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Nomenclature 

, ,ij ij ija b c  = matrix elements 

c = airfoil chord 

Dev = deviation of the calculated velocity from its experimental value 

Dev∆  = deviation step 

k = turbulent kinetic energy 

m = basic probability assignment  

M = Mach number 

n = number of experimental data in a given deviation interval  

N = number of experimental data in the y-direction at a given x/c-position 

P = proposition probability 

U = mean velocity 

eU  = experimental mean velocity or error boundaries, if an experimental error range is available 

mU  = calculated velocity 

pU  = predicted velocity 

U∞  = free-stream velocity 

U = set of all possible mean velocity values 

x = direction along the airfoil chord 

y = direction normal to the airfoil surface  

α = angle of attack 

ε = dissipation rate 

ω = / kε  

I. Introduction 

Computational fluid dynamics (CFD) simulations have become a primary tool for the prediction of flows of 

scientific and engineering interest. To draw meaningful conclusions from the results of such simulations, 

information about their accuracy is necessary. In the late 80s this topic started to receive attention. The AIAA Guide 
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(Ref. 1) summarizes earlier discussions on the subject and provides general guidelines for verification and validation 

of CFD simulations. 

Turbulent flow simulations are among the most challenging problems in CFD. Results of turbulent simulations 

reflect uncertainties due to the deficiency of a turbulence model to correctly describe the flow physics, uncertainties 

in boundary conditions, initial conditions, and model parameters, and errors due to discretization and incomplete 

convergence (Refs. 1-5).  Typically, one assumes that the higher the model fidelity, the grid resolution, and the 

formal order of accuracy of a numerical scheme, the more credible are the results of simulations. However, the 

critical question is how accurate are the results of computations based on the model rather than just how physically 

correct the model itself is. Moreover, to evaluate the validity of assumptions underlying a turbulence model, one has 

to carry out computations and compare the computational results with the experimental data or the results of direct 

numerical simulations. Similar arguments hold for other uncertainty sources as well. In other words, the sum of 

contributions from all uncertainty sources (or the total uncertainty) in simulations is of prime concern. To find an 

appropriate measure to quantify the total uncertainty in a simulation is one of the objectives of our research.  

There are many ways of describing the total uncertainty in simulations. One way would be to identify and 

describe all sources of uncertainty. (A thorough discussion on identification of uncertainty sources in simulations 

can be found in Ref. 5 and the references therein.) The attractiveness of this idea is clear. If one could identify and 

describe all uncertainty sources, contributions from at least some of them could be eliminated or reduced, thereby 

making simulations more credible. However, the identification of all uncertainty sources in real-flow simulations 

could be an impossible task. Even if some sources of uncertainty are identified, there still remains the problem of 

describing their contributions, as these sources might affect one another in complicated and generally unknown 

ways. For instance, decreasing the contribution from one source can increase uncertainty from other sources, 

resulting in increased total uncertainty. Turbulence models are an example of such an influence on simulation 

accuracy: a more physically realistic turbulence model is usually also a more complex one (more model parameters, 

more equations) and as a result, the implementation of a more realistic model can in fact decrease the simulation 

accuracy (Ref. 1). There is a hope that interactions among some uncertainty sources established in benchmark 

problems will also hold in general cases. Studies should be conducted in order to answer these and other questions 

related to individual quantification of various uncertainty sources before this approach could become routine for 

engineers.  
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In the present study we focus on describing the total uncertainty in simulations without distinguishing between 

contributions from different sources. The total uncertainty in flow simulations has features of both aleatory and 

epistemic uncertainties currently recognized. Aleatory uncertainty is due to stochastic influences (e.g., random 

noise) and cannot be reduced. Epistemic uncertainty is subjective and originates from incomplete knowledge at any 

stage of modeling or simulation. Increasing one’s knowledge reduces epistemic uncertainty. One needs to be aware 

of the distinction between uncertainty and error. The later is defined as “a recognizable deficiency in any phase or 

activity of modeling and simulation that is not due to lack of knowledge” (Ref. 1). In practice, however, when the 

total uncertainty is of prime concern, separation between uncertainties and errors might not be useful. If an error is 

not acknowledged, it falls into a category of uncertainty due to the lack of knowledge. When we do not know how to 

eliminate the influence of an acknowledged error, then, it also contributes in the total simulation uncertainty as 

uncertainty due to lack of knowledge.  

There are several mathematical theories (Ref. 6) that describe uncertainty and provide its measures -- probability 

theory, possibility theory, and evidence theory. Probability theory, for instance, is better suited to describe aleatory 

uncertainty. Possibility theory (Ref. 7) was developed mainly to describe epistemic uncertainty. An extensive 

literature exists (Refs. 6, 8-10), where various uncertainty theories are compared, their relations are established, and 

their advantages and limitations are discussed. Evidence theory is among the well-established theories that can 

handle both types of uncertainty and does not require their separation. In fact, probability and possibility theories are 

branches of evidence theory. The theory works with limited information and new data can be incorporated as it 

becomes available. These features make evidence theory attractive for application to CFD problems.  

In the present study we explore the potential of the Dempster-Shafer theory of evidence (Ref. 9) to quantify 

uncertainty in turbulent flow simulations, and develop a mathematically reliable procedure to quantify and possibly 

reduce the uncertainty of predictive simulations in situations wherein no reference data (experimental or direct 

numerical simulation data) are available (Ref. 1). A key element of the present approach is Dempster’s rule, which is 

one of the basic tools of evidence theory (Ref. 9). Its valid application requires that i) the sources of information are 

independent and ii) they do not strictly contradict one another. These requirements provoked discussion later (Refs. 

