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Abstract—A gradient transfer model is presented for calculating three components of the excess of the turbu-
lent velocity field formed of steady-state flow in a straight round pipe rotating about its longitudinal axis. The
coefficients of excess calculated for different values of the parameter of flow swirling agree adequately with the

experimental data.

1. INTRODUCTION

The data on the behavior of turbulence spectra and
linear scales in a fully developed turbulent flow of
incompressible fluid may be derived from a two-point
correlation velocity tensor. The system of equations
constructed for this tensor is characterized by infinite
linking [1]. One of the possible ways of closing such a
system of momental equations consists in applying the
Millionshchikov hypothesis of quasi-normality [2].
According to this hypothesis, the fourth-order correla-
tion functions of the velocity field are expressed
through the second-order correlation functions by the
formulas that are true for the normal probability distri-
bution of the velocity field in a turbulent flow [2].

The validity of the hypothesis of quasi-normality
was verified in a series of experimental studies. In [3],
the experimental data were reported for a homogeneous
turbulent flow observed behind the honeycomb in a
wind tunnel. These data were found to agree well with
the hypothesis within the limits of measurement error.

For nonswirling and swirling flows in a straight
round pipe, the hypothesis of quasi-normality was
tested in the experiments described in [4]. The mea-
surements were performed for both time and space two-
point correlation functions of the second and fourth
orders for the longitudinal velocity pulsation in the
pipe. It was found that the normalized fourth-order cor-
relation functions, calculated according to the Million-
shchikov hypothesis through the second-order correla-
tion functions, differed from the measured values by
not more than 4% in the vicinity of their peaks and by
12% at the periphery. In swirling flow (the pipe was
rotated at a constant rate about its longitudinal axis),
the difference between the measured and calculated
values was smaller and did not exceed 3%.

The foregoing experimental results suggest the pos-
sibility of using the Millionshchikov hypothesis for
expressing the normalized fourth-order correlation
functions through the second-order correlation func-
tions. However, to express the fourth-order one-point
moments through second-order one-point moments,
more exact relations are required than those resulting
from the Millionshchikov hypothesis of quasi-normal-

ity.
In this paper, we present the results of simulation of
central fourth-order one-point moments of the velocity

field formed in a fully developed turbulent flow inside
a straight round pipe.

The model we propose for describing the behavior
of the central fourth-order moments in such a flow is
constructed on the hierarchical principle. The first and
second moments of the velocity field are determined by
the model of Reynolds stress transfer. The latter is
based on the “standard” model representations used for
describing the main mechanisms of transformation of
turbulent stresses. Such representations provide a suffi-
ciently good agreement with the experimental data
except for the flow region in the immediate vicinity of
the pipe wall. The detailed description of this model
and the computational results are presented in papers
[5-7]. The third-order moments of the velocity field are
found from the gradient transfer model described in [6,
7]. This model is based on the use of the first- and sec-
ond-order moments that are assumed to be known.
Therefore, the model developed for describing the
fourth-order moments of the velocity field is based on
the assumption that all lower-order moments are
already determined.
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2. EQUATIONS FOR THE FOURTH-ORDER
MOMENTS OF THE VELOCITY FIELD
IN A FULLY DEVELOPED TURBULENT FLOW
IN A ROUND PIPE

We consider a fully developed turbulent flow of
incompressible fluid in a straight round pipe. We use
the cylindrical coordinate system (r, @, z), where z is the
coordinate along the pipe axis, r is the coordinate along
the pipe radius directed from the axis to the wall, and ¢
is the azimuth coordinate. The averaged values are
given by capital letters, and the turbulent pulsations of
the quantities are denoted by small letters.

The angular brackets indicate the average values.
The standard procedure of subtracting the Reynolds
equations from the Navier—Stokes equations allows us
to obtain (see, e.g., Ch. 7 in [8]) the dynamlca] equa-

tions for the velocity pulsations u, = u, — U.,u, = u, —

U,, and u, = it, — U,. Using these equations, we can

write equation (A1) (see Appendix) for a mixed one-

| 1 k+1
point moment of the velocity field (u; " u; " 1y )

(n, m, and k are integers).

