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Abstract 

Among factors affecting the accuracy of flow simulations with Reynolds-Averaged Navier-

Stokes turbulence models is modeling turbulent diffusion processes. With the use of the Gram-

Charlier series expansions, the turbulent diffusion in fourth-order one-point statistical closures of 

the Reynolds-Averaged Navier-Stokes equations can be modeled without introducing unknown 

model coefficients and without assuming turbulence being Gaussian. Terms representing 

turbulent diffusion processes in transport equations for second- and third-order velocity 

correlations do not require any modeling in such closures. In this regard, fourth-order closures 

are a more accurate alternative to lower-order closures where turbulent diffusion is modeled on 

semi-empirical or Gaussian turbulence assumptions. In the current paper, the accuracy of the 

closing procedure based on the Gram-Charlier series expansions is evaluated using data of direct 

numerical simulations in an incompressible zero-pressure-gradient turbulent boundary layer over 

a flat plate. One-point third-, fourth-, and fifth-order velocity moments were extracted for this 

purpose from the dataset collected by the Fluid Dynamics Group at the Universidad Politécnica 

de Madrid at two streamwise locations 4101Re   and 5200 that correspond to channels and 

pipes at 1331    and 1626. Results demonstrate that the truncated Gram-Charlier series 



expansions are an accurate approximation of the fifth-order velocity moments in the considered 

flow. 
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1. Introduction 

The Reynolds-Averaged Navier-Stokes (RANS) approach to turbulence modeling has the 

potential for producing turbulent flow solutions that are infinitely close to the solution of the 

Navier-Stokes equations. The solution of the complete set of RANS equations consists of 

velocity moments of different orders:   
   

   
            , where  is a velocity fluctuation in the i-

direction,        , where                and “—” over a parameter indicates the 

statistical mean value of the parameter. Being statistical moments, velocity correlations 

completely describe the turbulent flow field similar to the probability density function (Chou, 

1945).  

In the general case, an infinite number of correlations   
   

   
             is required to completely 

describe a turbulent flow field. In practice, only some flow characteristics and their accurate 

representation are of importance. Therefore, only those velocity moments that are linked to the 

flow characteristics of interest need to be reproduced accurately.   This leads to the “closure” 

procedure, in which the complete set of RANS equations is closed, in a sense that only transport 

equations for velocity moments of a specified order (       ) and below are solved. 

Velocity moments of higher orders (       ) are modeled in terms of a chosen set of 

lower-order turbulence statistics. The highest order of velocity moments for which transport 

equations are solved provides a basis for categorizing a closure as first order (   ), second 

order (   ), etc. Thus, in the absence of modeling assumptions, the family of RANS closures 

iu
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can be viewed as a hierarchy, with increasing closure order providing an increasingly accurate 

representation of the complete set of RANS equations.   

While closure models up to the fourth order were proposed as far back as the 1940’s
 
(Monin 

and Yaglom, 1979), most engineering predictions today use first-order closure models (one- and 

two-equation RANS models), where all turbulence effects are modeled based on 

empirical/intuitive considerations. Such models are known for not consistently predicting many 

engineering flows of interest, especially those with separation (Johansson and Davidson, 2006; 

Leschziner, 2006; Rumsey et al., 2004; Thiele and Jakirlic, 2007; Vassberg et al., 2014).  In 

second-order RANS closures (Reynolds stress transport models), third-order velocity moments 

are usually modeled using a semi-empirical generalized gradient-diffusion hypothesis (Chou, 

1945; Daly and Harlow, 1970). Models based on this hypothesis, or of similar kind (see, for 

example, Hanjalić and Launder, 2011; Younis et al. 2000; Nagano and Tagawa, 1988) include 

unknown coefficients and tend to fail when compared with experimental data (Hanjalić and 

Launder, 2011; Kurbatskii and Poroseva, 1999; Nagano and Tagawa, 1988; Parneix et al., 1998; 

Schwarz and Bradshaw, 1994).  

