i j m m k j k m m i

i k m j m i j m k m j k m i m

a a a U u u u U u u u U u u u U

u u u U u u u U u u u U

Π = + + = − < > + < > + < > +

+ < > + < > + < >
           (13) 

 
Expression (13) coincides with the expression developed in Ref. 29 by analyzing properties of the pressure - 
containing correlations in the spectral space in near-homogeneous turbulence. 
 In the similar manner, the model expression for nmjikla can be derived (not shown here). The expression includes 
seven model coefficients. Additionally, it is imposed that    
 

i k l , j i , j k l i k , j l i l , j ku u u p u p u u u u p u u u p u< >=< >< > + < >< > + < >< > ,                               (14) 
 

when turbulence is quasi-Gaussian. In quasi-Gaussian turbulence, equation (1) holds true and transport equations for 
the fourth-order velocity moments should transform to transport equations for the second-order velocity moments. 
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The mathematical details are omitted here, but it is easy to show that to satisfy this requirement on the transport 
equations, expression (14) should be satisfied, in particular.  Imposing (14) on the model expression for nmjikla yields:  

 

( )
( )

1

1 4( )
5 5

1
2

nmjikl i j k l mn i k l m jn i k l n jm

i j k l mn i k j l mn i l j k mn i m k l jn k m i l jn l m i k jn

i n k l k n i l l n i k jm

a u u u u u u u u u u u u

u u u u u u u u u u u u u u u u u u u u u u u u
u u u u u u u u u u u u

C

δ δ δ

δ δ δ δ δ δ

δ

= − < > + < > + < > +

< >< > + < >< > + < >< > + < >< > + < >< > + < >< > +

+ < >< > + < >< > + < >< >
+ ( )

2

k l ij mn k l im jn i k jn lm i k jl mn i l km jn i l jk mn

j m k l in j m i k nl j m i l kn

j n k l im m n k l ij m n i k jl m n i l jk j

k u u u u u u u u u u u u
u u u u u u u u u u u u

u u u u u u u u u u u u u u u u u u

δ δ δ δ δ δ δ δ δ δ δ δ
δ δ δ
δ δ δ δ

+
+ < > + < > + < > + < > + < > + < > −
− < >< > − < >< > − < >< > −
− < >< > + < >< > + < >< > + < >< > + <( )

2

1
2

n i k lm j n i l km

i j k l mn i k j l mn i l j k mn i m k l jn k m i l jn l m i k jn

j n k l im m n k l ij m n i k jl m n

u u u u u u

u u u u u u u u u u u u u u u u u u u u u u u u
u u u u u u u u u u u u u uC

δ δ

δ δ δ δ δ δ
δ δ δ

 
 
 
 
 
 
 >< > + < >< > 
 

< >< > + < >< > + < >< > + < >< > + < >< > + < >< > +
− < >< > − < >< > − < >< > − <+
( ) ( )

,3
2

i l jk j n i k lm j n i l km

i k nl jm i l jm kn k l jm in j m i k nl j m k l in j m i l kn

u u u u u u u u u u

k u u u u u u u u u u u u u u u u u u

δ δ δ

δ δ δ δ δ δ δ δ δ

   +  >< > − < >< > − < >< >  
 + < > + < > + < > − < >< > + < >< > + < >< >
 

                          

(15) 
 
where model coefficients are the same as in (10). The model expression for the “rapid” part of the velocity – 
pressure-gradient tensor in transport equations for fourth-order velocity moments is given as 
 

 

( ) ( )( )
, , , , ,

, , , ,

1 2 ,

1
5

4 ( )
5
( 4 )

r
ijkl nmijkl nmjikl nmkijl nmlijk m n i k l m m j i j l m m k i j k m m l j k l m m i

i j l m k m i k l m j m i j k m l m j k l m i m

m n m n j k

a a a a U u u u u U u u u u U u u u u U u u u u U

u u u u U u u u u U u u u u U u u u u U

C C U u u u u δ

Π = + + + = − < > + < > + < > + < > +

+ < > + < > + < > + < > +

+ − − < > < >( )

( )
( )
( )

,

,
1 2

,

1( )
2

il i j kl i k jl j l ik i l jk k l ij

j m k l k m j l l m j k m i

j m i k k m i j i m j k m l

j m i l i m j l l m i j m k

i m

u u u u u u u u u u

u u u u u u u u u u u u U
u u u u u u u u u u u u UC C
u u u u u u u u u u u u U
u u

δ δ δ δ δ+ < > + < > + < > + < > + < > +

< >< > + < >< > + < >< > +
< >< > + < >< > + < >< > ++ − −
< >< > + < >< > + < >< > +
< ><( )

( )
( )
( )

