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Abstract

New direction to improve the quality of results obtained with two-equation turbulence models is
suggested. It is shown that with a new approach to the model coefficients and the standard k
and € equations [1, 2], it is possible to reproduce correctly mean velocity and shear stress profiles
in simple flows featuring typical aerodynamic problems. Self-similar free shear flows (plane wake,
mixing layer, plane and round jets) and equilibrium boundary layers (with and without pressure
gradients) are considered. Nevertheless, the behaviour of the turbulent kinetic energy is described
only qualitatively in most test flows except in the round jet. Turbulence structure of the round
jet can be predicted perfectly within the framework of the given approach. The analysis can be
applied to any model of the two-equation eddy-viscosity type.
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1 INTRODUCTION

Simplicity of two-equation turbulence models is that
advantage which makes them a common simulation
tool in aerodynamics. The model including the trans-
port equations for the turbulent kinetic energy k and
the dissipation rate g[1, 2] is accepted to be the stan-
dard one of this type of turbulence models. At the
same time, the failures of such models are well known
either.

Various approaches have been developed to solve
this problem. As a good review of them, the paper
(3] could be cited. The most promising results, in par-
ticular for the boundary layer, were obtained by the
models in which the equation for anothervariable than
€ was used, that is, for w ~ e/k [4] or ¢ = ¢/Vk [5].
Nevertheless, it is difficult to confirm that crucial im-
provement has been achieved in this way. It can mean
that the e-equation itself is not, probably, the only
reason of the model failures.

It is commonly supposed that the model coeffi-
cients in two-equation turbulence models are con-
stants. However, it is nothing else than a simplifi-

Received on December 1, 1999.

T Institute of Theoretical and Applied Mechanics SD
RAS, 630090 Novosibirsk, Russia
} ONERA - DMAE, 31055 Toulouse CEDEX 4,

France

©Copyright: Japan Society of CFD/ CFD Journal 2001

cation. Indeed, it has been found in the modeling of
Reynolds stress equations that some model coefficients
are necessarily function of several parameters [6, 7]. A
similar situation could be expected for two-equation
models. The aim of the present paper is to clarify this
point. Though analysis will be restricted to the stan-
dard k — £ model [1, 2], it could be applied to any
model of the two-equation eddy-viscosity type.

2 ANALYSIS
2.1 k — e Model

The case of an incompressible turbulent flow will be
considered. In the high Reynolds number approxima-
tion, the standard k — € model [1, 2]:
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involves five model coefficients: Cy, Cs,, Cs,, 0k, and
.

All of them were taken as constants in [2]:
C., = 14; C., =1.92; C, = 0.09; 0. = 1.3; 0 =
1 (hereinafter referred as LS1-coefficients). Now, we
assume that at least some of them are not constants.

2.2 Test Flows

To clarify the nature of the coefficients, two-
dimensional test flows featuring typical aerodynamic
problems, like self-similar free shear flows and equi-
librium boundary layers (with and without pressure
gradients), have been considered.

Self-similar flow states are observed far away from
a flow source. Transport equations describing turbu-
lence structure in such flow area, reduce to a simple
form, which enable us to determine easily the influence
of the values of the coefficients.

Four free shear flows have been investigated. Self-
similar solutions are sought for the plane wake as

U-U, Y
e ACO F’(—),

U — Uo 6
where Uy, Up, and 6 are the external velocity, the cen-
terline velocity, and the wake thickness respectively;
for the plane or round jet as

U il
U_O—F(‘S)’

where Uy and § are the centerline velocity, and the jet
thickness respectively; for the mixing layer as

- U2 Yy
- F/ J
ot LG
where U, Us, and 6 are the velocities of fast and slow
streams, and the mixing layer thickness respectively.

For the outer part of equilibrium boundary layers,
the self-similar solution is sought as:
Us—-U 7Y
e (3):

where U, U, and § are the external velocity, the fric-
tion velocity, and the boundary layer thickness respec-
tively. Self-similarity is achieved at the high Reynolds
number and at the constant pressure-gradient param-
eter

Here, 6, is the displacement thickness and 7, is the
wall shear stress. Self-similarity is assumed for the
non-dimensional turbulent shear stress < uv > /UZ?
either. The equilibrium boundary layer at four values
of 8 has been tested: -0.211, 0., 5.139, and 19.6. The
last value corresponds to a strong adverse pressure-
gradient flow.
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2.3 Numerical Procedure

The self-similar flow equations reduce simply to ordi-
nary differential equations of the generic form:

~as- B - L2 (o) =5
dn 7’ dn dn

where j = 0 for plane flows and j = 1 for axisymmetric
flows, ¢ can be the self-similar velocity or one of the
turbulent quantities in the self-similar form and 7 is
the self-similar crossflow dimension (1 = y/6). In this
equation the coefficients A, B, and C are positive. The
terms containing A and B are the convection terms,
the term containing C is the diffusion term, and S
is the source term. In the momentum equation the
source term is equal to zero, whereas in the turbulent
equations the source term is the sum of two terms: the
production, written as S*, which is positive, and the
destruction (or dissipation) of the ¢ quantity, written
as S~, which is negative.

