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Accurate prediction of wall-bounded flows with Reynolds-averaged Navier-Stokes 
turbulence models requires the improved modeling of physical processes that occur in 
turbulent flows such as the interaction of turbulent velocity and pressure fields, turbulent 
diffusion, and dissipative processes. Recently, novel models for the velocity/pressure-
gradient correlations through the fourth order were proposed by the authors and 
successfully validated against direct numerical simulation (DNS) data in wall-bounded flows 
without separation in a priori testing. In the current work, these models are implemented in 
transport equations for the Reynolds stresses to evaluate the model performance in a fully-
developed planar channel. Other terms that need modeling in the Reynolds stress transport 
equations are represented in simulations by their DNS profiles to eliminate uncertainty due 
to modeling these terms. Problems with using DNS data as an input in simulations are 
highlighted. An approach to mitigate some of those problems is proposed. The computed 
results are compared against DNS data. 

Nomenclature 
Ui  = mean velocity component in the i-direction 
U = mean velocity in the streamwise direction  

ijΠ  = velocity – pressure-gradient tensor, ( ), ,1 j i i jp u p uρ < > + < >  

ijΦ  = pressure-strain tensor, ( ), ,1 i j j ipu puρ < > + < >  
P
ijD  = pressure diffusion tensor, ( ), ,1 i j j ipu puρ− < > + < >  
T
ijD  = turbulent diffusion tensor, ,i j k ku u u− < >  

ijP  = production tensor, , ,i k j k j k i ku u U u u U− < > − < >  

ijErr  = budget balance error in DNS data 
P  = production, 1 2 iiP  

ijε  = dissipation tensor, , ,2 i k j ku uν < >  
ε  = scalar dissipation, 1 2 iiε  

ijA+  = term ijA in a Reynolds stress transport equation normalized in viscous parameters, 4
ijA uτν  

i jf ,          = i jf x∂ ∂ in the Cartesian coordinates 
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δij  = Kronecker delta tensor 
h = half-channel width  
ui = velocity fluctuation in the i-direction 
uτ  = friction velocity 
u, v, w = velocity fluctuations in streamwise, normal-to-wall, and spanwise directions  
x, y, z  = streamwise, normal-to-wall, and spanwise directions 
𝑛𝑖  = normal vector in the i-direction 
δ = boundary layer thickness  
ν = kinematic viscosity 
k = turbulent kinetic energy 
p = pressure fluctuation 
ρ = density 
Reτ  = Reynolds number, /uτδ ν  
Ret  = Reynolds number,  
y+  = /yuτ ν  

ny  = distance from the wall 
<…>        = ensemble averaging 
< 𝑢𝑖𝑢𝑗 >+ = < 𝑢𝑖𝑢𝑗 >/𝑢𝜏2 
 

I. Introduction 
Ecently, there has been renewed interest in using a Reynolds-stress turbulence model (RSTM) for high-
Reynolds-number external aerodynamics1-3. A major impetus behind this interest is the difficulty of existing 

one- and two-equation models to consistently predicted separated flows. The majority of RSTMs split the 
velocity/pressure-gradient correlations into pressure diffusion and pressure-strain correlations, i.e. 

 

( ) ( ) ( ), , , , , ,
1 1 1

j i i j i j j i i j j ip u p u pu pu pu pu
ρ ρ ρ

− < > + < > = − < > + < > + < > + < > , 

 
or in common shorthand notation, 

P
ij ij ijDΠ = +Φ . 

 
Although it simplifies the mathematical formulation of the problem, and separates redistribution and diffusion 
processes, this approach introduces difficulties in modeling the separate terms. For example, the majority of models 
for the pressure-strain correlations are only strictly valid in homogeneous flows, and there is little support for the 
gradient-diffusion model for the pressure-diffusion correlations.  