In third-order RANS closures, the fourth-order velocity moments modeling can be directly 

linked to the statistical properties of a turbulent flow field, for example, using Millionshtchikov’s 

hypothesis of quasinormality
 
(Millionshtchikov, 1941), 

 

                                                                                                                                                        (1)     
  

 

 

The quasinormality hypothesis is based on the assumption of the Gaussian distribution of the 

probability density function (PDF) of the turbulent velocity field for fourth- and higher-order 
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order velocity moments, and does not introduce any unknown model coefficients. In this regard, 

third-order closures based on (1) are an improvement to compare with lower-order closures. The 

validity of Millionshtchikov’s hypothesis was demonstrated for one-point statistics in a few 

experiments starting from Uberoi (1953) and for two-point statistics in Zaets et al. (1984). 

However, a turbulent velocity field is generally non-Gaussian (for detailed discussion, see Ch.6 

in Tsinober, 2001) that limits the applicability area of (1) as a model.   

Various possibilities of representing the PDF of a non-Gaussian turbulent velocity field in 

terms of the degree of its deviation from a Gaussian form were analyzed in Kampé de Fériet 

(1966). As a result, the Gram-Charlier series expansions were proposed for this purpose. In such 

expansions, a non-Gaussian PDF is given in the form of a series in Hermite polynomials for two 

variables with respect to the Gaussian distribution. The two-dimensional form of such a PDF can 

be found in Frenkiel and Klebanoff (1973) and Durst et al. (1993), for example.  

By truncating the Gram-Charlier series expansions to the fourth and higher orders, one can 

express higher-order velocity moments in terms of lower-order ones. The following expressions 

for the fifth-order velocity moments: 

 

5 2 310i i iu u u  , 

 

                                                    4 2 2 36 4i j i i j i i ju u u u u u u u    ,                                               (2) 

 

2 3 2 2 3 2 26 3i j i j i j i j i j ju u u u u u u u u u u      . 
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were obtained by truncating the Gram-Charlier series expansions to the fourth order. Expressions 

(2) and similar ones for higher-order correlations do not contain unknown coefficients and can be 

used for closing a set of RANS equations. The lowest RANS closure order for which this 

procedure can be applied is the fourth order.  Notice that in Frenkiel and Klebanoff (1973), 

concerns were brought to attention that truncating the Gram-Charlier series expansions may lead 

to negative values in the PDF in some cases. Experiments conducted by Antonia and Atkinson 

(1973) and Nakagawa and Nezu (1977) did not reveal such a problem. Even if such cases exist, 

the only way to identify them is to continue empirically testing the truncated Gram-Charlier 

series expansions in various flows. To date, the applicability of Gram-Charlier series expansions 

has been successfully tested against experimental data in the turbulent boundary layer on a flat 

plate (Antonia and Atkinson,1973; Durst et al., 1993; Frenkiel and Klebanoff, 1973), and an 

open-channel flow over smooth and rough surfaces (Nakagawa and Nezu, 1977). Good 

agreement between experimental data (Bukreev et al., 1975; Pilipchuk, 1986) and the predictions 

using the Gram-Charlier series expansions was also observed in a cylindrical pipe flow 

(Kurbatskii and Poroseva, 1997; Poroseva, 1996).  

With existing experimental techniques, only a few high-order velocity moments can 

accurately be measured. A further progress in validating the truncated Gram-Charlier series 

expansions as a closing procedure can be achieved with direct numerical simulations (DNS) of 

the Navier-Stokes equations that have fully matured as a research tool (Moin and Mahesh, 1988) 

capable of providing experimental-quality data. Recently, DNS data were used for validating 

expressions (2) in a two-dimensional (2D) channel (Jeyapaul et al., 2014) at        , where 

    is based on the friction velocity    and the channel half-height. The goal of the current paper 
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is to validate expressions (2) with DNS data in a two-dimensional zero-pressure-gradient (ZPG) 

turbulent boundary layer over a flat plate.  

Notice that prior modeling dissipation processes and velocity/pressure-gradient correlations 

in transport equations through the fourth order in planar flows, only models for fifth-order 

velocity moments for two variables –      ,         ,            ,             ,          ,        – are required to close the 

set of equations. Thus, expressions (2) will be sufficient to serve the purpose, and this is why 

they are of interest for the current study. However, moments                and                are also present 

in planar flows and may be required for modeling purposes. Fifth-order moments for three 

variables will be necessary in three-dimensional flows as well. To the best of our knowledge, the 

model representation for such moments has yet to be developed. Therefore, they are not 

considered in the paper. 

