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Abstract — Numerical results are given. which characterize the behavior of second- and third-order moments
of turbulent characteristics under conditions of developed turbulent flow in a round pipe rotating relative to the
longitudinal axis. Turbulent transfer is described with the aid of differential equations of the model of second
moments and the model of gradient transfer for third-order correlations. A comparison of the calculation results
with the experimentally obtained data indicates that, by and large, the employed models of turbulent transfer
adequately describe the suppression of turbulence in rotating turbulent flow.

INTRODUCTION

Turbulent swirling flows often occur in engineering
and in the environment. In view of this, the investiga-
tion of such flows is of practical interest.

Turbulent transfer in such flows is especially char-
acterized by a substantial decrease of the transfer pro-
cesses in the radial direction.

The effect of swirling of flow on its statistical char-
acteristics was numerically investigated {1, 2] on the
basis of semiempirical equations describing the behav-
ior of fields of average velocity and second moments in
the approximation of local equilibrium. It has been
demonstrated that the effect of mass forces in swirling
flow (centrifugal and Coriolis acceleration) is similar to
the effect of acceleration of gravity in a flow with vari-
able density {stratification) and leads to a decrease of
the coefficients of momentum and heat transfer.

This paper describes the results of calculations of
the first, second and third moments of the velocity field
of turbulent flow in a round pipe rotating around the
longitudinal axis. The components of the turbulent
stress tensor are determined from the differential equa-
tions of turbulent transfer (the model of second
moments). The model of gradient transfer is used to
calculate the third-order moments of the velocity field.

THE MODEL OF SECOND MOMENTS
OF THE VELOCITY FIELD

The model designed to describe the behavior of the
second-order moments of the velocity field includes the
differential equations of turbulent transfer for the
mean-velocity vector and the turbulent stress tensor
[3 - 5], as well as the differential equations of transfer
for the kinetic energy of turbulence £ and the rate of its
dissipation €.

The differential equations of turbulent transfer for
second moments may vield, in the local balance
approximation, algebraic expressions for calculating
turbulent stresses. The simplest version is the E-€
model of turbulence in which the Reynolds stress {u,u;)
is calculated on the basis of the model of gradient trans-
fer by the isotropic expression for the coefficient of tur-
bulent viscosity. Note that the F—€ model of turbulence
with the isotropic coefficient of turbulent viscosity does
not make it possible to reproduce [3], without addi-
tional modification, the anisotropy of the components
of the turbulent stress tensor (u.;).

The effect of suppression of turbulent pulsation
characteristics in a swirting flow is allowed for by way
of introducing in the g-equation an additional term that
includes the “Richardson number of swirling” [6, 7].
The damping effect of the wall on the transverse pulsa-
tions of velocity is inctuded with the aid of corrections
to the standard model of [8, 9] for the pressure-velocity
shift correlation in the equations defining the second
moments. The wall effects are included by way of mod-
ifying the destruction terms in the equations for (i
and & [10].

In order to describe the flow in a rotating pipe, the
cylindrical system of coordinates X = (x, r, @) is used,
where x is reckoned along the pipe axis, 7 in the radial
direction, and ¢ in the azimuthal direction. The tensor
notation is used for the arbitrary curvilinear system of
coordinates. In the cylindrical coordinates, the compo-
nents of mean and pulsation velocities have the form
U=V, rW), U= (U, V, W), u;=(u, v, w), ' =
(u, v, w/r). The system of transfer equations for the
mean velocity vector and the turbulent stress tensor for
steady tncompressible flow in the general tensor form
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js written as
Ufi =0, UU,;,- = VE/EU:‘.;'A—
~{ugd) =P/ P,
Uk(“iuj>,k =V (gkm<“=‘”j>,k) m
+Dy+ Pyt+m,— €,

where D; = —Quup™ , — pud ; + (pyj)‘,-)/p is turbulent
wransfer, Py = —{uu U, — (uHU,; ; is generation, T, =
(plu,;+ tt, /pisthe pre_ssuye-x_elogty shift correlation,
and &, = 2Vg“™(u; ;) 18 dissipation. In equations (1)
and (2), the symbols “.,i” denote covariant differentia-
tion with respect to the coordinate x', g* is the metric ten-
sor, {...) denotes time averaging, p is the pressure, p 1s
the density, and v is the kinematic viscosity coefficient.