An integrated approach to modeling velocity/pressure-gradient (VPG) correlations through the fourth order was 
recently proposed in Refs. 4 and 5. These models were successfully verified in a priori testing against DNS data in a 
fully-developed planar channel flow6 and a zero-pressure-gradient boundary layer over a flat plate7,8. The goal of the 
current research is to validate the models for second-order VPG correlations ijΠ : 

 
0.1 0.02T

xx xx xx xyD P PΠ = − + + , 

0.5 0.02T
xy xy xx xyD P PΠ = − − − ,                                                                   (1) 

0.5 0.025 0.45T
yy yy xx xyD P PΠ = − − − , 

0.5 0.025 0.55T
zz zz xx xyD P PΠ = − + − . 

 
through simulations conducted with an RSTM model in a fully-developed planar channel flow. In (1), the positive y-
direction is from the wall outwards, with the y-value at the wall being equal to zero. Simulations were conducted at 
the same flow conditions as DNS in Ref. 6: 392Reτ = , 0 03798u .τ = , and h = 1 m. Results of simulations are 
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compared against reference data obtained from simulations where DNS data6 represent unknown terms (herafter, 
RANS-DNS simulations). 

II. Modeling Framework 

A. Reynolds Stress Transport Equations  
In a fully-developed channel flow, only three Reynolds-averaged Navier-Stokes (RANS) equations are coupled 

prior to modeling: the transport equations for the mean streamwise velocity component U, the shear stress < 𝑢𝑣 >, 
and the Reynolds stress < 𝑣2 > in the normal-to-the-wall direction: 

 
210 dP uv U

dx y y y
ν

ρ
∂ < > ∂

= − − +
∂ ∂ ∂

,                                                               (2) 

 
2 2

2 10 2U uv p p u v u v u v uvv v u
y y x y x x y y z z y y

ν ν
ρ
   ∂ ∂ < > ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ < >

= − < > − − < > + < > − < + + > +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
,         (3) 

 
22 23 2 220 2p v v v v vv

y y x y z y y
ν ν

ρ

  ∂ ∂ < > ∂ ∂ ∂ ∂ < >   = − < > − − < + + > +     ∂ ∂ ∂ ∂ ∂ ∂ ∂      
.                           (4) 

 
Equations for the Reynolds stresses in the streamwise and spanwise directions depend on the solution of 

equations (2)-(4). The solution of < 𝑣2 >-equation (4) does not depend on U and < 𝑢𝑣 > prior modeling, but 
equations (2) and (3) are interrelated and depend on the solution of (4).  

In addition to the VPG correlations, terms to be modeled in (2)-(4) are those representing turbulent diffusion and 
dissipation.  

B. State-of-the-Art Models for Turbulent Diffusion and Dissipation 
Before testing the new models for VPG correlations, common choices for models of the dissipation tensor and 

turbulent diffusion were evaluated  in a fully-developed channel flow.  
Three advanced approaches to modeling the dissipation tensor 

were tested: the So & Yoo12 (SY) model, Hanjalić & Jakirlić first 
model13 (HJ1), and Hanjalić & Jakirlić homogeneous model14 
(HJ2).   For completeness, details of these models are presented in 
Appendix A. The equations for these models were solved with the 
OpenFOAM15 software (simpleFOAM) using DNS data6 as input 
for all flow parameters except the dissipation itself. Figures 1 and 
2 compare results obtained with the SY, HJ1, and HJ2 models 
with DNS data. 

Results for the turbulent diffusion models of Daly & Harlow10 

and Hanjalić & Launder11 are shown in Fig. 3. The model 
coefficient values used for the two models are 0.2 and 0.11, 
respectively.  

From Figs. 1-3, one can infer that none of considered models 
for turbulent diffusion and the dissipation tensor demonstrates 
accurate and reliable performance required to solve equations (2)-
(4) and validate models (1). This is particularly true in the buffer 
zone.  

C. VPG Model Validation Framework 
To separate uncertainties originated from modeling turbulent diffusion and the dissipation tensor from those due 

to VPG correlations modeling, DNS profiles are used in the current study to represent the turbulent diffusion and 
dissipation terms in (2)-(4). Indeed, DNS data are considered to be the most accurate representation of a turbulent 
flow field obtained through computations.   