,

,

,
1 2

,

1( )
2

k l k m i l l m i k m j

j m k l k m j l l m j k i m

j m i k i m j k k m i j l m

j m i l i m j l l m i j k m

i m k l

u u u u u u u u u u U

u u u u u u u u u u u u U
u u u u u u u u u u u u UC C
u u u u u u u u u u u u U
u u u u

 
 
 
 
 > + < >< > + < >< > 

< >< > + < >< > + < >< > +
< >< > + < >< > + < >< > +− −
< >< > + < >< > + < >< > +
< >< > + <( )

( )

,

, , , , , ,
1 2

, , , , , ,
.

k m i l l m i k j m

i l k j j l k i i l j k i k j l k l j i i j k l

j k i l j l i k k l i j i j l k i k l j j k l i

u u u u u u u u U

u u U u u U u u U u u U u u U u u UC C k u u U u u U u u U u u U u u U u u U

 
 
 
 
 >< > + < >< > 

< > + < > + < > + < > + < > + < > + + +  + < > + < > + < > + < > + < > + < >   
(16) 

 
The coefficients 1С  and 2С may vary depending on the flow geometry and the Reynolds number28.  
 
2. Models not based on the local mean-velocity gradient assumption. 

As will be discussed in the Results section, model expressions (11), (13), and (16) exhibit a deficiency in 
describing the flow behavior near the wall. Detailed analysis of DNS data and models’ deficiencies led us to 
conclude that the assumption of the local mean-velocity gradients is at the root of the problem. As a result, new 
models were derived from considering integrals corresponding to the “rapid” terms in expressions (3)-(5). In the 
current paper, the initial version of model expressions applicable to 2D planar flows is reported:  

 
( )( ) 2

1 ,3 0.5r
xx yD v uv UΠ = − < > − < > , ( ) 2

1 ,1.5r
yy yD v UΠ = < > , 

   ( )( ) 2
1 ,1.5 0.5r

zz yD v uv UΠ = < > − < > , ( ) 2
1 ,3r

xy yD v UΠ = < > .                                     (17) 
  

  ( )( ) 2 2
1 ,4.5 0.5r

xxx yD u v uv UΠ = < > + < > , ( )( ) 2 2
1 ,4.5 1.5r

xxy yD uv u v UΠ = < > − < > , 

( )( ) 3 2
1 ,2r

xyy yD v uv UΠ = < > + < > , ( ) 3
1 ,3.5r

yyy yD v UΠ = < > ,                                         (18) 
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( )( ) 3 2 2

1 ,5 0.5r
xxxx yD u v u v UΠ = < > − < > , ( )( ) 2 2 3

1 ,6.5 0.5r
xxxy yD u v u v UΠ = < > − < > , ( ) 3

1 ,3r
xxyy yD uv UΠ = < > , 

( )( ) 4 3
1 ,

r
xyyy yD v uv UΠ = < > − < > , ( ) 4

1 ,3.5r
yyyy yD v UΠ = < > .                                      (19)             

 
Expressions (17)-(19) were validated in a fully-developed channel flow18. Expressions (17) were also validated in a 
ZPG boundary layer over a flat plate using DNS data20,30. Models in the tensor-invariant form will be discussed 
elsewhere after DNS data for higher-order velocity – pressure-gradient correlations in a ZPG boundary layer is 
available to validate (18) and (19). Currently, this research is in progress.   

B. Models for the “slow” terms 
The “slow” terms in (3)-(5) are represented by the following integrals: 
 

( )
, ,

1 1 1' ' ' '
4

s
j i ji m n i mnjp u b u u u dV

rρ π
− < > = = − < >∫∫∫ ,                                           (20) 

 

[ ]( )
, ,

1 1 1' ' ' ' ' '
4

s
j i k jik m n i k m n i k mnjp u u b u u u u u u u u dV

rρ π
− < > = = − < > − < >< >∫∫∫ ,                      (21) 

 

[ ]( )
, ,

1 1 1' ' ' ' ' '
4

s
j i k l jikl m n i k l m n i k l mnjp u u u b u u u u u u u u u u dV

rρ π
− < > = = − < > − < >< >∫∫∫ .                  (22) 

 
The initial approach to modeling (20) was proposed in Ref. 25. Models for (21) and (22) were suggested in Refs. 17 
and 22. However, none of those models is based on the analysis of tensor properties of (20)-(22). The only exception 
is a model for the “slow” part of the pressure diffusion term in the transport equation for turbulent kinetic energy: 
 