11-12) and resulted in various modifications of the rule (see, e.g., Refs. 13-14). The present work employs the 

evidence theory formalism in its original form. Requirements of Dempster’s rule and how to meet them in the 

specific engineering problem considered in this paper are discussed in the following sections. 
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II. Evidence Theory Terminology and Tools 

In this paper, we follow the axiomatic approach of evidence theory given by Shafer in Ref. 9. A comprehensive 

exposition of the foundations of evidence theory may also be found in Refs. 12-16.  In the interest of space, a brief 

description of the basic concepts of the theory is provided here for the sake of completeness.  

Evidence theory provides two basic tools for quantifying uncertainty in simulations and improving predictions –  

i) a tool for representing the degree of belief (confidence) that may be attributed to a given proposition on the basis 

of given evidence, and ii)  a tool for combining evidence from different sources (Dempster’s rule). Let U denote a 

quantity and U the finite set of its possible values. Then, propositions can be of the form “the true value of U is in 

A”, where A is a subset of U. Whenever A is interpreted as a proposition, its complement A  (the set of all elements 

of U not in A) must be interpreted as the proposition's negation. The set of all subsets of U, the power set, includes 

the empty set ∅  (corresponding to a necessarily false proposition, since the true value cannot lie in ∅ ) and the 

entire set U (corresponding to a necessarily true proposition, since the true value is assumed to be in U).  

In evidence theory, the impact of evidence on our belief in different propositions is described by three related 

functions -- the basic probability assignment function (m), the belief function (Bel), and the plausibility function 

(Pl). The basic probability assignment function assigns a number ( )m A to each subset A of U such that 

( ) 0∅ =m for the empty set ∅ , and the sum of basic probability assignments (BPAs) for all subsets A of U is equal 

to unity: 

 ( ) 1
A

m A
⊆

=∑
U

. (1) 

 

The quantity ( )m A  is the measure of the belief that is committed exactly to A but not to any particular subset of A. 

The belief in A is based on available evidence that supports exactly A. As m(A) is a measure of the belief committed 

exactly to A, it does not represent the total belief committed to A. In evidence theory, a measure of the total belief 

(degree of belief) in A is defined as 

 

 ( ) ( )
⊂

= ∑
B A

Bel A m B  (2) 
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reflecting the fact that the evidential support committed to one proposition is committed to any subset containing it. 

A subset A of U is called a focal element of a belief function Bel over U if ( ) 0>m A . The union of all focal 

elements of a belief function is called its core. The plausibility measure is related to the basic probability assignment 

m: 

 ( ) ( )
∩ ≠∅

= ∑
B A

Pl A m B . (3) 

 

Belief and plausibility measures are related by the equation ( ) 1 ( )= −Pl A Bel A . Some properties of these measures 

are 

( ) ( ) 0∅ = ∅ =Bel Pl , 

( ) ( ) 1Bel Pl= =U U , 

( ) ( )≤Bel A Pl A ; 

if ⊆B A , then ( ) ( )≤Bel B Bel A   and ( ) ( )≤Pl B Pl A , 

( ) ( ) 1+ ≤Bel A Bel A  and ( ) ( ) 1+ ≥Pl A Pl A . 

 

The last two expressions show that the two measures are nonadditive, that is, the sum of belief measures and the 

sum of plausibility measures are not required to be equal to unity. It is a consequence of uncertainty in available 

evidence. When evidence supports with certainty mutually exclusive propositions, the two measures coincide and 

the additivity rule is recovered.  

Notice that the way one defines subsets A of U and links actual evidence to their basic assignments ( )m A  

depends on the problem being considered, one’s current limited knowledge, and available evidence. Additional 

information can change the set of propositions and how evidence determines our degree of belief ( )Bel A  in these 

propositions.  

Dempster’s rule is a technique for combining evidence from different sources to improve predictions. 

Mathematically, application of Dempster’s rule to two or more belief functions over the same set U yields a new 
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belief function called their orthogonal sum. In the simplest case of two belief functions 1Bel  and 2Bel  with basic 

probability assignment functions 1m  and 2m , Dempster’s rule provides the orthogonal sum, 

 

 

1 2
,

1 2
,

( ) ( )

( )
1 ( ) ( )

i j

i j

i j
i j

A B C

i j
i j

A B

m A m B

m C
m A m B

∩ =

∩ =∅

=
−

∑

∑
, (4) 

 

where i jC A B= ∩ ; 1,..., kA A  and 1,..., kB B  are focal elements of 1Bel  and 2Bel , respectively. The core of the 

belief function given by m is equal to the intersection of the cores of 1Bel  and 2Bel . The belief function ( )Bel C  

resulting from the combination can then be obtained from m using (2). 

 For valid use of Dempster’s rule, belief functions 1Bel  and 2Bel must satisfy some conditions (Ref. 9): they 

should not strictly contradict each other and they should be based on independent sources of evidence. We discuss 

how to satisfy these requirements for the specific problem being considered in the paper in the following sections.   