                           
Figure 1. Scalar dissipation profiles. Notations:  
⋯⋯ Eq. (A1) , − − Eq. (A2), and − ∙ − Eq. 
(A4), • • • DNS data6.  
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a)                                                                               b) 

 
Figure 3. Turbulent diffusion profiles a) 〈𝒖𝟐〉, b) 〈𝒖𝒗〉 and 〈𝒗𝟐〉. DNS data6: • 𝑫𝒙𝒙

𝑻 , ▲ 𝑫𝒙𝒚
𝑻 , ▼𝑫𝒚𝒚

𝑻 . Model results: a) 
  Daly & Harlow10, − − Hanjalić & Launder11.  

              
a) b) 

 

                                                 
                                                       c)                                                                              d) 
 
Figure 2. Turbuelnt dissipation profiles a) 𝜺𝒙𝒙+ , b) 𝜺𝒙𝒚+ , c) 𝜺𝒚𝒚+ , d) 𝜺𝒛𝒛+ . DNS data6: • • •. Model results: ∙∙∙∙∙∙∙  So & Yoo12, 
− − Hanjalić & Jakirlić13, − ∙ − Hanjalić & Jakirlić14. 
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Computations are also conducted with the RST equations,  
 

T
ij ij ij i

i j
j

M
ij D

D u u
D

Dt
P ε

< >
= + + + −Π                                                              (5) 

 
where all terms but those corresponding to molecular diffusion are represented by DNS data (RANS-DNS 
simulations). Hereafter, terms in equations shown in blue are taken from DNS. This set of equations is uncoupled. 
Such simulations allow for quantifying uncertainty in simulations with DNS data only.  

Other formulations of the RST equations solved are discussed in Section IV. 

III. Numerical Approach 
Two solvers are utilized in the current study: a second-order accuracy code for fully-developed axisymmetric 

flows and the open-source OpenFOAM software15. In the former, the control volume technique16 is implemented 
with a pseudo-time marching scheme with time step of 0.1 s to solve parabolic equations. A grid used in simulations 
is non-uniform in the direction normal to the channel wall with the total number of nodes in this direction being 100 
(97-node grid was used for DNS in Ref. 6). This resolution was found to be sufficient for obtaining grid-independent 
results. DNS profiles interpolated to the grid nodes are used as initial conditions to accelerate the results 
convergence. At the channel wall, non-slip boundary condition is applied to all flow parameters for which transport 
equations are solved. At the channel axis, 

 

0u uU uv
y y

α α∂ < >∂
= =< >=

∂ ∂
,                    

 
where x, y,zα =  (no summation over α). 
 In the current study, the simpleFoam application from the OpenFOAM 2.3.0 library15 is used to solve the RST 
equations  with a Preconditioned Bi-Conjugate Gradient solver (PBiCG) and a Diagonal Incomplete LU (DILU) 
preconditioner. Because simpleFoam applies an iterative method for solving stationary problems, it uses relaxation 
factors to stabilize the convergence of systems of linear equations. For most applications, a relaxation factor of 0.7 
guarantees stability. When solving uncoupled transport equations for the Reynolds stresses, it was found that the 
relaxation factor could be set to 1.0 without compromising stability of the solution. In simulations with the coupled 
𝑈 and 〈𝑢𝑣〉 equations, the relaxation factor was reduced to 0.9. Table 1 provides a list of numerical schemes used to 
discretize the equations. 
 

Table 1. Numerical schemes as specified in the fvSchemes file. 

Calculation Keyword Scheme 

Gradient gradSchemes Gauss linear 
Convection divSchemes bounded Gauss linear 
Laplacian laplacianSchemes Gauss linear corrected 

Time derivative timeScheme steadyState 
 

The grid with 1×192×1 cells identical to the one from DNS6 is used to discretize the 0.1×2×0.1 m domain that 
models the full-width of a fully-developed channel flow. Although the problem is one-dimensional,  three-
dimensional grids are required for use with OpenFOAM solvers. Initial values at the cell-centers are interpolated 
from DNS profiles6 at the nodes using the cubic spline interpolation function from the SciPy module for Python 
programming language17. The function is a wrapper for the splev subroutine of the FITPACK package for 
FORTRAN programming language18. This algorithm uses lower-order (in the case of cubic splines, third-order) 
polynomials for various intervals and has the advantage of ensuring smooth derivatives (second derivatives for cubic 
splines) throughout the whole range of interpolation. Additional smoothing procedure was applied, but it did not 
improve the solution. Therefore, non-smoothed DNS profiles are used in the current study.   