The equations for the central fourth-order moments

(uly, iy, and (ul) are derived from (Al) for the
: 0

exponent valuesof n=3, m=k=-l;m=3,n=k=-1;
and k = 3, n = m = -1, respectively. For a fully devel-
oped turbulent flow in a round pipe, these equations
have the form

dr r
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where v is the kinematic coefficient of molecular vis-
Lo ( i) + = 1 9° +a—, is the Laplace
ror\ ar 7 E)<p2 Dz

operator in the cylindrical coordinate system (for a
steady-state fully developed turbulent flow in a pipe,
this operator depends only on the radial coordinate r).

In equations (1)—(3), the correlations between the
pressure and velocity pulsations have the form

RS e R R Dl
l_[zz"' p<”:az>’ I—Irr_ p<”rar>7

4 ] 30
Iy, = <”tpag>

According to (A1), the components of the viscous
dissipation tensor appearing in equations (1)—(3) will
be written in the form

=12V u. {(aali) (aal;) D
et = 12v( o [(aa”) (aa“r) : )
=il ) +(3)

In what follows, we consider a steady-state turbu-
lent flow in a straight round pipe at high Reynolds num-
bers. The latter assumption means that, in (1)—(3), the
terms describing molecular transport will be neglected
for being small compared to the similar terms describ-
ing turbulent transfer. In this case, the wall flow region
is not included in the region under study. Such limita-
tion is determined by the desire to obtain a gradient
transfer model for the central fourth-order one-point
moments. Besides, the third-order moments appearing
in equations (1)—(3) are also found from the gradient
transfer model that was constructed for the case of high
Reynolds numbers [6, 7].

From equations (1)—(3), it follows that, to obtain
their closed form, we need some model representations
for describing turbulent transfer (the fifth-order
moments) and the exchange processes affected by pres-
sure pulsations (4), and processes of viscous dissipa-
tion (5).

cosity,and V?=

C))

2.1. A Model for Describing the Behavior
of Higher-Order Moments in Equations (1)—(3)

In equations (1)—(3), the turbulent diffusion of the
fourth-order moments is described by the fifth-order
moments (ufu,), (uf), (ufu,f,), and (u;u,). To

obtain a closed form of (1)—(3), we must express these
fifth-order moments through lower-order moments.
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Fig. 1. Profiles of normal Reynolds stresses: (I, 1') (uz);
2,2 (V) 3, 3) (W2); (I'-3), experimental data [12, 13];
and (/-3), computational results [6, 7].
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Fig. 2. Profile of the longitudinal asymmetry coefficient:
(1) calculated by the simplified model (see text); (2) calcu-
lated by the full model [6, 7]; and (3) calculated by the
Daly-Harlow model [15]. Delta points show the experimen-
tal data [13].
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The experimental data [9] show that, in a fully
developed flow in a round pipe, the probability density
of the turbulent velocity field has a non-Gaussian form.
Hence, according to [10], we can describe the turbulent
velocity field by a combined two-dimensional Gram—
Charlier-type probability density, i.e., represent the
probability density function in the form of a series in
Hermite polynomials with respect to a normal distribu-
tion. The fourth-order termination of such a series
expansion (see also [11]) yields the expressions relating
the fifth-order moments with the lower-order moments

(ufu,) =6 (uzz) (ufu,) +4 (uf) (uu,),

(1)) = 10¢uly(ul),

(u:;u,) = 6(u$) (u:,u,) +4 (u;) (ugu,),

(6)

(uiu?) = 6(u,uy) (u,zuq,) +3 (uf) (zt,u;) + (u;) (uf)

Note that, for the turbulent velocity field in a plane
turbulent boundary layer bounded by a smooth solid
surface, the convergence of the Gram—Charlier series
expansion of the probability density function was
proved experimentally [11].
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In (6), the underlined terms are nonzero only for a
fully developed turbulent flow in a round pipe rotating
about its longitudinal axis. For a nonrotating turbulent
flow, the correlation (u,u,) = 0, and the first term in the
right-hand part of the last expression (6) is also zero.