The DNS data for higher-order velocity moments were extracted from the raw DNS dataset 

collected by the Fluid Dynamics Group at the Universidad Politécnica de Madrid at two 

streamwise locations     = 4101 and 5200 (Borrell et al., 2013; Sillero et al., 2013; Simens et 

al., 2009), where     is based on the free stream velocity and the boundary layer momentum 

thickness . Second-order pressure-velocity central moments are also provided. Such data are 

usually not available (Tsuji et al., 2007), but necessary for better understanding and modeling the 

interaction of turbulent velocity and pressure fields.  

 

2. DNS data 

The DNS database reported in the current paper is collected at relatively high Reynolds 

numbers:     = 4101 and 5200 at which some experimental data are available (DeGraaff and 

Eaton, 2000; Schwarz, 1992). Experimental (Klewicki, 1989; Smith, 1994) and DNS (Schlatter 
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and Örlü, 2010) data at Reynolds numbers:     = 4980, 4850, and 4060 are also used for 

comparison.  

Direct numerical simulations of a ZPG turbulent flow over a flat plate were conducted with 

periodic spanwise boundary conditions and non-periodic streamwise and wall-normal boundary 

conditions. A precursor low-resolution simulation was used to minimize the flow development 

distance and the outflowing turbulent field of the precursor simulation was passed to the main 

high-resolution simulation, hereafter, BL6600, by rescaling the turbulent field. The primitive-

variable formulation of the incompressible Navier-Stokes equations was solved using a 

fractional-step method to ensure mass conservation. Spatial derivatives in the streamwise and 

wall-normal directions were computed using staggered three-point compact finite differences 

with the exception of the Poisson equation for pressure, which was computed with second-order 

finite differences (with no penalty in the global accuracy of the code). A Fourier spectral 

representation was used for the variables in the spanwise direction, dealiased using the 2/3 rule. 

Time was advanced using a semi-implicit, three-step Runge-Kutta scheme. A detailed 

description of the simulation procedure and the first- and second-order one-point statistics can be 

found in Borrell et al. (2013), Sillero et al. (2013), and Simens et al. (2009).  

In Sillero et al. (2013), the domain of BL6600 extends from Re  2780 to      in the 

streamwise direction, and the ratio of the domain height to the boundary layer thickness at the 

exit plane is approximately 2.5. Here, higher-order turbulence statistics collected at          

and      are reported. At         , all relevant flow scales are correctly represented (Sillero 

et al., 2013). Simulation and comparison with experiment data was deemed permissible at 

        , because the maximum Reynolds stress,     (where  is the boundary layer 

thickness), and the wake intensity are close to convergence at          (Sillero et al., 2013), 
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and the second-order statistics collected by the Hot Wire Anemometry (HWA) experiment are up 

to 15% uncertainty
 
(Schwarz, 1992).  

To obtain turbulence statistics, DNS data were averaged in the spanwise direction over 4096 

cells for both Reynolds numbers and over different time realizations: 207 and 209 for      

     and 5200, respectively. Total non-dimensional time over which the statistics are compiled 

is 11.5 turnovers (       ) in the middle of computational box, which corresponds to      

     (Sillero et al., 2013). Local times are 13.6 and 10.6 for          and 5200, 

respectively. The spanwise direction was assumed to be statistically homogeneous, and data 

collected at different times were assumed uncorrelated (Sillero et al., 2013). To increase a 

number of samples used for averaging, data collected in a short region in the streamwise 

direction, where the boundary layer thickness growth did not exceed 1.22%, was also used. It 

gave additional 198 and 247 realizations at           and 5200, respectively. The analysis of 

aliasing errors in averaged data showed them to be marginal.  

In Figure 1, DNS profiles of the third-order velocity moments are shown. Hereafter, velocity 

fluctuations u, v, and w are in the streamwise, normal-to-the-wall, and spanwise flow directions, 

respectively. The “+” notation signifies normalization by the friction velocity   , and    

     , where   is the kinematic viscosity. The skewness and flatness factors are given in Fig. 2. 

Figure 3 demonstrates fourth- and fifth-order velocity moments for velocity fluctuations in the 

streamwise and wall-normal directions. Additional fifth-order velocity moments are provided in 

the following section. Figure 4 shows the pressure-velocity moments. The database of all 

generated moments can be downloaded from the website of the first author.  