The periodic (cyclic) boundary condition is applied at the faces normal to the streamwise direction. Faces normal 
to the spanwise direction are defined as empty, which is a special type of boundary conditions used in OpenFOAM 
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for two-dimensional problems. The remaining faces are defined as the 
type wall, where non-slip boundary condition is applied to all flow 
parameters for which equations are solved. The pressure-gradient source 
term in the U-equation is added by specifying the 
pressureGradientExplicitSource option in the momentumSource 
dictionary, placed in the fvOptions OpenFOAM file inside the system 
directory of a case under consideration. To determine the pressure 
gradient in OpenFOAM, the bulk mean velocity is required. The mean 
velocity value of 0.667 is used in our study that corresponds to the bulk 
Reynolds number of ~13750 used in DNS6.  

Simulations with the two solvers have been conducted in parallel to 
minimize possible effects of errors, gids, and numerical schemes on the 
simulation results. Also, OpenFOAM can be used for more general flow 
configurations. Since similar results were obtained with both solvers, the 
results presented in the next section are shown without referring to the 
particular code they were obtained with.   

IV. Results and Discussion 

A. A priori Testing VPG Models 
Results of a priori testing models (1) are shown in Fig. 4 in two 

different scalings to demonstrate models’ excellent predictive capabilities 
everywhere in the flow except for the very-near wall area at 𝑦+< 10. 
However, when implemented in uncoupled equations (2)-(4), with 
turbulent diffusion and the dissipation tensor being represented by their 
DNS profiles (not shown here), models produced results very off from 
DNS data for the Reynolds stresses. Further analysis showed that the 
values of model coefficients had little effect on the results. Then, to 
eliminate from simulations the model uncertainty, RANS-DNS simulations with equations (5) were conducted.  

B. RANS-DNS Simulations 
Figure 5a demonstrates a somewhat surprising result for the Reynolds stresses and the mean velocity (shown by 

dashed lines) obtained when solving  uncoupled equations (2) and (5). In the figure, the results are compared with 
DNS data6 (solid circles). Since similar results were obtained with the two different solvers used in the study, this 
points towards the DNS data as a major source of discrepancy between DNS and RANS-DNS simulation results.  

Further analysis showed that inaccuracies in the U- and uv< > -profiles are self-mitigated when the equations for 
these two parameters are weakly coupled, that is, when the terms uv y∂ < > ∂  in (2) and U y∂ ∂ in (3) are computed, 

but 2v< >  in the production term of (3) is taken from DNS: 

                            
a)                                                                               b) 

Figure 5. RANS-DNS profiles: a) Reynolds stresses, b) mean velocity. Symbols: DNS data6. Dashed lines: uncoupled 
solutions with Reynolds stresses obtained from (5). Solid lines: a) Eqs. (7), b) coupled Eqs. (2) and (7). The dotted line 
in b): coupled Eqs. (2) and (6). Color scheme in a): red 2u +< > , green 2w +< > , blue 2v +< >  , and black uv +< > .  

 

  

 
Figure 4. VPG profiles obtained from (1) 
using DNS data6. Notations: lines are 
models, circles are DNS data. Color: red 
Πxx, green Πzz, blue Πyy, black Πxy. 
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( ( ) 2) T

x
M

y xy xxy y
D uv UD

Dt y
vD ε<

< > ∂
= + − −

∂
Π+> .                                             (6) 

 
The solution for the weakly coupled U uv− < >  equations is shown by black solid lines in Fig. 5 and is in agreement 
with DNS data6.  

The only way to correct results for the normal Reynolds stresses was found to be by incorporating the DNS 
balance errors as a source term in the transport equations: 

 

                   T
ij ij ij ij ij

i j M
ij

D u u
D

Dt
D P Errε

< >
= + + −−Π+ .                                                  (7) 

 
This confirms that the DNS data accuracy is the major source of the observed discrepancy between the results of 
RANS-DNS simulations and DNS shown in Fig. 5.  Indeed, closer analysis of DNS data6 reveales that the balance 
errors are of the same order of magnitude or large than the molecular diffusion terms (and in some cases, other 
terms) particularly in the proximity of the channel axis. As such, they cannot be ignored in simulations. In Figure 5a, 
solutions of (7) are shown by solid lines. Clearly, the effect of inclusion of the balance errors is dramatic.  