In order to derive the closed form of system (1) and
(2, one needs model representations for the terms Dy,
n,. and g;. The simplest model expression of the gradi-
ent type for the processes of turbulent diffusion (third-
order moments) may be written as [11]

(1)

(2)

_<“f“j“m> = _gkm<ui“juk>

(3)

km E o
=g c_‘E(ui_u )(uiu}.)_u.

Here, c, = 0.18 is an empirical coefficient. The equa-
tion for the kinetic energy of turbulence, derived from
the convolution of equation (2) in view of (3), has the
form

UE, = [g*"“ (VE , + cé (uku‘I)Eﬂ)]lm

2vE (@)

+P-tg——-,
X

n

where E = (1/2)(ugd), P =— (1D {upt) U, + YU, ) is
the generation of the turbulence energy, and € is dissi-
pation. The latter term appears in (4) as the result of
including the effect of low Reynolds numbers near the
wall in the standard expression for &, =2/38,£ 10},

2 ()

g, = 5gl.ja-+_2v N (5

n

where x_ is the distance to the wall.

The pressure-velocity shift correlation is repre-
sented [5] as the sum of three terms,

— (h (2) ' (1 (2
ny=m 4R+ (T Ve ) flx). (6)

L i
The first term describes the tendency of turbulence

' 1sotropic state in the absence of the mean velocity
shift and wall effect,

)] €

2
;o= _CI”E ((“,—“,-)‘ ggijE) (e, =15), (D)
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the second term describes the contribution of the mean
velocity gradient,

2
7Y =~y (Py=2/3g,P)  (¢;=06), (8)

and the third term describes the wall effect [9],

£
!(1) _ 3 2
Ty Tag [{u, )8

(9)
=372 ()8, + (u,1:08,) 1,

B ) R (2
nzj =0, {TEM gij

3/2(n'? " (0
- (T, 8+ T &) ]

with the damping function f= (1/5)E**/(gx,), where the
subscript n indicates the direction on a normal to the

wall (¢, = ¢, =0.3).

The quantity g, entering the model expressions, is
determined from the approximately closed differential
equation of transfer

Uka'k = [gkm (ve, + cgg(ukuu)sﬂ)}
(11)

2ve

—fi

X

n

€
+ {c.P~che} 1>

where the function f; = exp(—0.5x,u,/V), ¢, = 0.18,

Ce; = 1.35, co = 1.8, ¢5 = max{14, c,ofo(1 — caRip)),
and f, = 1 — 2/9exp[—(E2K6vE))?].

The Richardson number of swirling Riy in (11)
describes the effect of the curvature of the lines of flow
on turbulence by analogy with the effect of stratifica-
tion of the medium on turbulent transfer [6}. The curva-
ture of the lines of flow is included in the destruction
term in (11). The expression for the number Riy =
[(W/P/@W/3r]/ /[(U/[dry + (dW/dr)*] is written as
in [7], by analogy with the Richardson number in strat-
ified turbulent flows {3, 9]. The modification of the
destruction term in equation (11) is based on the
hypothesis that the stabilizing effect of swirling may be
included in terms of the linear scale of turbulent vor-
texes L(=FE/¢), which decreases at Riy, > 0, L.e., in terms
of the increase of dissipation € that leads to suppression
of the turbulence energy E. The magnitude of the coef-

ficient ¢}, is assumed to be restricted from below

(c¥ = 1.4) so that the dissipation € should not become
“too great” because of the decrease of the coefficient
ceafa(l — csRiy) with a rise of Riy, during the increase
of the rate of pipe rotation W;,. The value of the coeffi-
cient c,; = 2.0 is found by numerical optimization.

Mode! representations (5) - (11), formulated above,
lead to a closed system of equations of turbulent trans-
fer for first and second moments. For a steady axisym-
metric pipe flow, the equations of the model in the

l HIGH TEMPERATURE Vol 33 No. 5 1995 |



734 KURBATSKI ez al.

cylindrical coordinates take the form

13 _
ax +;-37( rv) =0, (12)
U oU
U§+V§;
157  oU 19p 13
- .9 o _.%
h rartr(v or (uv))} pox’
aw oW w
U—é; V-a—r+V? "
1@[,(vﬂ_ ) _Vy_V_ (v)
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ax o 5
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+ {c., P—che} (e/E) — (2ve/ (R~ °1F,

where U, V, and W are the components of the mean
velocity vector in the longitudinal, radial. and azi-
muthal directions, respectwely, and u, v, and w are the
respective pulsation components of velocity. The turbu-
lent stresses that enter equanons (13) - (16) are found
from differential transfer equations (2) approximately
closed in accordance with expressions (3), (5) - (10).
For individual components of the stress tensor, these
equations are written as