III. Problem Statement 

We consider a turbulent flow around the RAE 2822, for which experimental results are available at the following 

operating conditions (Case 1 of Ref. 17): free-stream Mach number 0.676,M∞ = angle of attack 2.4,α =  and 

Reynolds number (based on the free-stream velocity and the airfoil chord) = 65.7 10⋅ . Computations of the relevant 

Fig. 1 Velocity profiles are calculated at x1,  x2, and xp positions; 
experimental data are available only at x1 and x2. 
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stationary turbulent flow-field are performed with the ISAAC code (Ref. 18), which is based on a second-order 

finite-volume algorithm for solving the Favre-averaged Navier-Stokes equations coupled with several turbulence 

models. In the present study, the standard k ε−  (Ref. 19) and k ω−  (Ref. 20) turbulence models are used. Details 

of the turbulence model equations and computational procedure can be found in Ref. 18. The grid is a nonuniform 

C-mesh with 257 mesh points in the wrap-around direction (with 177 points on the airfoil surface) and 97 points in 

the wall-normal direction.  The grid extends approximately 18 chords from the airfoil. The same grid is used in all 

computations.   

The problem is to quantify the uncertainty in the computed streamwise mean velocity profiles at prescribed 

chordwise positions (say, x1 and x2 in Fig. 1) in the light of experimental data, and predict the velocity profile at a 

new location xp.  

IV. Solution Procedure and Results 

In this section we explain how the basic concepts of evidence theory can be applied to quantify uncertainty. 

Specifically, uncertainty is quantified in terms of a basic probability assignment function (m-function) for intervals 

in which the deviation of computed results from experimental data falls.   These m-functions are combined with the 

predictions of turbulence models at a new location (xp in Fig. 1), where experimental data is unavailable. The 

resultant predictions of these models are fused using Dempster’s rule (at each ordinate along the normal to the airfoil 

surface) to determine i) the intervals in which velocity value is likely to fall and ii) the measure of belief for each 

interval. This procedure is expected to yield a more reliable prediction of the velocity profile at this location than 

each turbulence model does separately. 

A. Uncertainty Quantification in Turbulent Streamwise Velocity Profiles 
 
We choose the deviation of the computed streamwise velocity profile from experimental data as the evidence to 

work with. The deviation (Dev) is defined as  

 

 ( )e mDev U U U∞= − .  (5) 
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Experimental data on turbulent flows are usually averaged flow quantities (not individual realizations). In the 

present instance, they are mean velocity profiles from Ref. 17. The deviation is computed at positions (x/c, y/c) 

where experimental data are available (using interpolation, if necessary), and thus it is a function of position. 

As the experimental data available to calculate deviation values (Dev-values) is finite, the range of deviation is 

finite as well. Therefore, it is always possible to specify at least a single finite interval, which includes all Dev-

values. Based on this observation, one can say that all available evidence (Dev-values) supports the proposition that 

the deviation of mean velocity value (computed with a given turbulence model using given grid and numerical 

procedure) from corresponding experimental data is likely to fall inside this finite interval. Obviously, our 

proposition that evidence supports this specific interval is subjective and corresponds to the available database. 

More experimental data could possibly increase the size of this interval.  

The single interval supported by evidence is not very informative. Different uncertainty sources can favor 

different ranges of Dev-values. To study the distribution of Dev-values (Dev-distribution), the single interval is 

divided into subintervals of uniform size Dev∆ , which we call the deviation step. (We assume the subintervals to be 

of uniform size for the sake of simplicity). Each Dev-value unambiguously supports one of the subintervals. If the 

available Dev-values are few, or if Dev∆ is small, the Dev-distribution will be scattered: there may be no 

pronounced maximum, and unsupported subinterval  (Dev-intervals) may alternate with supported ones. A scattered 

deviation distribution yields no useful information. A deviation distribution over the single interval and one 

scattered over several subintervals are two limits of possible Dev-distributions, which are not very informative. We 

observe that for the purpose of the present work, the most useful Dev-distribution would be one that is of the 

concave type, i.e., with one subinterval with maximum evidence support (more Dev-values fall inside this 

subinterval) and with the evidence to support subintervals on both sides of this subinterval monotonically 

decreasing. Subintervals with nonzero support are focal elements of the Dev-distribution and the set of all of them 

constitutes its core. Although there is no guarantee that for any engineering problem, there exists such a Dev∆ that 

allows one to construct the Dev-distribution with the desirable property of a concave shape, interestingly enough it 

turned out to be the case in the problem considered in the present paper.  

 In the case of Dev-values distributed over a set of subintervals instead of a single interval, we define the basic 

probability assignment for each subinterval as the ratio of the number n of Dev-values falling inside the subinterval 

to the total number N of Dev-values used to build the Dev-distribution: 
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 ( ) /∆ =i im Dev n N ,  (6) 

 

where i is the index over focal elements of the Dev-distribution. In this case, because all subintervals are disjoint 

and there is no ambiguity in how evidence supports different subintervals, the BPA for each subinterval is equal to 

the degree of belief and the degree of plausibility (see expressions (2)-(3)) 

 

 ( ) ( ) ( )∆ = ∆ = ∆i i im Dev Bel Dev Pl Dev . (7) 

 

In deviation distributions constructed in such a manner, the subinterval with the maximum support shows how far 

the uncertainties and errors in the computational procedure (which includes model uncertainty, grid resolution, 

experimental error, etc.) will likely force the simulation results to deviate from reality (represented by experimental 

data). Obviously, the most favorable scenario would be the one where the most supported subinterval includes the 

zero Dev-value. Another feature of a Dev-distribution to be considered is the size of its core. The smaller this size, 

the more focused is the combined contribution of uncertainty sources and better is the accuracy of the simulation. 