Notice that to obtain 2w< >  in agreement with DNS data as shown in Fig. 5a,  an additional term has to be 
included in zzErr , the production term zzP . Strictly speaking, this term should be zero in a planar flow. As small as it 
may appear in the DNS database6, the production term turned out to have a strong impact on the results and thus, 
had to be included.  

Adding the balance error to the uv< > -equation also improves the result for this moment when the equation is 
solved independently from others. However, no significant effect is observed when solving the coupled U uv− < >  
equations, with the uv< > -profile obtained from (7) being in agreement with the one obtained from (6) (Fig. 5).  

                                      
a)                                                                           b) 

 
c) 

 
Figure 6. Profiles a) 〈𝒖𝒗〉, b) 𝑼, c) normal Reynolds stresses. Notations: • • • DNS data6; a) and b)   coupled Eqs. (2) 
and (8);   weakly coupled Eqs. (2) and (12) for < uv >  with 2< v > from DNS and model (12) for Π xy ; c)  

uncoupled Eqs. (7), −− coupled Eqs. (2) and (12) with colors as in Fig. 5a. 
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With the balance errors added to the RST equations, the solution 
of the coupled 2 2U uv v u− < > − < > − < >  equations  

 
T
ij ij ij ij

i j M
ij ij

D u u
D P

Dt
D Errε

< >
= + + −−Π+ ,              (8) 

 
can be obtained. (The 2w< > -equation in the RANS-DNS 
formulation is not linked to other equations by any term and thus, 
cannot influence or be influenced by the equations coupling.) In 
Figures 6a and 6b, the results are shown by black solid lines and in 
Fig. 6c, by dashed lines. Notice that 2v< >  is not affected by the 
equations coupling, but has an impact on U and uv< >  (Eqs. (2)-
(4)).   

Overall, RANS-DNS results for the coupled equations are in a 
good agreement with DNS data6 for U, uv< > , and 2v< >  and thus, 
can be used as a reference when testing models for different terms. 
However, the solution for 2u< > obtained with (2) and (8) (dashed 
line in Fig. 6c) is unphysical. Detailed analysis reveals that there is an 
issue associated with the production term in the transport equation for this moment. Figure 7 shows how the 2u< > -
profile varies when solving Eq. (7) with i) xxP  from DNS (solid line), ii) xxP  calculated from 

2xxP uv dU dy= − < >  with uv< >  and dU dy from DNS (dashed line), and iii) xxP  calculated from 
2xxP uv dU dy= − < >  with uv< >  and U from DNS computing dU dy (dotted line). Clearly that the production 

term calculation is an error source, which is further illustrated by Fig. 8 where the xxP -profiles used to obtain the 
results in Fig. 7 are shown.  

Investigation of a possible cause of the discrepancy in xxP -profiles eliminates numerical procedures from 
consideration, because similar results are obtained with both codes used in the current study. This leads us to assume 
inconsistency in DNS budgets. The error is small enough to be acceptable when confirming main terms in VPG 
models in a priori testing, but large enough to severely influence simulations. Thus, evaluation of the xxΠ - model 
through RANS-DNS simulations has to be postponed until the matter is clarified. Uncertainty associated with xxP
also influences the simulation results with VPG models that include this term.  

C. Models Validation 
Currently, all of models (1) depend on the xxP -term. However, with simulations being more sensitive to the 

coefficients values than a priori testing, more accurate model formulation can be achieved.  

 
Figure 7. The 〈𝒖𝟐〉-profile from (7) with 
different xxP . Notations: • • •  DNS data6, 

solid line: xxP  from DNS,  dashed line: 
〈𝒖𝒗〉 and 𝝏𝑼/𝝏𝒚 from DNS, dotted line: 
〈𝒖𝒗〉 and 𝑼 from DNS, 𝝏𝑼/𝝏𝒚 calculated.  

