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It is accustomed to think that turbulence models based on solving the Reynolds-averaged
Navier–Stokes (RANS) equations require empirical functions to accurately reproduce the
behavior of flow characteristics of interest, particularly near a wall. The current paper
analyzes how choosing a model for pressure-strain correlations in second-order closures
affects the need for introducing empirical functions in model equations to reproduce the
flow behavior near a wall correctly. An axially rotating pipe flow is used as a test flow for
the analysis. Results of simulations demonstrate that by using more physics-based models
to represent pressure-strain correlations, one can eliminate wall functions associated
with such models. The higher the Reynolds number or the strength of imposed rotation on
a flow, the less need there is for empirical functions regardless of the choice of a
pressure-strain correlation model. [DOI: 10.1115/1.4025936]

1 Introduction

The solution of the Navier–Stokes equations describes a turbu-
lent flow structure anywhere in the flow, including near-wall
areas. Such solutions can be obtained using direct numerical simu-
lations (DNS) of the Navier–-Stokes equations. However, DNS
are computationally infeasible for flow simulations at high
Reynolds numbers that are of interest for industrial applications.

A statistically equivalent alternative to DNS is solving the full
set of the RANS equations, which includes transport equations for
all statistical moments (velocity correlations). The knowledge of
all statistical moments is equivalent to the knowledge of the prob-
ability density function of a random field [1]. Therefore, a turbu-
lent flow structure can also be completely described in the same
way. The problem is that in a general case the full set includes an
infinite number of RANS equations, which makes it impossible to
find a solution.

To make the RANS approach practical, one uses a procedure
called “closure.” In this procedure, the full set of RANS equations
is reduced to include only transport equations for velocity correla-
tions of a specified order and below. Such equations contain ve-
locity correlations of higher orders. To exclude them from the list
of unknown parameters, higher-order velocity correlations are
modeled in terms of a chosen set of lower-order turbulence statis-
tics. The result is a closed set of modeled RANS equations that
includes transport equations for velocity correlations of the speci-
fied order and below. More on the philosophy of the closure pro-
cedure and history of its development can be found in Refs. [1,2].

The highest order of velocity correlations that transport equa-
tions are solved for provides a basis for categorizing a closure as
first, second, and so on order. For example, all one- and two-
equation RANS models that are typically used in the industry fall
into the category of first-order closures because from all possible
RANS equations such models only solve the equations for mean
velocity components. In second-order RANS closures, transport

equations for third- and higher-order velocity correlations are cut
off from the set of solved equations.

When compared to a full set of exact RANS equations, closures
of any order do not accurately reproduce the flow physics. How-
ever, this is acceptable as long as the behavior of the flow charac-
teristics of interest is reproduced correctly. One verifies whether
this requirement is met by comparing the results of simulations
conducted with a chosen RANS model with a reliable experimen-
tal database. Unfortunately, no such database exists for many
flows of practical importance.

Another indicator that a RANS model substantially lacks the
capability to correctly reproduce the required flow physics is the
model’s need for empirical functions/corrections. Such a need is
usually revealed in simulations of benchmark flows with an exist-
ing experimental database. Although empirical functions facilitate
simulations, ultimately, their presence in equations is undesirable
due to their unphysical nature. The development of RANS models
that are free from empirical functions is the ultimate goal of our
research.

To achieve this goal, sources of deficiencies in modeled RANS
equations should be identified and analyzed. Of all RANS models,
the first-order closures are the least accurate models to compare
with the full set of exact RANS equations because of their formu-
lation. Indeed, all effects due to turbulence are modeled in these
closures. As a result, empirical functions are unavoidable in such
models. Even with empirical functions, these models do not
adequately describe flow physics in near-wall areas of complex
flows (see discussion in Refs. [3–5]). In some wall flows, it was
analytically shown [6] that first-order closures could not generate
the correct solution even for the mean velocity components.

Second- and higher-order closures solve transport equations for
turbulence statistical characteristics, and therefore, have more
potential for improving the description of flow behavior every-
where, including in near-wall areas [2,7].

It was previously shown [8,9] that modeled RANS equations
for third- and fourth-order velocity correlations seem capable of
accurately reproducing the behavior of corresponding velocity
correlations throughout the flow area, including near a wall, with-
out any empirical functions. Therefore, the focus of our research

Contributed by the Fluids Engineering Division of ASME for publication in the
JOURNAL OF FLUIDS ENGINEERING. Manuscript received April 22, 2013; final
manuscript received October 28, 2013; published online April 28, 2014. Assoc.
Editor: Ye Zhou.

Journal of Fluids Engineering JUNE 2014, Vol. 136 / 060909-1Copyright VC 2014 by ASME

Downloaded From: http://fluidsengineering.asmedigitalcollection.asme.org/ on 09/08/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use



is an analysis of deficiencies in second-order closures or the
Reynolds stress transport models (hereafter, RST models).