1 1
5

( s )
i ,i m m i ,iu p u u u

ρ
− < > = < >                                                           (23) 

 
that was developed in Ref. 29 by analyzing the properties of the pressure - containing correlations in the spectral 
space in near homogeneous turbulence. For incompressible flows, this model is equivalent to modeling the “slow” 
part of the velocity – pressure gradient trace. Expression (23) cannot be extended to model integrals (21) and (22) 
and the “slow” parts of individual components of ijΠ . 
 In the current paper, the tensor functions jib , jikb , and jiklb are modeled as  
 

1 ,ji m j m ib B u u u= < > ,                                                               (24) 
 

1 , ,jik m j m i k i k m j mb B u u u u u u u u = < > − < >< >  ,                                            (25) 

 

1 , ,jik m j m i k l i k l m j mb B u u u u u u u u u u = < > − < >< >  .                                        (26) 

 
Expressions (24)-(26) were derived by analyzing the tensor properties of (20)-(22). They are not the only possible 
models, but certainly the simplest ones. Due to the length of derivation even for (20), mathematical details are 
omitted here, but will be reported elsewhere in a different format. Expressions (24)-(26) lead to the following 
models for the “slow” parts of the velocity – pressure-gradient tensors of second, third, and fourth ranks: 
 

( ) ( )
1 1 ,

s T
ij ij ji ij m i j mb b B D B u u uΠ = + = − = < > ,                                                     (27) 

 

( )
( ) ( )

1

1 , , , , ,

s T
ijk ijk jik kij ijk

m i j k m i k m j m j k m i m i j m k m

b b b B D
B u u u u u u u u u u u u u u u u

Π = + + = − =
= < > − < >< > − < >< > − < >< >

                    (28) 
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( )

( ) ( )
1

1 , , , , , ,

s T
ijkl jikl ijkl kijl lijk ijkl

m i j k l m i k l m j m j k l m i m i j l m k m i j k m l m

b b b b B D

B u u u u u u u u u u u u u u u u u u u u u u u u u

Π = + + + = − =

= < > − < >< > − < >< > − < >< > − < >< >
 

(29) 
 

where ( )T
ijD , ( )T

ijkD , and ( )T
ijklD  are the turbulent diffusion tensors in the transport equations for second-, third-, and 

fourth-order velocity moments. Model expression (27) transforms to (23) in the transport equation for the turbulent 
kinetic energy. 

III. Results 
Two sets of model expressions were validated against DNS data18,20,30 in 2D planar flows: a fully-developed channel 
and a ZPG boundary layer over a flat plate. In Set 1, model expressions (11), (13), and (16) for the “rapid” parts of 
the velocity – pressure-gradient are combined with the corresponding model expressions (27)-(29) for the “slow” 
parts of the corresponding velocity-pressure tensors. The same model expressions (27)-(29) for the “slow” parts are 
combined with model expressions (17)-(19) in Set 2.  
 In Set 1, model coefficients 1C , 2C , and 1B were set to the same values in model expressions for the velocity – 
pressure-gradient tensors of different orders. In Figure 2, the profiles for xxΠ , yyΠ , and xyΠ  obtained using with the 
DNS data (lines) are compared with the corresponding DNS profiles (solid circles) in a fully-developed channel 
flow ( Re 391.68τ = ). Blue lines correspond to 1 0.4C = , 2 0.64C = − , and 1 0.2B = . Red lines are obtained with the 
same value of 1B , but 1 0.3C =  and 2 0.5C = − . More variations of the coefficients were considered, but the 
“coefficient tuning” procedure does not eliminate the main deficiency of Set 1, which is a disagreement of model 
profiles with DNS data at 50y+ < .  

A similar tendency is observed for higher-order velocity – pressure-gradient correlations (Figs. 3-4). In Figure 3, 
model profiles are shown by black lines: solid lines correspond to 1 0.2B =  and dashed lines are obtained at 

1 0.5B = . It was found beneficial to vary this coefficient for the correlations of different orders. 
In Figure 4, model profiles for fourth-order correlations correspond to two different sets of coefficients. Blue 

lines are obtained at 1 0.4C = , 2 0.64C = − , and 1 0.8B = . Red lines correspond to 1 0.3C = , 2 0.5C = − , and 

1 0.8B = . In Figures 2-4, all profiles are in viscous units: 4/ u+Π = Π ⋅ τν . 

Model profiles for second-order correlations were also compared with DNS data in a ZPG boundary layer30 at 
three Reynolds numbers. Observations were the same as for a channel flow even at higher Reynolds numbers.  

To summarize results for Set 1, the near-wall behavior of model profiles deviates from DNS data. This effect is 
observed in different wall-bounded flows and at different Reynolds numbers. This behavior is due to the 
assumptions used in deriving model expressions (11), (13), and (16) for the “rapid” terms and should be expected. 
Outside the buffer zone, Set 1approximates the main features of the second-, third-, and fourth-order velocity – 
pressure-gradient correlations profiles. This model will further be tested in free shear flows when DNS data for 
higher-order correlations are available. 