 

 

           
a)                                                                                 b) 

Figure 8. The xxP  profile: a) full channel log-scale, b) zoomed in views. •  DNS data6; +  〈𝒖𝒗〉 and 𝝏𝑼/𝝏𝒚 from DNS; 
− ∙ − 〈𝒖𝒗〉 and 𝑼 from DNS, 𝝏𝑼/𝝏𝒚 calculated; − − profile from 〈𝒖𝒗〉 and 𝑼 coupled equations. 
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In particular, incorporating model (1) for xyΠ in equation (3) and conducting simulations of this equation 

coupled with U-equation (2)  and 2v< > -equation (7) (with no modeling in the latter) resulted in the model 
improvement:  

0.92 0.92T
xy xy xyD PΠ = − − ,                                                                (9) 

 
which is free from xxP . The results obtained with model (9) are shown in Figs. 6a and 6b as red lines.  The friction 
velocity value 0 03798u .τ =  obtained in simulations with this model agrees with the DNS value6. The superior 
performance of model (9) to compare with model (1) for this correlation is also confirmed in a priori testing with 
DNS data used for the production and turbulent diffusion terms (Fig. 9). However, model (9) similar to model  (1) 
does not describe the very-near wall area, which is the viscous sublayer: / 0.011y h <  or 5y+ ≤ . 
  Simulations conducted with uncoupled equations  
 

T
ij ij ij ij

i j M
ij ij

D u u
D

Dt
D P Errε

< >
= + + −+Π − , 

 
for other Reynolds stresses revealed that the dependence of models 
(1) on xxP for other VPG correlations cannot be eliminated.  

The production term xxP  is not the only error source linked to 
DNS data in RANS-DNS simulations. Another, previously mentioned 
source is the production term in the 2w< > -budget. An additional 
influential source of uncertainty in RANS-DNS simulations with 
VPG correlations models was found to be non-smootheness of DNS 
data for turbulent diffusion terms. A zoomed-in view of the problem 
area is shown in Fig. 10.  

Whereas the DNS data accuracy should be improved prior using 
the RANS-DNS framework as a reliable tool for models validation, 
sources of deficiency of models (1) in the very-near- and near-wall 
areas (viscous sub-layer and buffer zone) (Fig. 4) were identified as 
well in the current study. A combined effort of simulations with a 
priori testing resulted in linear model expressions for all correlations 
but 2w< >  (currently in the process) that are capable to describe the 
VPG correlations behavior up to the wall.    

The model for xyΠ requires the least modifications: 
 

0.92 0.92 0.3T M
xy xy xy xyD P DΠ = − − − .                           (10) 

 
A priori solution obtained with (10) using DNS data is shown in Fig. 
9 (dashed blue line). It was also found that the solution of coupled 
equations (2), (3), and (7) (with 2v< >  from DNS) is the least 
sensitive to this modification, with noticeable, but rather a minor effect on U and  uv< > . 
 The best result for xxΠ  can be obtained when this correlation is modeled as a fnction of xyΠ  and yyΠ : 
 

 0.78 0.7 0.25 0.01T M
xx xy yy xy xxD DΠ = − Π − Π − + .                                                   (11) 

 
Notice the contribution of T

xyD  and M
xxD  in this expression. Results are shown in Fig. 11. 

 To improve the performance of yyΠ -model, a more complicated contribution of the turbulent diffusion terms is 
required: 

   
Figure 9. Results of a priori testing the Π xy

-models using DNS data6:   (1),  (9), 
−  − (10). Symbols: DNS data6.  
 

 
Figure 10. Zoomed-in DNS profiles6 of 
turbulent diffusion terms in the RST 
equations. Colors as in Fig. 5a. 
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  0.45 0.031 1.35 1.15 0.47 0.2T T T M
yy xy xx yy zz xy yyP P D D D DΠ = − − − + − + ,                                         (12) 

 
which can be explaind by the strong wall effect on this correlation. Results of a priori testing (12) are shown in Fig. 
11. Simulations with model (12) are possible, but since this model includes xxP  and three turbulent diffusion terms, 
the combined effect of DNS data uncertainties on the solution is of current concern. Testing with different DNS 
databases is necessary for more accurate identification of model coefficients in (10)-(12) and for more reliable 
computational validation of VPG models.  

V. Conclusion 
DNS data are currently considered as the most accurate 

representation of a turbulent flow field and have been used in the 
current study for developing and calibrating novel VPG correlations 
models as well as for representing turbulent diffusion and the 
dissipation tensor in RANS simulations to validate the developed VPG 
correlations models.  