In RST models, the main sources of deficiencies are model
expressions used to represent three of the terms in the exact
RANS equation for Reynolds stresses:
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These terms are turbulent diffusion Dij, velocity–pressure-
gradient correlations Pij, and dissipation tensor eijdefined as
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The following notations are used in Eqs. (1) and (2), and here-
after: Ui and ui are the mean and fluctuating velocity components,
respectively; h:::i denotes the ensemble average; q is the density;
p is the pressure fluctuation; and � is the kinematic viscosity. In
this paper, all equations are written using Cartesian notations to
simplify presentation. In simulations, however, equations were
written in cylindrical coordinates, as they are more relevant to test
flow geometry. The exact RANS equations for velocity correla-
tions of any order written in cylindrical coordinates can be found
in Ref. [9].

The effect of modeling the turbulent diffusion term on the
results of simulations in a rotating circular pipe flow was studied
in Ref. [10]. It was found that the model choice for the turbulent
diffusion term has a profound effect on the behavior of second-
order velocity correlations everywhere in the flow, including in
near-wall areas. It was shown that simulation results could be
improved substantially by choosing a tensor-invariant turbulent
diffusion model. It was also observed, that modeling
velocity–pressure-gradient correlations had a much stronger effect
on mean velocity profiles than modeling the turbulent diffusion.
The current paper investigates further detail on the effects of mod-
eling velocity–pressure-gradient correlations on the results of sim-
ulations. Particularly, the ability of the various models for these
correlations to accurately reproduce new-wall flow behavior is an-
alyzed. The effects of modeling the dissipation tensor, although
highly important, are not considered in this paper.

To maintain consistency with previous works [8–10], a turbu-
lent flow in an axially rotating circular pipe was chosen as the test
flow. This is a wall-bounded flow with complex physics that
relates to various engineering flows with boundary layers on a
rotating surface, such as for example, flows in heat exchangers
and rotor cooling systems.

2 RST Models

To analyze the effect of different velocity–pressure-gradient
correlations models on simulation results, one has to keep models
for turbulent diffusion terms and dissipation tensor unchanged in
RST equations. The simplest models can be used in such an analy-
sis. For turbulent diffusion terms, the Daly–Harlow model [11]
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is used in the current study. In Eq. (3), Cs1 ¼ 0:18, s is a time
scale defined as k=e, and e is the dissipation rate of turbulent
kinetic energy k. The dissipation tensor eij is modeled using an

isotropic expression with a correction for the low Reynolds num-
bers near a solid wall [12]:
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In Eq. (4), xn is the normal distance to a wall and dij is the Kro-
necker d tensor. The transport equation for the dissipation rate of
turbulent kinetic energy is used in the following form:
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Here, 2P ¼ �huiuki@Ui=@xk, C�e2 ¼ Ce2f2 in a stationary pipe and
C�e2 ¼ max 1:4;Ce2f2½ � in a rotating pipe, and Ce2 ¼ 11=6. The val-
ues of coefficients Ce and Ce1 depend on the model choice for
pressure-containing correlations. Damping functions f1 and f2 are
defined as in Ref. [12]: f1 ¼ exp �xnus= 2�ð Þ½ � and f2 ¼ 1� 2=9

� expf� k2= 6�eð Þ½ �2g, with us being the friction velocity. Our
choice of a model for the dissipation tensor and the model equa-
tion for e is based on the results of our previous studies in the test
flow geometry [10].

Even though a more physics-based model for the dissipation
tensor is desirable, it was found previously [10,13] that the pres-
ence of the damping functions in Eq. (5) was not influenced by
models for turbulent diffusion and pressure-containing correla-
tions. It was also shown that the combination of Eqs. (4) and (5)
provides stable computational solutions at various combinations
of the Reynolds number Re ¼ U0D=�, and the rotation rate
N ¼ W0=U0, where W0 is the maximum circumferential mean ve-
locity component (at the pipe wall), U0 is the maximum axial
mean velocity component (at the pipe centerline), and D is the
pipe diameter. The computational step size in the axial direction
can also be significantly increased when Eqs. (4) and (5) are used
to model the dissipation tensor [13,14]. The issue of computa-
tional time becomes important when more complex models for
pressure-containing correlations are implemented in RST
equations.

Equation (1) contains a velocity–pressure-gradient correlations
tensor (2) that has to be modeled. However, the usual practice
would be to model a different tensor, the pressure-strain
correlation tensor:
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This tensor can be obtained from the velocity–pressure-gradient
correlation tensor by splitting the later into two parts: the
pressure-strain correlations tensor Uij and the pressure diffusion
tensor �1=q� @hpuii=@xj þ @hpuji=@xi

� �
. The pressure diffusion

tensor is usually neglected or assumed to be absorbed in a model
for turbulent diffusion.

This practice of modeling pressure-containing correlations can
be traced back to Rotta’s work [15]. The consequences of its
implementation in RST equations were analyzed in Refs. [16–18].
In the current paper, this practice is also adopted because we wish
to analyze the improvement in flow simulations that can be
achieved within the standard modeling framework.