The experimental data on the behavior of the higher
order moments (including those involved in (6)) of a
fully developed flow in a round pipe are very limited.
Therefore, these data allow no reliable verification of
relations (6). However, the correctness of these rela-
tions may be estimated for the central fifth-order
moment measured in [9, 12]. The central moments of
the second and third orders were measured in [12-14].
Thus, we can directly verify the validity of the relation

(uy = 10¢uy (udy. ©)

Figure 1 shows the profiles of the eddy kinetic
energy in a fully developed turbulent flow in a straight
round pipe. The dots show the experimental data
[12,13], and the solid lines show the computational
results obtained from the model of Reynolds stress
transfer [5-7]. Figure 2 shows the profiles of the longi-
tudinal asymmetry coefficient (the normalized value of
the third-order central moment for the longitudinal
velocity pulsation) measured in the experiments [13]
(delta points) and the corresponding profiles calculated
by the gradient transfer models [6, 7]. The solid line
shows the results of calculations performed by the full
gradient transfer model. These results were obtained
from the transfer equation for triple velocity correla-
tions on the assumption that only the advection terms
are negligibly small. The dotted line gives the results of
calculations by a simplified gradient transfer model

—(uuuy) = Cfg[(u,uj).m(umuk)
+ (ujuk)'m(umu,-) + (uku,-).m(umuj)]

(c* =0.13).

The dashed line in Fig. 2 shows the profile calcu-
lated by the simplest gradient transfer model [15] that
was used in constructing the model of Reynolds stress
transfer [6, 7]. The experimental data shown in Figs. 1

and 2 for (uzz) and (uf) allowed us to calculate the

profile of (uzs) by relation (7) and compare it to the
profile measured in the experiment. Such comparison is
presented in Fig. 3. One can see that relation (7) agrees
well with the experimental data. In this figure, the
dashed line shows the computational results obtained

by formula (7) with the values of (uzz) and (u:) calcu-

lated by the model of Reynolds stress transfer and the
gradient transfer model for the third moments [6, 7].
HIGH TEMPERATURE Vol. 35
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The distributions of these two quantities are shown by
the solid lines in Figs. 1 and 2.

Although we successfully verified relation (7), rela-
tions (6) should be treated in our subsequent calcula-
tions as a hypothesis.

In (1) and (3), the generation of turbulence due to
the average velocity shift is described by the terms

P
P.= —4(11:11,)75-,
(8)

P = —-4(u, u)[dU U:I

Iz

that involve mixed fourth-order moments. In equation
(2).a mixed fourth-order moment enters the term con-
taining the velocity U,,. In the system of equations (1)
(3), these moments should be treated as the sought-for
functions, for which the appropriate additional balance
equations should be written. Analysis of this approach
has showed that it requires treatment of other mixed
fourth-order (and fifth-order) moments that do not
appear in system (1)—(3). In principle, the fifth-order
(and sixth-order) moments that appear in these addi-
tional equations may be expressed through the lower-
order moments by relations similar to (6). However,
because no experimental data are available on the
behavior of these “additional™ sought-for higher-order
moments, complementing the system of equations (1)—
(3) with balance equations is ineffective. Therefore, for
the mixed fourth-order moments in (2) and (8), we use
the expressions that comply with the Millionshchikov
hypothesis [2]

(ufu,) = 3(11 (),
(u:u(p = 3(1{3)(1{,1:@),
(u;u,. = 3(11;)(%“, )

2.2. Model Expressions for the Exchange Processes
Caused by Pressure Pulsations
and Viscous Dissipation

In [16], it has been shown that, by using a specific
solution to the Poisson equation for pressure pulsa-
tions, it is possible to derive an exact formula for the
correlations between the pressure and velocity pulsa-
tions in the transfer equations for Reynolds stresses and
third-order moments of the velocity field.