The size of Dev∆ indicates whether evidence supports one subinterval over others. The smaller Dev∆  one can 

choose without compromising the properties of the Dev-distribution, the better the accuracy of predictions that can 

be achieved, as will be shown in the following sections.  

These three characteristics – the location of the maximum, the size of Dev∆  and total range of Dev-values -- of 

Dev-distributions can be used to compare, for instance, the accuracy of simulations with different turbulence models 

and the effectiveness of changes in computational procedure. However, these topics are beyond the scope of the 

present paper. The current paper focuses only on exploring the possibility of using the information provided by Dev-

distributions to quantify uncertainty and improve the accuracy of turbulent flow predictions in situations where no 

data representing reality is available.  

Intuitively, the more experimental data used, the more confidence we have in a Dev-distribution. For example, 

let us consider two Dev-distributions -- 1Dev and 2Dev -- that are constructed based on experimental datasets 

1N and 2N , respectively. Assume that 1 2>N N . Then, BPAs for subintervals of the 1Dev -distribution calculated by 
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expression (6) do not change. In other words, the total belief in the distribution built using the largest number of 

available experimental data does not change. For the 2Dev -distribution, BPAs have to be recalculated though: 

 

 2 1( ) /∆ =i im Dev n N , (8) 

 

where i now is the index over subintervals with nonzero support of the 2Dev -distribution and 2=∑ i
i

n N . The sum 

of BPAs determined by (8) is less than 1: 

2

1
( ) 1∆ = <∑ i

i

N
m Dev

N
. 

 

To satisfy condition (1), we assign the BPA equal to 1 2 1( ) /−N N N  not to any individual subinterval specifically, 

but to the set of all possible Dev-values and call it uncommitted belief. It reflects the fact that if we had 

additional 1 2−N N experimental data, we would not know which Dev-subintervals they would support.  

B. Application of Deviation Distributions for Predictions 

In this section we describe a procedure we developed to quantify, and possibly, improve predictions of turbulent 

flows, that is, simulation of a flow for which no reference data, such as experimental or results of direct numerical 

simulations are available. The procedure relies on the results of computations with turbulence models and Dev-

distributions used to assess the accuracy of simulations made with these models in a controlled environment. In the 

procedure we do not choose between various turbulence models. Instead, we fuse the information they provide.  

Mean velocity values calculated by two turbulence models -- k ε−  (Ref. 19) and k ω−  (Ref. 20) -- are known 

at any mesh point or can be interpolated to any flow position of interest. Experimental data are available only at a 

few positions along the airfoil chord in the y-direction normal to the airfoil surface. For instance, in the flow over the 

upper surface of the airfoil there are 20 experimental mean velocity values along the y-direction at / 0.75x c =  and 

28 values at / 0.95x c =  (in accordance with Ref. 17). Let us assume that there are no experimental data at 

/ 0.9=x c , but we would like to predict ( / )U y c at this position and to determine the accuracy of the prediction. 

(Fig. 1, 0.9xp = ). The procedure includes six steps: 



 
 
 

12 

Step 1: Dev-distributions are built for both models at each position: / 0.75x c =  (x1 in Fig. 1) and / 0.95x c =  (x2 in 

Fig. 1). Four Dev-distributions and four m-functions attributed to these Dev-distributions result from this step. 

Step 2: m-functions from Step 1 are independently applied at each mesh point in the y-direction to velocity profiles 

calculated at / 0.9=x c . For each model, one obtains two different, but equally likely, sets of supported intervals 

around a computed ( / )U y c . Different sets correspond to the m-functions obtained at different x/c positions. Each set 

reflects our belief that the true value of ( / )U y c  lies inside of one of its intervals, and BPAs of different intervals 

define the degree of belief that we associate with each interval. 

Step 3: Dempster’s rule is applied to combine at each y/c-position the sets of intervals of possible true velocity 

values obtained for different turbulence models using the m-functions from different x/c positions. Two different, 

but equally likely, solutions are obtained.   

Step 4: The two solutions are averaged to produce a single set of intervals of possible true velocity values at each 

y/c. 

Step 5: To eliminate possible discontinuities introduced by Steps 3 and 4 in velocity values at adjacent y/c-positions, 

a smoothing procedure is applied to the solution obtained in Step 4. 

Step 6: At each y/c-position, the interval with maximum degree of belief is extracted. Such intervals form a velocity-

profile along the y-direction, which we call the swath of maximum degree of belief. The swath of maximum degree 

of belief is supposed to be more reliable than individual turbulence model calculations, and ideally, coincides with 

experimental data, if they are available.  

In sum, evidence theory tools are applied in Steps 1 and 3. Techniques for Steps 4-6 are described in detail 

below. Although the procedure is described for two statistical turbulence models, there are no limitations on the 

number of turbulence models, the type of models, and the kind of flow this procedure can be applied to. For 

instance, results from statistical turbulence models can be fused with those of large-eddy simulations or with the 

data produced by any other method. Also, there is no restriction on the location of specific x/c-positions.  

Step 1 

Since we use Dempster’s rule to fuse information from different sources (results of simulations with different 

turbulence models), it is required that the degrees of belief to be combined should be based on independent sources 

of evidence. Independence of evidence sources is important, but its definition is highly subjective (Ref. 15).  As we 
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are working with Dev-distributions, it stands to reason to assume that the Dev-distributions are independent of one 

another if they are constructed using the results of calculations based on different turbulence models and different 

experimental data. In the current study, it means that we have to build a Dev-distribution related to the −k ε model 

at one x/c-position (e.g., / 0.75x c = ) and a Dev-distribution related to the −k ω model at different x/c-position 

( / 0.95x c = ) or vice versa. So, in this step we build two Dev-distributions (at / 0.75x c =  and / 0.95x c = ) for each 

turbulence model. 