The previously developed VPG models for xyΠ , yyΠ , and xxΠ
were enhanced with very-near wall predictive capabilities, that is, 
including the viscous sublayer flow area. In particular, it was found 
that a very near-wall behavior of VPG correlations can be described 
using molecular diffusion terms. The accurate description of the buffer 
zone in the yyΠ -profile requires more elaborated inclusion of three 
turbulent diffusion terms. The model for  xxΠ is best represented as a 

function of xyΠ , yyΠ , T
xyD , and M

xxD . 
 Although a priori testing the VPG models against DNS data 

resulted in an excellent agreement, RANS simulations with the 
developed models revealed issues associated with the DNS data accuracy used for models’ calibration. Specifically, 
RANS simulations conducted with DNS data representing all unknown terms in transport equations, produced 
results that were not in agreement with DNS data for the Reynolds stresses, unless the DNS balance terms and other 
seemingly negligible terms from the DNS budgets were added as additional source terms in the corresponding 
RANS equations. Since no model can outperform DNS in principle, a more rigorous procedure than a simple 
estimate of  the DNS budget balance errors  is required.  

In the paper, RANS-DNS simulations are introduced as a tool for uncertainty quantification in DNS data. The 
same framework can be used to quantify uncertainty associated with modeling individual physical processes and 
their combined effect on the simulation results. The proposed approach is the first-of-its-kind that allows for 
separating the model uncertainty from other uncertainty sources in simulations. 

 RANS simulations with the coupled equations for the mean velocity and the shear stress uv< >  were successful 
leading to the improvement of the xyΠ -model. However, inconsistencies and insufficient accuracy of available DNS 
data currently delays a progress with computing normal Reynolds stresses. The accuracy of DNS data used for 
models’ calibration has to be addressed before models’ validation through simulations can be completed. 
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Appendix A 
In the Appendix, three models for the turbulent dissipation tested in the current study are presented.  The SY (So 

& Yoo12) model includes the anisotropic model expression for the dissipation tensor: 
 

𝜀𝑖𝑗 = 2
3
𝜀𝛿𝑖𝑗 + 2𝜈

𝑢𝚤′𝑢𝚥′�������

𝑦𝑛2
, 

 
along with the equation for the scalar dissipation: 
 

  
𝜕𝜀
𝜕𝑡

+ 𝑈𝑗
𝜕𝜀
𝜕𝑥𝑗

= 𝜕
𝜕𝑥𝑘

��𝜈𝛿𝑙𝑘 + 𝑐𝜀
𝜀
𝑘
〈𝑢𝑘𝑢𝑙〉�

𝜕𝜀
𝜕𝑥𝑙
� + 𝜀

𝑘
(𝑐𝜀1𝑃 − 𝑐𝜀2∗ 𝜀) − 2𝜈𝜀

𝑦𝑛2
𝑓1  ,                       (A1) 

 

where 𝑐𝜀2∗ = 𝑐𝜀2 𝑓, 𝑓1 = exp �− 𝑦𝑛𝑢𝜏
2𝜈

�, 𝑓 = 1 − 2
9

exp �− �𝑅𝑒𝑡
6
�
2
�, and the model coefficients are 𝑐𝜀 = 0.15, 𝑐𝜀1 =

1.44, and 𝑐𝜀2 = 1.8. In this model, the boundary condition for the scalar dissipation is zero at the wall.  
 A model for the dissipation tensor in the Hanjalić & Jakirlić model13 (HJ1) has the following form: 
 

𝜀𝑖𝑗 =
2
3
𝜀𝛿𝑖𝑗(1 − 𝑓𝑠) + 𝑓𝑠𝜀𝑖𝑗∗ , 

 
where 

𝜀𝑖𝑗∗ =
𝜀
𝑘
〈𝑢𝑖𝑢𝑗〉 + �〈𝑢𝑖𝑢𝑘〉𝑛𝑗𝑛𝑘 + 〈𝑢𝑗𝑢𝑘〉𝑛𝑖𝑛𝑘 + 〈𝑢𝑘𝑢𝑙〉𝑛𝑘𝑛𝑙𝑛𝑖𝑛𝑗�𝑓𝑑

1 + 3
2
〈𝑢𝑝𝑢𝑞〉
𝑘 𝑛𝑝𝑛𝑞𝑓𝑑 

 

 
and  

𝑓𝑠 = 1 − √𝐴𝐸2, 𝑓𝑑 = (1 + 0.1𝑅𝑒𝑡)−1, 𝐴 = 1 − 9
8

(𝐴2 − 𝐴3), 𝐸 = 1 − 9
8

(𝐸2 − 𝐸3), 𝐴2 = 𝑎𝑖𝑗𝑎𝑗𝑖 ,  
 

http://www.openfoam.com/
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.interpolate.UnivariateSpline.html
http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.interpolate.UnivariateSpline.html
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𝐴3 = 𝑎𝑖𝑗𝑎𝑗𝑘𝑎𝑘𝑖 , 𝑎𝑖𝑗 =
<𝑢𝑖𝑢𝑗>