9w’ a<u2>_1a{ a<u>1
Ul Ve = v e O
+P+ {_CI%((L‘F)_%E) - (17D
(P 2P) +mf} ~Jem ),
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dr |
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~ |-
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.
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Ua(uw)+

o{uw) W
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ow
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Pi=—(uv)=— = -—{v"w)

For convenience of numerical realization, equation
(15) for E = 172((u*) + {(v*) + (w?)) and the equation for
a = {w?) — {+*), derived from (18) and (19), were used
tnstead of equations (18) and (19) for (v*) and {w?). The
latter substitution is due to the presence in the equations
for (v*) and (w?) of a singularity on the pipe axis
because of the source of the form #2(v +
clE/e)wa/r if o # 0. The values of (v*) and {(w?)
are determined from the quantities £, (%), and ¢, found
from the transfer equations: {v*) = £ — ((s*) + ®0)/2.

The pressure gradient —1/p(dP/dx) in equation (13)
i1s found from the condition of conservation of flow rate
in the form

vap 2[ U

BE = P[ r(V—ar <uv>)]
_2v U
=%

r=R

735

At the inlet to the rotating section of the pipe, the
pressure gradient —1/p(dp /dx) = 2(uz, /R) is known
(14 is the friction velocity on the pipe wall in devel-

oped turbulent flow delivered to the rotating section).
The friction velocity in the rotating section of the pipe
ts found from the expression

v 29
H, ={V(= g
E_ ar r=1’w?_i
The values of the numerical coefficients of the
model of second moments (12) - (22) ¢, ¢,, c'l s C'2 » Cel s
Cens €, and ¢, correspond to their “standard” values
(3, 5,9, 10].

The boundary conditions for the differential transfer
equations of the model of second moments take the fol-
lowing form:

for r =0 (on the pipe axis)

U BE e _a(u’) _
9r or ar dr or
={uv)y= (vw)={unw)=W=0,
and for r= R (on the pipe wall)

U=FE=¢g= <u2)=(x= {uv) = {vv)= (uw) =0,
W=W,>0.
The determining system of parabolic equations for

U, W, E, €, and () was solved by the test volume
methad [12].

The calculations were performed in two stages,
narnely: (1) derivation of developed flow without swirl-
ing, and (2) superposition on the developed flow of the
pipe rotation at the velocity W),

At the first stage of calculation, the initial velocity
profile was preassigned in the form of combination of

the linear function U(r) = uy* for 0 < +* < y; and the
power function U(r) = A, (v for vi < y* < Re¥,
= (R~ Mty /v. Re* = Ru,,/v. A = 8.74, and
¥y = A", The magnitudes of the turbulence energy and
its components were taken to be equal to small back-
i 2
ground values: E(r) = E; = 107u,., () = §E0, o =0,
(uv), . ¢ = 0. The dissipation of energy &(r) =

Jeu fuEdU/dr) was found from the assumptions of
local equllxbnum (P =¢) and gradient coupling ((uv) =

E-oU
TS

fi. = 1 —exp(-0.01y") are borrowed from [10]): &(r} =
Jeu FuEo@UIAN; (vl Lo = 0

where y*

where ¢, = 0.09 and the damping function
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Fig. 1. Profiles of mean velocity components: (a} U/ and (b) W for different values of the swirling parameter I1 Calculation of IT: / -
0,2 -0.6, 3—0.15, Experimental data of [13]: 4 -I1=0, 5 -0.15, 6-0.6.

At the second stage of calculation, the input data
were provided by the transverse profiles of U, E, €, (u?),
o = (w?) — (v®, and {uv), derived at the first stage and
corresponding to developed turbulent flow in a pipe.
The remaining sought functions were taken equal to
W(r=R)=W,, W(r< R)={vw)={uw)=0.
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Fig. 2. Profiles of dissipation of the kinetic energy of turbu-
lence (designations are the same as in Fig. 1).

The calculated characteristics have been made
dimensionless with the aid of the dynamic velocity .,
and the pipe radius R. The inlet parameter Re* = 875,
as in the experiment of [13], with whose data the calcu-
lation results are compared (R = 3 cm, U, = 10° crs,
v =0.149 cm¥s, u,, = 43.5 cm/s). At the first stage of
calculation, the results were obtained for the distance of
200R on the x-coordinate along the pipe axis, and at the
second stage for 30R, as in the expeniment. The estab-
lishment of flow with an increase of x may be charac-
terized by the magnitude of advection of the turbulence
energy, decreasing at the end of the first stage of calcu-
lation to a neghgibly small value: |U(QE/0x)|nx ~

10213 o /R <€ £, At the end of the second stage of cal-

culation, the relative magnitude of advection is much
higher, and no establishment of turbulent flow charac-
tertstics with respect to x was observed.