Section IV-A provides the details on the construction of Dev-distributions. We note, however, that 20 (or 28) 

points turned out to be insufficient to build informative Dev-distributions with a concave shape. Therefore, we build 

distributions of not exactly Dev-values defined by expression (5), but of their absolute values. This is not a 

requirement of the procedure in any way, but solely due to limited data available at given x/c-positions in this flow.  

By ignoring the sign of deviations, we increase the amount of Dev-values falling inside each subinterval.  Note that 

although limited experimental data look like a disadvantage for testing the approach, in fact, quite the opposite is 

true. If an approach works in the worst conditions, then, this is definitely an advantage of the approach. It also shows 

that this specific type of uncertainty (Dev-sign) is not of prime importance, at least in the present instance.  

Four Dev-distributions are used to determine m-functions associated with each of them. One has to take into 

account that to build Dev-distributions at / 0.75x c = , only 20 experimental values are used. At / 0.95x c = , 28 

values are available. Thus, expression (6) is used to calculate BPAs for subintervals of Dev-distributions obtained 

at / 0.95x c = , and expression (8) is used to calculate BPAs for individual subintervals of Dev-distributions obtained 

at / 0.75x c = . A BPA equal to 8/28 is assigned as the uncommitted belief to each Dev-distribution obtained 

at / 0.75x c = . BPAs committed to individual subintervals of all four Dev-distributions are shown in Fig. 2. 

Uncommitted belief is not shown in Figs. 2a, 2b. 

Step 2 

Expression (5) can be used for prediction in the following manner. If one knows the value of the deviation and 

the calculated value, one can try to define the “true” velocity value, that is, the value, which would coincide with the 

experimental data if available. There is no guarantee, but it is our belief that the velocity value found in such a way 

would better reflect reality. Thus, we rewrite expression (5) in the following way. 

 



 
 
 

14 

 ∞ ∞= +p mU U U U Dev .  (9) 

 

We do not know the Dev-value, but we do know the Dev-distributions built in Step 1, which provide information 

about which Dev-subintervals have nonzero BPA. So, instead of one velocity value, which would be given by 

expression (9), we have information on how different velocity intervals would be supported by evidence, which in 

this case is given by BPAs for Dev-subintervals determined in Step 1. If mU  is the mean velocity value calculated 

by, for instance, the −k ε  model at a given y/c-position at / 0.9=x c , and ∆i Dev  are subintervals of the Dev-

distribution for this model built at / 0.95=x c , then we determine the supported velocity intervals as 

 

 

Fig. 2 BPAs for individual intervals of Dev-distributions obtained in Step 1.  
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 ∞ ∞∆ = + ∆i p m iU U U U Dev , (10) 

 

given that the y/c-positions are those of mesh points. Recall that the Dev-distributions, in contrast to velocity values 

at a given x/c-position, are not dependent on y/c, and thus, the same Dev-distribution is added to different values of 

mU  along the y-direction. BPAs of Dev-subintervals are directly reassigned to corresponding velocity intervals as 

 

 ( ) ( )i p im U U m Dev∞∆ = ∆ . (11) 

 

This procedure explains why the single maximum is a desirable property of a Dev-distribution. In a given flow at a 

given flow position ( / , / )x c y c  there could be only one velocity value and one velocity interval that includes this 

value. Thus, evidence should favor one interval over others to avoid contradiction.  

As we ignore the sign of deviation in the present case to increase statistics, we do not know on which side of the 

calculated velocity value lies the “true” velocity value; we apply to the calculated velocity value the same Dev-

intervals symmetrically on both sides of mU . Velocity intervals on the right side ( ∆ r
i pU ) and left side ( ∆ l

i pU ) of 

mU  are found as 

∞ ∞∆ = + ∆r
i p m iU U U U Dev     and    ∞ ∞∆ = − ∆l

i p m iU U U U Dev . 

 

Basic probability assignment functions are also applied to the velocity intervals symmetrically about mU : 

 

( ) ( )∞∆ = ∆r
i P im U U m Dev   and  *( ) ( )∞∆ = ∆l

i P im U U m Dev , 

 

where *m  is the mirror reflection of m. The uncommitted belief assigned to Dev-distributions at / 0.75=x c  is 

assigned to velocity intervals on either side of mU . An example of how the m-function for a Dev-distribution 

transforms into BPAs for individual velocity intervals around ( / )mU y c  at / 0.9x c =  is shown in Fig. 3. BPAs in 

the figure are obtained from the BPAs shown in Fig. 2a. Figure 4 demonstrates the result of application of the BPAs 

from Fig. 3 to the velocity profile calculated with the k ε−  model (black solid line) at / 0.9x c = . The “true” 
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velocity profile is expected to occur inside the band of colors. Different colors correspond to different degrees of 

belief assigned to different areas inside the band. 

Because there are twice as many supported velocity intervals as original Dev-subintervals: 

( , )∆ = ∆ ∆r l
j p i p i pU U U  (where j is the index over velocity intervals), and the same BPA is committed to each of 

velocity interval as to the corresponding Dev-subinterval, it follows that ( ) 2∆ =∑ j p
j

m U  in contradiction with 

expression (1). To resolve this issue, we simply lessen the BPA of each interval, as well as the amount of 

uncommitted belief by a factor of 1/2. 