𝑘
− 2

3
𝛿𝑖𝑗 ,  𝐸2 = 𝑒𝑖𝑗𝑒𝑗𝑖, 𝐸3 = 𝑒𝑖𝑗𝑒𝑗𝑘𝑒𝑘𝑖, 𝑒𝑖𝑗 =

𝜀𝑖𝑗
𝜀
− 2

3
𝛿𝑖𝑗.  

 
The equation for the scalar dissipation in such formulation is 
 
 

𝜕𝜀
𝜕𝑡

+ 𝑈𝑗
𝜕𝜀
𝜕𝑥𝑗

= 𝜕
𝜕𝑥𝑘

��𝜈𝛿𝑙𝑘 + 𝑐𝜀
𝜀
𝑘
〈𝑢𝑘𝑢𝑙〉�

𝜕𝜀
𝜕𝑥𝑙
� + 𝜀

𝑘
(𝑐𝜀1𝑃 − 𝑐𝜀2∗ 𝜀̃) + 2𝜈 𝑘

𝜀
〈𝑢𝑖𝑢𝑙〉  � 𝜕2𝑈𝑖

𝜕𝑥𝑗𝜕𝑥𝑙
� � 𝜕2𝑈𝑖

𝜕𝑥𝑘𝜕𝑥𝑙
�,               (A2) 

 
 

with  𝜀̃ = 𝜀 − 2𝜈 �𝜕𝑘
1/2

𝜕𝑥𝑛
�
2
, 𝑐𝜀 = 0.15, 𝑐𝜀1 = 1.44, and 𝑐𝜀2 = 1.8. The boundary condition for 𝜀 at the wall is: 

 

𝜀𝑤 = 2𝜈 ��𝜕𝑘
1/2

𝜕𝑦
�
2
�
𝑦=0

.                                                                     (A3) 

 
The third formulation of a model for the dissipation tensor is the Hanjalić & Jakirlić model14 (HJ2) with  
 

𝜀𝑖𝑗 = 𝜀𝑖𝑗ℎ +
1
2
𝐷𝑖𝑗𝑀 , 

 
where the dissipation tensor in homogeneous turbulence, 𝜀𝑖𝑗ℎ , is defined as  
 

𝜀𝑖𝑗ℎ = �2
3
𝛿𝑖𝑗(1 − 𝑓𝑠) + 𝑓𝑠

〈𝑢𝑖𝑢𝑗〉

𝑘
� 𝜀ℎ, 

 
and the scalar dissipation in homogeneous turbulence is obtained by solving the following equation:  
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+ 𝑈𝑗
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��
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𝜕𝜀ℎ

𝜕𝑥𝑙
� +

𝜀ℎ

𝑘
(𝑐𝜀1𝑃 − 𝑐𝜀2∗ 𝜀̃ℎ)

− 2𝜈 �
𝜕〈𝑢𝑖𝑢𝑘〉
𝜕𝑥𝑙

�
𝜕2𝑈𝑖
𝜕𝑥𝑘𝜕𝑥𝑙

� + 𝑐𝜀3
𝑘
𝜀ℎ
𝜕〈𝑢𝑘𝑢𝑙〉
𝜕𝑥𝑗

�
𝜕𝑈𝑖
𝜕𝑥𝑘

� �
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��, 

               (A4) 
 

with  𝜀̃ℎ = 𝜀ℎ − 𝜈 �𝜕𝑘
1/2

𝜕𝑥𝑛
�
2

, 𝑐𝜀 = 0.18, 𝑐𝜀1 = 1.44, 𝑐𝜀2 = 1.8,  and 𝑐𝜀3 = 0.32. Expression (A3) is used as the 

boundary condition for 𝜀ℎ . 
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