For the central (n + 1)-order moments satisfying the
exact nonclosed equation (A1), the exact expression for

=—(1/p)(u; p,) has the form

n+ 1 3 ] n azuz aU/\ '
IT; () = i J‘Z{ i dx,0x, (ax,,,)
v
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Fig. 3. Profile of the fifth-order moment (uf)/(uf)
(1) calculated by model (7); (2) calculated by (7) with the
values of (uzz) and (u?) obtained from the model of Rey-

nolds stress transfer and gradient transfer model for
the third-order moments. Dots show the experimental data
[9, 12].

401, 82Uk' dv g
+ < - §;;>(axiaxm) :llx i yl \9)

( >a () av
J il 0x,0x,0x,, |x -yl

where the terms with and without prime are calculated
at the points y and x, respectively, and the integration is
performed with respect to y. For the central fourth-
order moments, we assume that, in formula (9), n = 3.

Like similar expressions in the transfer equations
for the second and third moments of the velocity field
(see, e.g., [5-7] and [16]), expression (9) involves two

3 1 1
d uyu,

u;
‘dx;0x,0x,

groups of terms. One group (IT;;",') describes the non-
linear interaction between the velocity pulsations, and

the other (IT', ') describes the effect of the average
velocity shift.

In [17], it was shown that, to simulate the correla-
tions between the pressure and the second-order veloc-
ity shift in the transfer equation for Reynolds stress, it
is possible to perform the individual simulations of the
above-mentioned groups of terms. In this case, the
resulting expression obtained for this correlation has
the form of the sum of two terms, one of which
describes the energy exchange between the differently
directed pulsations (“tendency toward isotropy”) and
the other describes the interaction between the field of
velocity pulsations and the average velocity shift (the
so-called “fast terms”).

We use this approach to simulate the correlation

under study in the form I"I}‘,-(x) = 4 N I'I ;.2 - For the
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first part of the correlation 1'1,7‘,-_, (“tendency toward
isotropy”), we write the expression

n?i,l = —014%[(“?) —3<ll?>2],

where c)4 is an empirical numerical coefficient, E =
(uup/2 is the eddy kinetic energy density (per unit
mass), and € characterizes the dissipation of the eddy
energy (no summation over i is performed). Expression
(10) is constructed on the basis of the experimental data
(see, e.g., [1, ch. 7]). It was found that, for the large-
scale components of turbulent motion observed at the
initial stage of decay of homogeneous and isotropic tur-
bulence behind the honeycomb in a wind tunnel, a
fourth-order one-point moment of the velocity field sat-
isfies the relation

(10)

=3 =0 (i=1,2,3) (11)
within the measurement error (not exceeding 10% of
the measured values). This relation represents a specific
case of the Millionshchikov hypothesis [2] expressed

by the equation

Cugtjuu”y = () (upu”)

+ (u;u,) (uju") + ") (ujy).

From the experimental studies of flow in a wind tun-
nel behind the honeycomb [10], it has been found that
the behavior of the mixed fourth-order moments of the
velocity field complies (within the limits of measure-
ment error) with the Gaussian distribution of the com-
bined probability density of the turbulent velocity field.

Hence, relation (10) approximately describes the
“limiting” state of homogeneous and isotropic turbu-
lence in the flow behind the honeycomb, for which a

part of correlation H,J', , 1s zero.
To obtain a model expression for the second part of

. 4 .
the correlation II;,, we use the above-mentioned

experimental data [10] to write the general tensor
expression for the fourth-order correlation between the
pressure and velocity pulsations

I'Iz-,,,,, - C”E (et e u,) — (Cutre ) (e,

12
oU* e

+ <ll, m) (” u > + (“ u )(“ ”m))] +aumnkla

In this expression, the second term describes the
effect of the average velocity shift on the turbulence.
This term is written on the basis of the assumptions that
were used in [17] for describing a similar correlation in
the equation for the Reynolds stress tensor. In (12), the
quantity @, is a sixth-order tensor function of the
fourth-order moments and Reynolds stresses. Without
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presenting the cumbersome general form of this func-
tion, we only note that it involves ten arbitrary coeffi-
cients. The conditions of mass conservation and sym-
metry provide four relations between these coefficients.
However, because of the absence of the required exper-
imental data on the higher-order moments of the veloc-
ity field, we cannot determine the numerical values of
these coefficients in the same way as it was done for the
correlation between the pressure and the velocity shift in
the equation for the Reynolds stress tensor (see, e.g., [18]).