A slight variation in the DNS profiles obtained at      4101 and 5200 is observed, but this 

difference is expected (Alfredsson, 2011; DeGraaff and Eaton, 2000; DeGraaff et al., 1998; 
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Honkan and Andreopoulos, 1997; Murlis et al., 1982; Österlund, 1999). An agreement between 

the DNS profiles and available experimental data at close Reynolds numbers is good for all 

moments, except those with velocity fluctuations in the wall-normal direction. Such moments are 

known to be more challenging to measure (Alfredsson, 1988; DeGraaff and Eaton, 2000; 

Hutchins et al., 2009; Ligrani and Bradshaw, 1987; Nagano and Tsuji, 1994; Smits et al., 2011), 

and thus, the agreement is only qualitative. The agreement for the skewness factor    is better 

(Fig. 2a), than for        (Fig. 1d), that is, when uncertainties associated with measuring the 

friction velocity are eliminated from comparison.  
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FIG. 1. Third-order velocity moments. Notations:  BL6600 at         ,  BL6600 at         , 

x Schwarz (1992) at         ,  DeGraaff and Eaton (2000) at         , Smith (1994) at 

        . 
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a)                                                          b) 
 

FIG. 2.  Skewness and flatness factors. Notations:  BL6600 at         ,  BL6600 at     
    , x Schwarz (1992) at         , ,  DeGraaff and Eaton (2000) streamwise and wall-normal 

skewness, respectively, at         , Smith (1994) streamwise skewness at         ,  Schlatter 

and Örlü (2010)
 
streamwise parameters at         , + Klewicki (1989) streamwise parameters at 

        . 
 

 

To quantify the DNS data uncertainty, standard deviations of relevant velocity fluctuations 

products   
   

   
  were collected. The standard deviation of a given product was first evaluated 

for each time realization using the product data in the spanwise direction at each y-location:   

 

      
2

1

1
( ) ( ) ( )

z

j

N

z it t
iz

y f y f y
N






  ,                                                   (3) 

where ( )f y  is the velocity fluctuations product,   
   

   
 , with the specified n, m, and l; ( )f y  

is its mean, velocity moment   
   

   
            ;  Nz is the sample size in the streamwise direction equal to 

4096 for both Reynolds numbers; and    is a time realization. The estimate of ( )z y was 

improved by averaging its values over different time realizations and different locations in the 

streamwise direction:  
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FIG. 3.  Fourth and fifth-order velocity moments for velocity fluctuations in the streamwise and wall-

normal directions. Notations:  BL6600 at         ,  BL6600 at         . 
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where         are (207,198) and (209,247) for          and 5200, respectively. 

The standard deviation of the velocity fluctuations product mean (the mean of a velocity 

moment) can be obtained from ( )z y  as ( ) ( )z zf
y y N   assuming the normal mean 

distribution. (Here, we used the improved estimate for ( )z y , ( )y .) The assumption is valid 

for a sample size larger than 30 (Theorem 8.2 in Walpole, 1969). With   = 4096, the assumption 

is satisfied.  

 Figure 5 shows absolute values of the coefficient of variation 
f

CV f  for velocity 

moments n

if u , where n = 2, 3, 4, and 5. Coefficients of variation of the even-order moments 

are given in Fig. 5a and for odd-order moments in Fig. 5b for         . The coefficient of 

variation is known to be not a reliable metric when the mean is very close to zero. This is why 

the profiles are shown in the range of            (omitting the areas next to the wall and  

 
 

FIG. 4. Pressure-velocity moments, BL6600 at Re  4101 and 5200. Symbols represent Schlatter and Örlü 

(2010) at Re  4060. 
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                            a)                                                               b) 
 

FIG. 5. The coefficient of variation for a) even-order velocity moments and b) odd-order moments at 

        . Notations: -----      ,                       ,       ; ----      ,       ;            ,        ;  ----       ;             . 
 

the boundary layer edge) in both figures. The picks observed in Fig. 5b are also due to the odd-

order moments changing the sign in those areas. Figure 5a demonstrates that the coefficient of 

variation increases with the order of even-order moments. The effect is less noticeable for the 

odd moments except in the outer half of the boundary layer at       .  

No significant difference is observed in the coefficients of variation of different second-order 

moments (Fig. 5a), but the difference appears for higher-order moments. In particular, the 

coefficients of variation of velocity moments in the streamwise direction tend to be lower than 

for the moments in spanwise and normal-to-the-wall directions. 