The generic equation is discretized in a finite vol-
ume formulation according to the hybrid scheme of
Patankar [8]. The term —A¢ is put on the right with
the positive part St of the source term and is consid-
ered as explicit. The negative part S~ of the source
term is put on the left and is considered as implicit.
This term is then rewritten as: S— = —|S~|¢" /"L,
where ¢™~! is the explicit value of ¢ (n is the current
iteration).

The discretized equation forms a tridiagonal system
for the unknowns ¢; at the center of the cells. To rein-

force the dlagonal dominance of the system, a pseudo-

unsteady term Z; at = E—K:— is added to the generic

equation. The time step At is chosen inversely propor-
tional to the maximum of the diagonal coefficients, so
that the convergence rate is improved.

The computational domain extends beyond the
physical thickness of the flow to ensure that the so-
lution is independent of the boundary conditions at
the outer edge. At this edge the quantities are set to
zero.

For wake and jet flows, a symmetry condition is
prescribed at 17 = 0 for the turbulent quantity and the
self-similar velocity is set to one.

For equilibrium boundary layers, as the inner part
is not computed, the first grid point is taken small
enough to be considered in the loga.rithmjc region. The
momentum equation is integrated to give an equation
for F (F = [ —q‘—qdn) so that natural conditions

can be prescrxbed (F = 0 at the first point and %% =0

at the edge). For the turbulent quantities, the equilib-
rium behaviour of the logarithmic law at zero pressure
gradient is prescribed, which is not correct in the case
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of strong adverse pressure gradients.

An adaptive grid procedure is integrated in the nu-
merical process, which tightens the grid points in the
region, where the first and second derivative of the
variables are important. The computational method
has been checked from the point of view of the con-
vergence, the grid point number and the boundary
conditions, to ensure that solutions obtained are re-
liable. Usually computations are performed over 300
grid points and mean residuals fall under 10~8 within
2000 iterations.

2.4 Results and Discussion

To describe the decay of isotropic turbulence, the co-
efficient C., should be equal to 1.92, as it was found
experimentally [9, 10]. The value of C, can also be
estimated experimentally in the logarithmic region of
a boundary layer and it gives us 0.09 [11]. Strictly
speaking, this does not necessarily mean that the co-
efficients should have the same values in other turbu-
lence states. However trying to improve the model, we
should also keep its simplicity as much as possible.
For this purpose, in the present study, C,, and C,, are
considered as constants and take the standard values.
Thus, only three coefficients need to be determined.

From the study of a large range of the values of
the model coefficients, the important conclusions are
following,.

In fact, it was found that the question on the co-
efficients 0. and o, and the question on the optimal
value of the coefficient C,, can be considered indepen-
dently each other.
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Fig.1: Shear stress profiles in a plane wake

The relation between coefficients o and o, is of
crucial importance in describing the slope of the pro-
files. In different flows, the optimal relation is different
(see table 1). However, taking o./ox = 1.5, one can
get appropriate profiles in all cases. Thus, this value is
recommended for the practical use instead of the stan-
dard value 1.3. As an example, the Reynolds stress
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Fig.2: Non-dimensional velocity profiles. Calculated
profiles: (—) k—¢e model with LS2-coefficients, (-) k—&
model with LS1-coefficients, (- -) k—¢ model, (x) k—w
model.
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Fig.3: Non-dimensional shear stress profiles (see deno-
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Table 1: Optimal relations between o, and oy, for test
flows.

flow | wake | mixing plane jet | round jet
layers
gefon | L8 | 1.8 1.5 1.3
boundary layers
=196 | =5139 | 5=0. | = -0.211
1.5 1.5 1.5 1.5

Table 2: Optimal values of the coefficient C,.

flow | wake | mixing plane jet | round jet
layers
Cey | 12 414 1.45 1.5
boundary layers
8=196 | =513 | =0, | B=0211
1.5 1.4 1.5 1.5

profiles obtained at different relations of o, and o% in
the plane wake, is shown in figure 1.

The following values of the coefficients were found
to be optimal for all test flows: 0. = 1., o = 0.67
(compare with the standard values of 0. = 1.3 and
ok = 1.). They satisfy the constraints imposed on the
coefficients to reproduce the correct behaviour at the
edge of a turbulent region [12]:

l<afor 28, o<, Zop—1<ia,.