RESULTS OF CALCULATION
OF FIRST- AND SECOND-ORDER MOMENTS
OF VELOCITY FIELD

The results of numerical experiments for flow in a
rotating pipe with different swirling parameters are
given in Figs. 1 - 6 for the pipe cross section x/R = 50.
The dots indicate the experimental data of [13], and the
curves correspond to the results of calculation accord-
ing to the model of second moments.

In the experiments of Zaets et al. [13], with whose
data the calculation results are compared, swirling flow
was produced according to the following scheme.
Developed turbulent flow from the nonrotating section
of a straight round pipe 100-caliber long was delivered
to a pipe section 25-caliber long rotating around the
longitudinal axis at a constant angular velocity. The
measurements were performed in the exit section of the
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rotating section for the Reynolds number Rep =
(U2R)/v = 4 x 10°. The degree of swirling of flow is
characterized by the swirling parameter IT = Wy/U, =
@R/ Uy, where @, is the angular velocity of pipe rota-
tion, U, is the velocity of flow on the pipe axis, and R
is the pipe radius. The swirling parameter of flow I1
was varied by varying the rotation frequency of the
channel.

In the case of nonswirling flow, the results of mea-
surements [13] of the longitudinal component of mean
velocity, Reynolds stresses, turbulence energy, and the
rate of its dissipation adequately agree with the data
known from literature {14 - 16]. The experimental pro-
file of U(r) for TI = O (Fig. 1a) is approximately
described by the power relation. The results of mea-
surements of dissipation €(r) for [1=0 are well repro-
duced by the model in the 0.2 < r < 0.6 range (Fig. 2).
The model fairly adequately describes the behavior of
the components of turbulent stresses (Fig. 3a) and, 1n
particular, the anisotropy of normal stresses both in the
vicinity of the wall and on the flow axis, where (V)=
(W u {u?) = 2(v%) (Fig. 3b), that is observed in the
experiments.

When swirling is superposed on developed turbu-
lent flow with a constant air flow rate, some increase of
the longitudinal component of mean velocity in the axis
zone (for 0 <TI <0.6) is observed (Fig. 1a) both in cal-
culations and in the experiment. The U(r) profile is
deformed under the centrifugal force: the slope of the
profile (QU//or derivative) near the wall decreases,
which points to the decrease of turbulent friction as the
swirling of flow increases.

As the rotation frequency of the pipe increases, the
relative magnitude of the azimuthal component of
mean velocity W/W, in the axis region decreases
(Fig. 1b). As the swirling parameter IT increases, the
W(r) distribution becomes ever more nonuniform on
No. 5 1995
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the radius (in the exit cross section of the rotating sec-
tion of the pipe). As seen from the drawing, the model
of second moments well describes the behavior of azi-
muthal velocity W/W, for the greatest value of the
swirling parameter IT= 0.6.

The model of turbulence, employed by us, repro-
duces the experimentally observed effect of the
decrease of the pulsation characteristics of E, &, and
(uu;) as the swirling parameter increases (mainly, in the
axis region). In so doing, the behavior of the turbulence
energy (Fig. 4), the rate of its dissipation (Fig. 2) and
tangential stresses (Fig. 3a) outside of the wall region
of flow are also in adequate agreement with the exper-
imental data. The anisotropy of the turbulence energy
components, observed in nonswirling flow (Fig. 3b), by

»
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Fig. 4. Profiles of the kinetic energy of turbulence E =
1/2{u;4); designations are the same as in Fig. 1.
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parameter I1; dots indicate the experimental data of {13].

and large persists in the presence of swirling, both in
experiments and in calculations.