Since one can apply two m-functions (one from / 0.75=x c  and another from / 0.95=x c ) to the single velocity 

profile calculated with each turbulence model at / 0.9x c = , one obtains two areas (bands similar to those shown in 

Fig. 4) where the “true” velocity profile could fall. We consider them as equally likely solutions.  

To simplify the discussion, let us introduce notations for each solution. The area obtained by combining together 

the m-function obtained for the k ε−  model at / 0.75=x c  and the velocity profile ( / )mU y c  calculated with 

the k ε−  model at / 0.9x c = , is denoted as KE1. When the velocity profile ( / )mU y c  calculated with the k ε−  

model at / 0.9x c =  is combined with the m-function specified for this model at / 0.95=x c , the solution is called 

KE2. Similarly, the two areas for the −k ω  model are denoted as KW1 and KW2. 

 

Fig. 3 BPAs obtained from Fig. 2a for individual 
velocity intervals around mU at / 0.9x c = . 

Fig. 4 Area of possible true velocity profile built 
around the k ε−  model profile (  ) at / 0.9x c = . 

Colors show BPAs of different areas. 
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Step 3 

In this step, we fuse areas of possible true velocity profile produced by different models, that is, we fuse together 

KE1 and KW2 solutions, and independently, KE2 and KW1 solutions. By combining solutions in such a way, we 

satisfy the requirement of Dempster’s rule for independence of evidence sources (for more detail see the discussion 

of Step 1). Fusing means that we apply Dempster’s rule independently at each mesh point along the y-direction at 

/ 0.9x c =  to BPAs of velocity intervals specified for each turbulence model at a given y/c. Another requirement of 

Dempster’s rule is that evidence from different sources should not strictly contradict each other. This requirement is 

implicitly satisfied in this problem: areas of possible true velocity profile corresponding to different turbulence 

models overlap at any y/c. In problems where supported areas do not overlap, other fusing techniques should be 

considered instead of Dempster’s rule.  

First, we show how Dempster’s rule works in a simple case. Let us assume that at a given y/c-position, the KE1-

area consists only of the single interval 1∆ KEU  with the BPA 1 1 1( )∆ =KEm U s  and with the rest of belief assigned 

to the set of all possible velocity values 1 1( ) 1= −Um s  (uncommitted belief). At the same y/c-position, the KW2-

area also consists of one interval 2∆ KWU  with the BPA 2 2 2( )∆ =KWm U s  and with the uncommitted belief 

2 2( ) 1= −Um s . The result of fusing two basic probability assignment functions, 1m  and 2m , can be presented as a 

 

               Fig. 5 Example of Dempster’s rule application 
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table and is shown in Fig. 5. The entire table represents our total belief. Vertical strips are associated with BPAs of 

velocity intervals from the KE1 area and horizontal strips are associated with BPAs of velocity intervals from the 

KW2 area. The intersection of these two strips has measure, 1 2( ) ( )∆ ⋅ ∆i jm U m U , where i and j are indices over 

intervals of functions 1m  and 2m , respectively. In our case, 1= =i j . The BPA of the intersection of two intervals 

is  

1 2 1 1 2 2( ) ( ) ( )∆ ∩∆ ≠ ∅ = ∆ ⋅ ∆KE KW KE KWm U U m U m U . 

 

If each function, 1m  and 2m , assigns nonzero BPAs for several intervals, then an interval of 1m  can intersect with 

more than one interval of 2m . In this case, the BPA of the interval is the sum of measures of all related 

intersections. As figure 5 demonstrates, the uncommitted belief 2 ( )Um  contributes to the BPA of the 1∆ KEU -

interval, and in a similar manner, the uncommitted belief 1( )Um  contributes to the BPA of 2∆ KWU -interval. The 

product of uncommitted beliefs does not relate to any specific interval. If two intervals do not intersect, the measure,  

 

1 2 1 1 2 2( ) ( ) ( )∆ ∩∆ = ∅ = ∆ ⋅ ∆KE KW KE KWm U U m U m U , 

 

should be deduced from the total belief. Then, the BPAs for intersecting intervals should be renormalized 

accordingly. This is how expression (4) for Dempster’s rule is derived.   

No area in Fig. 5 should be deduced from the total belief. So, renormalization is not required. Therefore, the 

basic probability assignment function m, which corresponds to Fig. 5, is defined as   

 

 

1 2 1 2

1 2 1

2 1 2

1 2

,  if ;
(1 ),  if ;

( ) (1 ),  if ;
(1 )(1 ),  if ;
0,  if  is  any  other  interval  and  . 

⋅ ∆ = ∆ ∩∆
 ⋅ − ∆ = ∆∆ = ⋅ − ∆ = ∆
 − − ∆ =
 ∆ ∆ <

U
U

FUS KE KW

FUS KE

FUS FUS KW

FUS

FUS FUS

s s U U U
s s U U

m U s s U U
s s U

U U

 (12) 

 

The corresponding Bel-function can be obtained from expression (2); plausibility functions are not used in the 

current study.  
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It is easy to see, that fusing even the simplest m-functions (defined over a single interval) results in a complex m-

function defined over several intervals of different size. Keeping in mind that i) m-functions, as those built in 

previous steps, include several intervals and ii) intervals of two functions intersect in different ways at different y/c-

positions, we decided to coarsen the set of intervals after fusing in order to avoid unnecessary complexity. The 

coarsening means that we calculate BPAs only for the set of intervals associated with one of the m-functions used in 

fusing. This set has a minimum deviation step Dev∆ . For instance, considering KE1 and KW2 solutions, we choose 

KE1-intervals (see Figs. 2a and 2d). If the deviation steps of two m-functions are of the same size, we choose the set 

of intervals with the highest degree of belief. BPAs for the chosen set  are obtained by Dempster’s rule (expression 

(4)).  As the intervals of this set are disjoint, the total belief that the “true” velocity value is contained in an interval 

is equal to the BPA of that interval. 