For an incompressible turbulent flow dominated by
only one component of the mean velocity shift (para-
bolic-type boundary layer flow), we can write the
model expressions for the components of the part of

correlation Hf,;z by using the general form of the ten-
sor function

H::,Z = —CZ4EPzr_C34EPr<p9.
n:r,z = _C'24EPzr_C;4EPr(pt (13)
H$¢,2 = _Céngzr_cLEPr(p

Here, P, = —(uuXdU/dr), P, = <uu,)dU,/dr
describes the turbulence generation due to the mean

velocity shift, and ¢4, €5y, Ch, €34, €34, and ¢y, are
empirical coefficients.

By combining expressions (10) and (13), we derive
the following model expressions for the components of
the fourth-order correlation between the pressure and
velocity pulsations in the cylindrical coordinate sys-
tem:

Z[u) - 3¢ud)’]

rr— C34EPrq)»

R N e, GO P
l4E (14)

—cuEP,, — cyEP

re»

4

H‘P‘P = <u(p> 3(“(p> ]

CHE
= C'2'4EP:r o Cs‘4EPrlp

To estimate the contribution of viscous dissipation

to the transfer equations for the central fourth-order

4

. § 4
moments (1)—(3), i.e., to estimate the terms €_,, €,,,

4 . « e
and g,,, we used a gradient transfer model similar to
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that used in [6. 7] for describing the triple velocity cor-
relations. This model has the form

"+ (u; uku,)

£
—Cpy— [(u,ulu,)

8ijkm o

8 X

+ (u; u,,,u,) + (u; u‘u,) Eim (15)
ox;

+ (”] m”[> + <“L”m”l> ]
R

Here, g; is the viscous dissipation tensor in the
transfer equatlon of Reynolds stress, and cg4 is an
empirical numerical coefficient.

For turbulent flow in a straight round pipe, the terms
describing viscous destruction in equations (1)—(3) can
be written according to (15) in the form

E, » .de..
el = ~6eatulu) s,

di
4 3 de
o 1
err 6CE4 <“ > dr ’ ( 6)
4 E, 2 de 28,231
Egp = —Dcp={ut u, (ﬂ——w)—,
i S dr -
wheree_ = (u; ) =L, ) ,and gy, = (u e F are

anisotropic e.\pressmns for the tensor components
describing the viscous dissipation of normal Reynolds
stresses. Substitution of expressions (14) and (16) into
the balance equations for the central fourth-order
moments (1)-(3) yields a gradient transfer model that
allows the description of the central fourth-order one-
point moments in a fully developed turbulent flow in a
straight round pipe in the case of high Reynolds num-
bers

d{u: u) (u:zu,)
(u) 3(11) P [ 6(u )( . )
_6(u’u )d< ) 4(11:11,)(%

+(12(uly = c,,E)P.,

+6CE4 (u u,)— (( ) )}

G =3 = -+ [ e >(d(u) Gl >)

r

= C34EPr(p

d(u) +12(u > )

~10¢u}) LU 7 R ()
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Fig. 4. Profiles of the longitudinal coefficient of excess.
Experimental data [12-14]: (/) P=0; (2) P=0.65; (3) P =
0.47. Solid lines show the computational results obtained
from model (17).

' U
—cuEP,,+24 (u?) (uug) 7‘9

+6ceig (u) o D) |

[ 6 ¢>(d<ll

(uzu,)
(usy - 3¢ud)’ = 52t )

1
oy 6(u$u,)((d;;‘p> -12 (ui)(u,u‘p (%" + gr—‘p)

—CuEP,,— ey EP,, + 6cpy= (u(pu, (( q,) ):|

Because of the lack of experimental data about the

. . . 4 4
terms representing viscous destruction €, €,., and

E:,q, , an independent determination of the coefficient
Cgs 1S impossible.