The effect of swirling of flow on the components of
normal stresses (u?) was estimated by the “coefficient

of suppression” K; = {u-)(T1 > 0)/u; YI1 = 0) of the ith
root-mean-square pulsations of velocity. Under condi-
tions of weak swirling (IT < 0.3), the greatest suppres-
sion of the pulsation intensity is observed on the flow
axis. As the swirling increases (for IT 2 0.6), the sup-
pression maximurm shifts to the 0.3 = r/R = 0.6 region.
The model reproduces these effects (Figs. 5 and 6). The
calculated transverse profiles of K,(r) prove to be clos-
est to the measured values (for IT = 0.6) outside of the
axis region. A decrease in suppression is observed in
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r/R
1.0F ~. }
. ' 1
@) ' °
0.8— A - Of
’ f
. f
L A .' F‘j
0.6 ; o b
: |
|
. d
0.4‘ .:2 ]3
H I
0.2k s o
|
|
1 L ] a1l 1
0 0.2 0.2 0.6 08 1.0K,
K,
10 e — — — 3
..'?-.' © o -—o_ T o
0.8F e
06  (b) L el
041 S
a-—35
0.2¢ s =6
- 1 1 1 i | I
0 10 20 30 40 50x/R

Fig. 6. The suppression coefficient X, as a function of r and
K, as a function of the longitudinal coordinate: (a) K (), - sor>
{b) K, {r= 0.6R, x); designations are the same as in Fig. 1.

the range of transverse coordinate values of 0.6 = riR
< 0.9. The model only qualitatively reproduces the
behavior of K, for IT = 0.6 and overestimates the values
of the suppression coefficients under conditions of
weak swirling (IT = 0.3).

The latter remark appears to be also true of the
behavior of the dependence of K, (for /R = 0) on the
swirling parameter IT (Fig. 5b). However, the behavior
of calculated curves, by and large, corresponds to that
observed in experiments; in particular, the suppression
of pulsation intensity decreases as the swirling param-
eter increases (above I = 0.65).

The marching procedure of stepwise integration by
test volumes, realized during numerical simulation,
enables one to follow the variation of flow characteris-
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tics with the increase of the longitudinal coordinate x.
As the coordinate x increases, the magnitude of the sup-
prcssion coefficient exhibits the same behavior as in the
experiment, L., a tendency to saturation both along the
pipe (Fig. 6) and with respect to the swirling parameter.
For r/R = 0.6, this tendency is more evident and closer
(with respect to x) to the beginning of the rotating sec-
tion of the pipe. The effect of swirling in this case starts
showing up at the distance x/R = 4 - 5 from the begin-
ning, while on the pipe axis, it shows up at the distance
x/R = 10 - 14. Therefore, the flow is not subjected to
the effect of swirling in some convergent cone at the
initial part of the rotating section. Theory produces a
later (with respect to x) deviation from the value of
K, =1 at the beginning of the section than the experi-

ment.

Therefore, the superposition of swirling on turbu-
lent flow leads to restructuring of the flow characteris-
tics. In a flow of gas in a rotating pipe, suppression
occurs under conditions of minor and moderate swirl-
ing of flow of radial turbulent transfer, i.e., a decrease
of the turbulence energy, its dissipation and turbulent
stresses mainly in the axis region of the channel. The
flow parameters vary appreciably over the entire length
of the rotating section (0 <x/R < 50). However, both in
the experiment and calculations, the results depend on
a further increase of the distance from the inlet section.

THE MODEL FOR THIRD-ORDER MOMENTS
OF THE VELOCITY FIELD
AND THEIR CALCULATION

The model for describing the processes of turbulent
diffusion (third moments) is derived from an exact non-
closed equation of transfer for third-order moments in
the local balance approximation.

The complete equation for third-order moments in
the tensor form is written as

(M)

(7
Um(uiujuk)m =Py +Py

t D+, —€

(23)
ik
where the turbulence generation term
P = [uau ™),
+ (ukui)(umuj)_m + (uiuj)(umuk)_m 1,
is determined in the following form:

generation by mean shift

(M)
e o=—1 (ujukum)ULm +

P
+ U, L+ S U T
turbulent and molecular diffusion

D= = [{uuu ™y —vg" () 1,
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pressure effects

I
T = o [P juu)+{p )+ P auu)l,
and dissipation

Eijfc = 2vgr’m [<Hz“_:.nuk, m)

+ (g g 0+ (g ) ]
The complete model! is derived from equation (23),
disregarding advection and viscous diffusion:

M
P2+ PP

ik it +Dz‘j.t+n:‘j.i:_g” = 0.

ik (24)

Note that Panchapakesan and Lumley [17] have
shown that, in the case of a round jet, the advective
terms are small as compared with the other terms in
equation (24).