Fusing solutions KE1 and KW2 results in their combined solution R1 (Fig. 6a). Solution R2 is the result of 

combining KE2 and KW1 (Fig. 6b). The bands of color in Fig. 6 indicate the areas where the true velocity profile 

could fall. It is not expected that the true velocity profile will be found outside of these bands. Statistically, solutions 

R1 and R2 are equally likely. Therefore, they will be averaged in Step 4. 

 

 

a)                                                                                b) 

 
Fig. 6 Two equally likely velocity areas obtained in Step 3. 
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Fig. 8 Averaged solution. 

Step 4 

 In this step, two solutions R1 and R2 are averaged. The velocity 

intervals of the two solutions are combined at each y/c-position 

independently. In order to resolve the mismatches in size and location of 

the velocity intervals of the two solutions, we choose the most refined 

interval set (with a minimum Dev∆ ) to increase the accuracy of 

predictions. Then, the other solution is projected onto the chosen set. 

The procedure is described below in detail.  

Let us assume that the set of the R1-solution is more refined and, therefore, we will project the solution R2 onto 

the velocity intervals of the solution R1. At a given y/c, 11m  is the BPA of the velocity interval 11 12[ , ]U U of the 

solution R1; 21m  is the BPA of the velocity interval 21 22[ , ]U U  and 22m  is the BPA of the velocity interval 

22 23[ , ]U U  of the solution R2. The interval 11 12[ , ]U U  intersects both intervals of the solution R2 as shown in Fig. 

7.  Then, the BPA of the interval 11 12[ , ]U U for the averaged solution is calculated by the formula                        

 

22 11 12 22
11 21 22

22 21 23 22

1
3

U U U U
m m m m

U U U U

 − −
 = + +
 − − 

, 

 

which takes into account 21m  and 22m  with appropriate 

weights. Weights are determined by the fraction of an 

interval that overlaps with 11 12[ , ]U U . For other types of 

interval overlapping, a similar approach for calculating the 

averaged interval BPA should be applied.  Figure 8 shows 

the result (R12) of averaging R1 and R2.   

The averaging technique used in this paper is one of the 

simplest and is well suited to the present study.  

 

  Fig. 7 Intersecting intervals 
                of  two solutions. 
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Step 5 

Initially, bypass this step and go to Step 6. If the final velocity profile obtained  in Step 6 has discontinuities, 

perform Step 5. An example of a solution with a discontinuity is shown in Fig. 10a. This velocity profile is extracted 

directly from the solution R12 (see Fig. 8). Step 5 attempts to resolve this issue.  

Any combination rule applied in such a way that the value at y/c is independent of the neighboring ones will 

likely lead to discontinuities in the solution. Also, using the absolute value of the deviation instead of the deviation 

itself leads to possible ambiguity in the position of the “true” velocity value at each y/c. The suggested smoothing 

procedure reestablishes the continuity of the mean velocity profile. 

The procedure we use for smoothing is, in fact, a mathematical representation of a basic rule that exists in nature 

and society: the distributive property of a system of interacting elements. Obviously, different systems distribute a 

quantity in different ways. We are interested in the simplest and fastest procedure to redistribute our degrees of 

belief to take into account the interaction existing between velocity values at different y/c-positions. 

The system of interacting elements can be represented as a matrix, with matrix elements representing the system 

elements. The value of an element is equal to the amount of the quantity of interest, which the element possesses 

initially. The degree of interaction between matrix elements is determined by their positions in the matrix. In relation 

to the problem considered in the paper, matrix elements are velocity intervals. Each row represents velocity intervals 

at the same y/c-position. The value of each matrix element is equal to the degree of belief it is assigned initially in 

the solution R12. In other words, the matrix constructed in such a manner is a mathematical representation of Fig. 8.  

It is better to illustrate the smoothing procedure in application to a very simple case. Let us assume that we have 

a 3x3 matrix A with elements ija . Using an algorithm involving the distance between elements in matrix A, we 

construct the new matrix B (Fig. 9) with elements ijb : 

 
( ) ( ), 1..3 1 1

kl
ij

k l ij kj ij il

a
b

a a a a=
=

− + − +
∑ . (13) 

 
In expression (13), the distance between matrix elements is defined as 1 1 1ij ij i j ija a a a+ +− = − = . In matrix B, 

let element 22b  be the largest. This value is used to normalize matrix B in such a way that element 22b  would be 

equal to 22a . The new, normalized matrix (matrix C) with elements, 
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 22 22/ij ijc a b b= ⋅  (14) 

 
is the smoothed one. The transformation of matrix A to matrix C is shown in Fig. 9 for a simple example consisting 

of unit elements: 1ija = .  