The numerical values of the coefficients involved in
(14) are found from the comparison of the coefficients
(u;‘)/(u:z)2 -3, T, = (u:)/(u,z)2 -3,
and T, = (u::,)/(u(f,)2 , calculated from (17) for the tur-

bulent velocity field, with the experimental data (see
below in Section 3, Figs. 4-6): ¢4 = 18.0; ¢,4 = 17.0;

Cay = Cyy =0T cpy =0.1; €34 =-500; ¢33 =-0.7; and
¢y =~3.0.

of excess 1. =
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L =3

1.0
0.9

T o

0 0.2 0.4 0.6 0.8
r/R

Fig. 5. Profiles of the radial coefficient of excess. Experi-
mental data [12-14]: (/) P = 0; (2) P = 0.60. Solid lines
show the computational results obtained from model (17).

3. RESULTS OBTAINED BY SIMULATING
THE BEHAVIOR OF THE COEFFICIENTS
OF EXCESS FOR A FULLY DEVELOPED
TURBULENT FLOW IN A ROUND PIPE

The profiles of the coefficients of excess T, =
W/l =3, 7, = (u/(ud)’ =3, and T, =

(u:,)/(u‘f,)2 — 3, calculated from gradient transfer

model (17), are given in Figs. 4-6. The required values
of the second- and third-order moments involved in the
right-hand parts of equations (17) were obtained by
successive realization of the model of Reynolds stress
transfer [5-7] and the gradient transfer model for triple
velocity correlations [6, 7]. In Figs. 4-6, the computa-
tional results (solid lines) are correlated with the exper-
imental data (dots) [12-14]. For a nonswirling flow, the
distributions of the coefficients of excess were calcu-
lated by formulas (17) assuming that Upy=0(P,,=0).
The calculated distributions of the coefficients of
excess appear in adequate agreement with their mea-
sured values over the entire cross section of the tube,
except for the wall region of flow, where model (17) is
invalid. We note that the gradient transfer model pro-
posed in [6, 7] for describing the triple velocity corre-
lations was also formulated for large Reynolds num-
bers, and its range of validity does not cover the entire
wall region. The calculated profile of excess 7, mark-
edly deviates from the corresponding experimental data
for the parameter of flow swirling P = 0.6 in the region
0.35 < r/R < 0.8. (The parameter P is defined as P =
Ugo/Uy = 0yR/U,, where @y is the rate of pipe rotation,
U, is the flow velocity at the pipe axis, and R is the pipe
radius.) This distinction is associated with the fact that
the models of turbulent transfer of the second and third
moments [6] only qualitatively reproduce the profile of
radial asymmetry of the turbulent velocity field for the
flow with the parameter of flow swirling P = 0.6 (see
Fig. 8 in [6]).

T, = (w4)/(w2)2—3

1.0
i ol

0.8 .2 £
0.6

0.4

0.2

1 1 1 1
0 0.2 0.4 0.6 0.8
r/R

Fig. 6. Profiles of the angular coefficient of excess. Experi-
mental data [12-14]: (/) P = 0; (2) P = 0.60. Solid lines
show the computational results obtained from model (17).

Note that the results obtained from model (17) are
presented in the form of the excess, which is a more
detailed characteristic of the flow than the related kur-

; o 2
tosis characteristic ( (u?)/ (u,~2) ) 2

Note further that the calculated profiles of the coef-
ficients of excess T, T, and T, shown in Figs. 4-6 were
obtained from the full model (14) for the correlation

I'I?,. . If, in (14), the part of correlation I'I?,-‘z describing
the effect of the mean velocity shift is neglected, the
computational results will only qualitatively agree with
the experimental data for all three coefficients of
excess.
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APPENDIX

Below, we have written the exact nonclosed equa-

. . +1 +1 k+1y .
tion for the mixed moment (u;" 'u, " u," ) in the

cylindrical coordinate system. The equation was
obtained from the Navier-Stokes and Reynolds equa-
tions by using a conventional procedure (see the begin-
ning of Section 2).

1 1 k+1 +1 +1 k+1
u, " ul't u,p+)+ ;. w, g )

U

ot : < or
I om+l k+1 | mel k+1
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