Model profiles obtained with Set 2 are compared with DNS data18,20,30 in Figs. 5-9. In Figures 5 and 6, data in a 
fully-developed channel flow18 are shown and in Figs. 7-9 in a ZPG boundary layer over a flat plate20,30 at 
Re 300θ = , 1410, and 4000, respectively. The model coefficient 1D  has the value of 0.3 in all computations. The 
coefficient 1B is equal to 0.2, 0.5, and 0.8 in model expressions for second-, third-, and fourth-order correlations, 
respectively, in different flow geometries and at different Reynolds numbers.  

As seen from the figures, Set 2 predicts the behavior of velocity –pressure-gradient correlations in a very close 
agreement with DNS data everywhere except for very close to the wall, where maximum values of model profiles 
deviate slightly from the DNS values. In this area, the surface integrals contribution is important24,31 and their 
neglect may be a source of the observed discrepancy. More DNS data for higher-order velocity – pressure-gradient 
correlations is required to analyze this effect.    
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Figure 2. DNS and Set 1 model profiles of second-order velocity – pressure-gradient correlations in a 
fully developed channel flow ( Re 391.68τ = ). Notations: ••• DNS18; ,  Set 1. 
 

 

 
 
Figure 3. DNS and Set 1 model profiles of third-order velocity – pressure-gradient correlations in a fully 
developed channel flow ( Re 391.68τ = ). Notations: ••• DNS18; , - - - Set 1 with 1 0.2B =  and 0.5. 
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IV. Conclusions 
In the paper, fourth-order RANS (FORANS) closures are analyzed as a general framework for developing 

turbulence models applicable to a wide range of aerodynamic flows. Reducing a higher-order closure to a lower-
order closure is a physics-based alternative to the existing practice of introducing empirical functions into transport 
equations for lower-order turbulence statistics to compensate for the lack of physics in such equations. 

Of particular interest are FORANS models that utilize the Gram-Charlier series expansions for closing.  Such 
closures are applicable to non-Gaussian turbulent flows and allow for representing fifth- and higher-order velocity 
moments in terms of lower-order velocity moments in a rigorous manner without unknown model coefficients. 
Turbulent diffusion terms in transport equations for second- and third-order velocity moments do not require 
modeling in FORANS models. Recent DNS data for higher-order turbulence statistics in wall-bounded flows such 
as a flow in a fully-developed channel and a ZPG boundary layer over a flat plate are reviewed in the paper. DNS 
data confirms previous experimental results that the Gram-Charlier series expansions are applicable in such flows. 

 The main focus of the paper is on modeling velocity – pressure-gradient correlations in transport equations of 
FORANS closures. New linear models for the “rapid” and “slow” parts of velocity – pressure-gradient correlations 
are proposed. A number of model coefficients is fixed, that is, it does not increase with the order of modeled 
correlations. The “slow” term models include only one coefficient.  

Two sets of model expressions for the “rapid” terms were considered. Set 1 is applicable to inhomogeneous 
turbulent flows where the assumption that the mean velocity gradients vary more slowly than two-point velocity 
correlations is valid. Set 1 is reduced to the classical Launder-Reece-Rodi model in homogeneous turbulence, where 
LRR is valid. In this regard, proposed Set 1 is a more general model with a larger potential. In the current study, 
DNS data were compared with the profiles of second- and higher-order velocity moments obtained with Set 1 
combined with the new “slow” term models in a fully-developed channel and in a ZPG boundary layer over a flat 
plate. The comparison revealed that even this more general model does not well describe near-wall behavior of 
turbulence statistics. The thorough analysis of data led us to conclude that most likely no model based on the 
assumption that the mean velocity gradients vary more slowly than two-point velocity correlations will be valid 
close to a wall. On the other hand, Set 1 is capable to reproduce well DNS data outside the buffer zone. 

Set 2 for the “rapid” part of velocity – pressure-gradient correlations was developed to compensate for the near-
wall deficiencies of Set 1. It includes only one model coefficient. Very good results were obtained with Set 2 

   

        
Figure 4. DNS and Set 1 model profiles of fourth-order velocity – pressure-gradient correlations in a fully 
developed channel flow ( Re 391.68τ = ). Notations: ••• DNS18; ,  Set 1. 
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combined with the new “slow” term models without varying the coefficient in different flow geometries and at 
different Reynolds numbers. Some discrepancy is still observed very close to the wall, but more research and DNS 
data are necessary to firmly identify sources of this discrepancy.    
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