The matrix A constructed for the solution R12 (Fig. 8), consists of 27x8 elements (27 elements along the y-

direction and 8 velocity intervals at each y/c). A smoothed distribution of belief over the entire velocity area is 

obtained in two iterations.  

Obviously, the degree of belief, which the resultant matrix C assigns to its elements, depends significantly on the        

smoothing algorithm used to construct the matrix B. In this sense, the algorithm we described above is not unique. 

Other problems might require modifications of (13) or the development of other approaches. However, for the 

problem considered in this paper, the algorithm has worked well.  

 

1 1 1

1 1 1

1 1 1

 
 
 
 
 
 
 
 

                 

121/ 36 11/ 3 121/ 36

11/ 3 4 11/ 3

121/ 36 11/ 3 121/ 36

 
 
 
 
 
 
 
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121/144 11/12 121/144

11/12 1 11/12

121/144 11/12 121/144

 
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 
 
 
 
 
 

 

                    A                                                    B                                                               C  

Step 6 

At each position y/c, one can select the single interval that has the highest belief that the “true” velocity value 

lies inside that interval. Connecting such intervals along the y-direction, the swath of maximum degree of belief can 

be extracted. This swath is the most probable candidate to include the “true” velocity profile. In figure 10a, such a 

swath is shown for the solution R12 before it is smoothed. For smoothed solution R12 (not shown here), the swath 

of maximum degree of belief is given in Fig. 10b. 

Fig. 9 Matrixes A, B, and C in the smoothing procedure  
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 The swath from Fig. 10b is the final prediction of the approach considered in this study. In the figure, the swath 

is compared with the velocity profiles calculated by the k ω−  model (dashed line) and by the k ε− model (solid 

line). Also, experimental data (black squares) are shown in the figure to assess the quality of the prediction. One can 

see that the k ω− model result is far from the experimental values, whereas the k ε−  model is in very good 

agreement with the experiment. Our approach combines the results of both models, and yet, our prediction is also in 

very good agreement with the experiment. It shows a good potential of the approach to correctly “weight” 

contributions from different sources. Also, in contrast to the k ε−  model result, our approach produces not just a 

single line, the accuracy of which cannot be estimated in the absence of experimental data, but zones with well-

defined degrees of belief. This is an obvious advantage of the present method.  

C. Influence of other sources of uncertainty on the solution 

In the example considered above, we did not take into account the fact that the first x/c-position ( / 0.75=x c ), 

where we built Dev-distributions, lies farther from the x/c-position ( / 0.9=x c ) at which we make the prediction, 

than the second x/c-position ( / 0.95=x c ). In the future, it would be interesting to explore how to quantify this type 

of uncertainty. In the current study, we have only studied how the lack of such information influences the 

predictions.  

For the case considered above, it turns out that the prediction is not influenced by neglecting this source of 

     a)                                                                                           b)  

 
Fig. 10 Swath of maximum degree of belief: a) before smoothing,  b) after smoothing. 
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uncertainty. But what will happen if a validation point is far from the prediction point? In the next example, we try 

to answer this question by shifting one validation point to the position / 0.319x c = . The other validation point and 

the prediction point are at the same positions as in the previous example: / 0.95x c =  and / 0.9x c = , respectively.  

For this case, only the averaged R12-solution (Fig. 11a) and the smooth swath of maximum degree of belief (Fig. 

11b) are shown. To obtain the smooth swath, three iterations are made in Step 5. One can see that degrees of belief 

of velocity intervals are lost during smoothing in this case. The reason is that after the smoothing, the maximum 

element in matrix B corresponds to the zero-value element in the initial matrix A. Therefore, the calculation of 

elements in the matrix C by expression (14) returns zero. One can consider such a result either a shortcoming of the 

smoothing procedure or a clear indicator that, in this case, the uncertainty resulting from different distances between 

x/c-positions does influence the result of the prediction, and therefore, should be explicitly included in the 

procedure. This issue will be addressed in future studies. 

The prediction quality itself is also worse than in the previous case. Still, even in such an unfavorable situation, 

the position of the “true” velocity profile predicted by the approach is qualitatively more correct than the profile 

calculated by the k ω−  model. Thus, it allows us to infer that, in the absence of experimental data, the suggested 

approach is more reliable than the result of a single model calculation, even though not all sources of uncertainty are 

taken into account. In addition, we note that the approach is flexible enough to incorporate uncertainty from various 

sources to improve prediction quality.  

       a)                                                                                                 b) 
 

   Fig. 11 Solution R12 (a) obtained at / 0.9x c =  with m-functions from / 0.95x c =  and / 0.319x c = . 
                   The swath of maximum degree of belief extracted from this solution (b). 
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V. Conclusion 

In this paper, an approach for quantifying uncertainty in turbulent flow simulations and for using this 

information to quantify and improve the quality of predictions in untested conditions is developed. The approach 

relies on the mathematical tools of evidence theory, which are customized here for application to total uncertainty in 

simulations.  

Application of this approach to a subsonic turbulent flow around the RAE 2822 airfoil has provided encouraging 

results.  In the future, we plan to apply the approach to other cases of the RAE 28822 flow, introduce a mathematical 

description of uncertainty originating from the distance between validation and prediction points, and consider the 

prediction of other flow parameters, as well as predict flow around an airfoil using results of validation of turbulence 

models in flows around other types of airfoils. 

     It is worth noting that this approach is not restricted to turbulent flows, or even, more generally, to aerodynamic 

flows. We believe that any problem which involves different modeling alternatives and has appropriate data can 

benefit from this approach. 
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