The coefficient C,, has a strong effect on the cal-
culated results. Even if the optimal values of C;, for
different flows seem to be close (see table 2), it is not
possible to recommend a constant value for C,,. It can
be argued that its value depends on the type of a flow
considered.

Results of simulation of free shear flows, which were
calculated by the standard k — & model at C, = 0.09,
C., = 192, 0./o) = 1./0.67 = 1.5, and with the
values of C¢, given in table 2 (hereinafter referred as
LS2-coefficients), are shown in Figs. 2, 3. For compar-
ison, profiles obtained by k — ¢ [5], kK — w [4] models,
and the standard k — € model with LS1-coefficients as
well as the experimental data [13 - 16] are presented
in the figures.

Mean velocity profiles in the equilibrium boundary
layer at the different values of 3 are given in figure

4. There were used the experimental data [17 - 20] to
compare.

It is seen that the standard k — € model with LS2-
coefficients reproduces in good agreement with the ex-
perimental data the behaviour of mean velocities and
shear stresses in all considered flows. The model gives
essentially better results than the standard model
with LS1-coefficients and the £k — w model do. The
k — ¢ model predicts more accurately the equilibrium
boundary layer at the strong adverse pressure gradient
(figure 4b), but in the outer part of the flow, the k —¢
model with LS2-coefficients describes the mean veloc- -
ity profile closer to the experimental data. It should be
particularly emphasized that the standard k — € equa-
tions with LS2-coefficients simulate well the round jet,
whereas other models do not or they need additional
corrections like, for instance, Pope correction for the
e-equation [21].

For the turbulent kinetic energy, quantitative
coincidence between experimental data and profiles
calculated by the k£ — € model with LS2-coefficients
is obtained in the round jet only (figure 5). In other
flows, the axis level of & is either overestimated (plane
wake) or underestimated (plane jet, mixing layer,
boundary layer). Qualitative agreement is observed
though. As it is shown in [22], the results for the
turbulent kinetic energy can be improved essentially,
if the pressure-diffusion effects are correctly taken into
account in the k-equation. It is common practice to
ignore them in modeling, but they influence strongly
turbulence structure in considered flows. Moreover, it
is the pressure effects, which are responsible for the
variable value of C¢,. For more details, the paper [22]
can be cited.

Plane jet / round jet anomaly

It was shown in [21] that the standard two-equation
model cannot solve the plane jet / round jet anomaly.
That is, with the same model coefficients, the calcu-
lated profile of the mean velocity in the plane jet un-
derlies the similar profile in the round jet, whereas ex-
periments give the opposite result. Calculations made
by two-equation models of different types confirm such
a conclusion [3]. One of the aims of this work was to
show, that different flows should not be described with
the same set of the coefficients. Thus, in this sense,
the anomaly is solved by different values of C,,. Nev-
ertheless, we have done calculations with the same set
of coefficients for round and plane jets: C., = 1.475;
& = o7 = 1.5; Ce, = 1.92; C,, = 0.09. It was found
that the profiles obtained are still satisfactory (figure
6). While the round/plane jet anomaly is still observed
in agreement with [21], it is of the negligiblly small

o
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value.

3 CONCLUSION

The analysis shows that with the standard k and &
equations and a new approach to the model coeffi-
cients which is suggested in the present paper, it is
possible to predict correctly mean velocity and shear
stress profiles in test flows including the equilibrium
boundary layer under strong adverse pressure gradi-
ent.

Four from five coefficients can be kept as constants:
Ok, ey Cu, and Ce,, with C,, and C,, taking the
standard values: 0.09 and 1.92 respectively. The re-
lation between coefficients o and o, is essential. A
constant ratio o./ox = 1./0.67 = 1.5 can be recom-
mended for practical purposes. This ratio provides a
good agreement with experiments for all considered
flows and satisfies the necessary conditions for the
good behaviour of the numerical solution near the edge
of the shear flows.

The value of C., has a strong effect on the calcu-
lated results. Its optimal value changes for different
flows. The further researches are necessary to under-
stand how its value is determined by the type of a flow
considered.

The calculated mean velocity and shear stress pro-
files coincide quite well with experimental data. How-
ever, even if LS2-coefficients are used, the standard
k — € equations can describe only qualitatively the be-
haviour of the turbulent kinetic energy in most test
flows except in the round jet. Turbulence structure of
the round jet can be predicted perfectly within the
framework of the given approach.

This work does not completely solve the problem
of a correct prediction of aerodynamic flows, but sug-
gests a new promising direction to improve the quality
of results obtained with two-equation models. In this
sense, the conclusions made could be of interest both
for industry and for further researches. -
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