For closure of equation (24), the following model
representations are employed for some terms. The pres-
sure-velocity shift correlation 7;; is represented, by
analogy with the like correlation %, in the balance equa-
tion for Reynolds stresses, as the sum of two parts {18]

i il
ch}i‘ = T[H’ +R{_,'-l (25)
here n') = —c, P! allows for generation b
where n," = —c, P, allows for generation by mean
shift, and
@ _ ) € (n
T = = (1 ep) (g 7 —cqPyy (26)

allows for relaxation of third moments (tendency to

isotropy).
The hypothesis of gradient transfer [18] is used
for €.
- €i ™ —% [ (“k“a>8,j_ o

+ (Ifﬁfa}E,-(-,a + (I‘H‘a>5jk,a 1,

where €, = 2v(u, 4, ). In view of the assumption of
local isotropy for €, = 2/3g,¢€, the resultant expression

for the dissipative term has the form

E m
€ = -65358_,,,_ [(uu )8;;

@7
m Lol
+ U g+ {uu g ]
Fourth-order moments are expressed in terms of

second-order moments by Millionshchikov’s hypothe-
sis of quasi-normality,

(gt ) = G ) (1" )

(28)
+ Qe Y u ) + ey (" u).

Although the probability distribution of turbulent

pulsations of velocity is not Gaussian for a round pipe

flow, the use of the quasi-normality hypothesis is based
on the assumption that the errors, introduced by this
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Fig. 7. Profiles of third-order moments for the velocity field with the zero value of the swirling parameter (I = 0). Caleulation: f —
model (29). 2 — model (30), 3 - experimental data of (13, 19 - 211.
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hyvpothesis, have o substantial effect on the behavior
of the third-order moments, with due regard given to
the approximate character of snrpqlanon qf other terms
in equation (24) as well. The validity qf this assumption
s supported by the results of comparison of the calcu-
iated profiles with the experimental data [13, 19 - 21]
{Figs. 7a - 7c).

In view of relations (25) - (27), the approximate bal-
ance equation (24) takes a closed form. The resultant
expression for the calculation of third moments of the
velocity field may be derived from (24) in the form

<ff,f‘,5’k> =—Cq (E/€) [(1- Cj‘]) ((uj“k”m> U
+ {uup YU, + ("YU, )
+cp (etpupuuy) , + gue Y u™u)

+ (u,'uj}(Hmuk),m ) + (<umuk><u!‘“f>.m (29)

+ (umui)(ujuk)lm + (umu)(uku,-)_m )
— ez (E/E) (“kum)&j

+ (ujum>gki+ <u1“m>8jk 1T.

A comparison of the results of testing of the model
of third moments (29) with the experimental data
vielded the following values of the empirical constant:

¢x=013, ¢;3==0.05,¢4=0.9,and ¢, = 1.0.

Figures 7a - 7c illustrate a comparison of the exper-
imentally obtained profiles with those calculated by the
“complete” model (29) and by a simpler model derived
from the local balance relation of the form

(N _
Py +D,jk+7tl.}.k =0,

where the correlations with pressure pulsations are
modeled by the simplest relaxation expression Ty =

—c;}'(S/E)(u,-uluk) in combination with the hypothesis
of quasi-normality for fourth moments

(tauu) = -—cj.kg (et ™)

+ (HJ-MQM(H"’M,-) + ) (umuj) ]. (30)

(c¥=0.13).

One can see from the latter drawing that, for a
straight round pipe, the more “complete” model (29)
produces satisfactory agreement with the experiment
[13, 19 - 21], while the results yielded by the commonly
used model (30) fail to describe the experimental data.

In Figs. 8a - 8c, the experimental data [13, 19 - 21]
are compared with the results of calculations by the
“complete” model (24) for a rotating pipe flow for dif-
ferent swirling parameters of flow. By and large, ade-
Quate agreement is observed with the experimental data
for moderately high (1 = 0.6) swirling numbers.
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CONCLUSION

The calculation results indicate that the presence of
swirling of turbulent flow leads to restructuring of the
flow characteristics. Suppression of turbulent pulsation
characteristics of flow occurs at minor and moderate
swirling of radial turbulent transfer, such as a decrease
of the turbulence energy, dissipation, and turbulent
stresses, mainly in the axis region. The flow parameters
vary appreciably over the entire length of the rotating
section {0 < x/R < 50); however, no pattern is attained
that would be independent of a further increase of the
distance (with respect to x) from the beginning of the
rotating section.

The model of gradient transfer for third moments
describes well their behavior in nonswirling flow in the
central part of the channel and is in adequate agreement
with the experimental data for swirling flow (as, for
example, in [17] as well).
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