 

3. Closing procedure validation 

The data presented in Fig. 1 along with the second-order velocity moments (not shown here, 

but in agreement with those reported in Sillero et al., 2013) were used to verify expressions (2) 

for the fifth-order one-point correlations between any two velocity fluctuations. Results of 

comparing DNS profiles for the fifth-order velocity moments (solid lines) with those obtained 
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from expressions (2) (dashed lines) using DNS data for lower-order velocity moments are shown 

in Fig. 6 at     = 4101 (blue lines) and 5200 (black lines).   

                        
a) b) 

 

                               
                                 c)                                                             d) 
 

                                          
                                        e)                                                              f) 
 

FIG. 6. (continued on the next page).  
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Figure 6 demonstrates that the truncated Gram-Charlier series expansions are a good 

approximation for all considered fifth-order moments. Some discrepancy between the fifth-order 

moments and their Gram-Charlier series expansions predictions is observed, but this is expected 

when comparing data of statistical observations. The discrepancy is higher around moments’ 

extremes. No Reynolds number effect within the considered range was detected for this effect 

                      
                                     g)                                                                h) 
 

                                       
                               i)                                                                 j) 
                                    

FIG. 6. Profiles of fifth-order velocity correlations in the zero-pressure gradient boundary layer over a 

flat plate at Re  4101 (blue lines) and Re  5200 (black lines). Notations:    DNS fifth-order 

velocity moments, - - profiles calculated from the truncated Gram-Charlier series expansions (2) using 

DNS data for lower-order moments. DNS data for the second-order velocity moments are from Sillero 

et al. (2013).  

 



17 

 

either. Similar tendencies for fifth-order velocity moments and their Gram-Charlier series 

expansions predictions were observed in a two-dimensional fully-developed channel flow 

(Jeyapaul et al., 2014) at         .  

In the areas around moments’ extremes, the standard deviation values are also at maximum. 

As an example, the 95%-confidence intervals ( 2 ( )
f

y ) for the fifth-order velocity moment in 

the streamwise direction (black lines) and its Gram-Charlier series expansions prediction (blue 

lines) are shown in Fig. 7 along with their overlapping area (between two red lines). The level of 

confidence was estimated assuming the normal distribution for all relevant moments (Walpole, 

1969).  For symmetrical unimodal distributions and for any unimodal distributions, more 

conservative confidence estimates can also be applied: Bienaymé-Chebyshev (Bienaymé, 1853; 

Chebyshev, 1867) (often just Chebyshev) and Vysochanskij-Petunin (Sellke and Sellke, 1997; 

Vysochanskij and Petunin, 1980, 1983) inequalities, respectively. The former inequality assigns 

confidence of 75% to the 2-interval, and the 

latter gives the estimate of 89%. The error 

propagation rules (Ku, 1966) for independent 

functions were used to evaluate the standard 

deviation of the Gram-Charlier series 

expansions predictions, which is accepted 

practice in the analysis of statistical data when 

no information on the functions dependence is 

available. As the figure demonstrates, the 

overlapping exists everywhere within the 

boundary layer. Thus, the Gram-Charlier series 

    
 

FIG. 7. The areas of 95%-confidence intervals 

for            
  (marked by black lines), its Gram-

Charlier series expansions prediction (Eq. (2)) 

(blue lines) and their overlap (red lines) at 

Re  5200.   
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expansions do approximate the true value of the fifth-order moment with the specified level of 

confidence. Similar results were obtained for the other fifth-order moments (not shown here).       

A statistical approach to evaluating the significance of the discrepancy between two sample 

means is testing the null hypothesis that the difference between the true means approximated by 

the sample means is equal to zero (see, for example, Ch. 10 in Walpole, 1969, for testing 

statistical hypothesis). If the hypothesis holds true, then a value determined as  

 

 

1 2

1 2

2 2

f f

f f
z

 





,                                                               (5) 

 

is a value of the standard normal variable Z when sample sizes are large (N > 30) and the 

independence of    and     is assumed. If the hypothesis is not correct,         and   

    , where  is the level of significance and            is the confidence level. For 

      , the hypothesis is violated when         and       . 

When comparing the fifth-order moments with the Gram-Charlier series expansions 

predictions,     and     are a fifth-order moment and its prediction from expressions (2), 

respectively. For the 95%-confidence level,  -profiles for all fifth-order moment from Fig. 6 are 

shown in Fig. 8. As the figure demonstrates, the hypothesis that the Gram-Charlier series 

expansions predictions approximate the same true means as the corresponding fifth-order 

velocity moments holds true within the boundary layer except towards the boundary layer edge. 

This is the area where velocity moments are close to zero (Figs. 1, 3, and 6). When comparing 

values close to zero, it is difficult to point the single source of the discrepancy between them. 
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Regardless the error source, the difference between the moments and their predictions is less 

significant due to their small values.  

                                    

   a)                                                            b) 
 

FIG. 8. The Z-profiles (Eq. (5)) for the fifth-order velocity moments. Notation: grey solid lines are at  

        that corresponds to the 95%-confidence interval; lines  , - - -,      ,   , and        

correspond to      ,         ,            ,            , and         , respectively, in Fig. 8a and to      ,            ,            ,          , and 

          in Fig. 8b. 

 

In addition to the statistical nature of DNS data, other factors may contribute as well in the 

observed discrepancy between DNS data and profiles predicted with truncated Gram-Charlier 

series expansions. Close to the wall, both flows may not be planar, but three- dimensional. In the 

boundary layer, this effect is mainly manifested for the third-order velocity moments        and 

          (other second- and third-order moments that have to be zero in planar flows are negligible). 

As shown in Fig. 9, the magnitude of these moments is comparable with that of       in the buffer 

zone. Experimental data (Ölçmen et al., 1999; Schwarz, 1992) support this observation. In the 

channel flow (Jeyapaul et al., 2014), the moment        is at maximum in the same area where the 

maximum discrepancy is observed between DNS and predicted profiles for the fifth-order 

velocity moments. The       -moment is smaller than       , but not negligible like       . The observed 
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three-dimensionality may be a physical property of 

near-wall flows, or possibly induced by 

inaccuracies of DNS and experimental techniques 

used in the wall area.   

To better illustrate the importance of using 

higher-order closures in wall-bounded flows, DNS 

profiles for the fourth-order moments are 

compared in Figs. 2 and 10 with those obtained 

from Millionshtchikov’s hypothesis (1) using DNS 

data for second-order moments. In Figure 2, the 

solution for the Gaussian velocity distribution (S = 0, F = 3) are shown by horizontal lines. In 

Figure 10, DNS profiles for the fourth-order moments are shown by dashed lines and the profiles 

obtained from the quasinormality hypothesis, by solid lines. The figures demonstrate that the 

assumption of a Gaussian turbulent velocity field is weak in the considered flow: it is a good 

approximation for 3uv  and 2 2u v , but gives only 

qualitative agreement for 3u v . For the flatness 

factors shown in Fig. 2, this hypothesis can be used 

as an approximation far from the wall and from the 

boundary layer edge. Regions of the near-Gaussian 

behavior of the velocity skewness and flatness 

factors are in agreement with those identified in 

Durst et al. (1993). 

 

 
 
FIG. 9. The planar flow assumption 

validation using DNS data at Re  5200 in a 

zero-pressure gradient boundary layer over a 

flat plate. Notations:  
3v 

, - - 
3w 

, and  
2u w

. 

 

       
  

FIG. 10. Comparison of the DNS fourth-

order velocity moments with the profiles 

obtained from the quasinormality hypothesis 

using DNS data for the second-order 

moments at Re  5200.   
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4. Conclusion 

The accuracy of the truncated Gram-Charlier series expansions in representing fifth-order 

velocity moments in terms of lower-order velocity moments is evaluated using DNS data in an 

incompressible zero-pressure-gradient turbulent boundary layer over a flat plate. Data for one-

point third-, fourth-, and fifth-order velocity moments were extracted for this purpose from the 

DNS dataset collected by the Fluid Dynamics Group at the Universidad Politécnica de Madrid at 

two streamwise locations     = 4101 and 5200. The comparison of DNS profiles for fifth-order 

velocity moments with those obtained using the truncated Gram-Charlier series expansions  

demonstrated that the truncated Gram-Charlier series expansions are an accurate approximation 

for all generated fifth-order velocity moments in the considered flow. Similar results were 

obtained using DNS data in a 2D fully developed channel flow (Jeyapaul et al., 2014). 
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