Based on the results of our previous research [13], the following
models for the pressure-strain correlations tensor were chosen for
testing: isotropization-of-production (IP) and Launder-Reece-Rodi
(LRR) models [19], linearized [20] and nonlinear [21] Speziale-
Sarkar-Gatskii (SSG) models, and a structure-based Q-model
[14,22]. The IP model is the simplest of the five models. The LRR
model is the model that is most frequently implemented in various
software. The Q-model is the most complex of the five models.
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The IP, LRR, linearized SSG (hereafter, LSSG), and nonlinear
SSG models can be represented by the same expression:
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where bij ¼ 1=2 huiuji=k � 2dij=3
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, Sij ¼ Ui;j þ Uj;i
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=2, and

Xij ¼ Ui;j � Uj;i
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=2. The model coefficients are given in Table 1.

Notice that for the LRR model, a value of C1 differs from its
standard value of 3.0 [7]. It was found that simulation results fit
closer experimental data with the value of this coefficient being
3.6.

The Q-model does not solve for a modeled form of Eq. (1), and
thus, no direct modeling of pressure-containing correlations is
involved. All nonlocal effects (including those of pressure fluctua-
tions) are accounted for by additional structure tensors such as
dimensionality, circulicity, and stropholysis Qijk [14,22]. The first
two tensors are of the second rank; the stropholysis is the third-
rank tensor. Instead of using Eq. (1), the stropholysis tensor trans-
port equation is modeled and solved. Reynolds stresses are recon-
structed from the components of the stropholysis tensor using the
following relation: Rij ¼ eimpQjpm, where eijkis the Levi–Civita
tensor. The Q-model was included in the analysis because it aims
to reproduce Reynolds stresses and, thus, falls into the category of
second-order RANS closures. Due to the lack of an explicit model
expression for pressure-containing correlations and the longevity
and complexity of the Q-equations set, a reader is referred to
Ref. [13] where Q-equations are given in detail.

The full set of Q-model equations also includes transport equa-
tions for the dissipation rate of turbulent kinetic energy (5). The
turbulent diffusion of the Q-tensor is modeled using an expression
similar to Eq. (3):
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[13], where CQ ¼ 0:22 and sQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=eð Þ2þ36�=e

q
.

The performance of the five RST models was analyzed in the
current study. The four RST models solve Eq. (1), with the turbu-
lent diffusion, the dissipation tensor, and the pressure-strain corre-
lations being modeled using expressions (3)–(5) and (7), along
with one of the four sets of the model coefficients in Table 1.
Depending on the chosen set of model coefficients in Table 1,
RST models are labeled as IP, LRR, LSSG, or SSG. The Q-model
is the fifth RST model used in the analysis. The coefficients Ce
and Ce1 in transport equation (5) for e are 0.18 and 1.54, respec-
tively, for all models except the Q-model where values are 0.22
and 1.5, respectively.

3 Numerical Procedure

Simulation conditions closely reproduced those in experiments
[19,20]. In the first step, a fully developed turbulent flow was
obtained at the exit of the stationary cylindrical pipe section.
Then, the flow was conveyed into a cylindrical pipe section of the

same diameter with rotation imposed on the flow by the rotating
pipe wall (Fig. 1).

Simulations were conducted at two Reynolds numbers: Re ¼ 2
�104 and 4� 104, with Re defined as previously: Re ¼ U0D=�.
The rotation strength that was imposed on the flow is character-
ized by the rotation rate N ¼ W0=U0, and varied from 0 (no
rotation) to 1 (strong rotation).

Equations used in simulations were written using boundary
layer approximations in the axisymmetric cylindrical frame of ref-
erence xi ¼ ðx; r;uÞ, where x, r, and u are the axial, radial, and
angular coordinates, respectively (Fig. 1). In such coordinates, the
covariant and contravariant components of velocity are
Ui ¼ ðU;V; rWÞ and Ui ¼ ðU;V;W=rÞ. Instead of equations for
the individual turbulent kinetic energy components, equations for
the turbulent kinetic energy k, hu2i, and hw2i � hv2i were solved
in the IP, LRR, SSG, and LSSG models. These equations provide
the same information about the behavior of individual turbulent
kinetic energy components but require simpler boundary condi-
tions. The control volume technique [23] was used to solve the
transport equations.

The grid was nonuniform in the radial direction, with the total
number of nodes in this direction being 69 at Re ¼ 2� 104 for all
models. At Re ¼ 4� 104, the number of nodes was 128 for all
models except the Q-model. For the Q-model, the number of
nodes was 65. Five nodes were uniformly placed within yþ � 5 at
Re ¼ 2� 104 and at Re ¼ 4� 104 for the Q-model. At
Re ¼ 4� 104, 10 nodes were uniformly placed within the same
area for the other four RST models. In the test flow geometry, yþ
is defined as yþ ¼ ð1� r=RÞRes, where Res ¼ usRð Þ=�.

The number of nodes was determined by analyzing the solution
convergence for each model. That is, at higher Re, the solution for
the Q-model converged on the grid coarser than those used in sim-
ulations with the other models. The computational step in the
axial direction was 0.001 R.

Boundary conditions for the IP, LRR, SSG, and LSSG models
were the following:

@U
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¼ huvi ¼ hvwi ¼ huwi ¼ W ¼ 0

at the pipe centerline (r¼ 0) and

U ¼ k ¼ e ¼ hu2i ¼ hw2i � hv2i ¼ huvi ¼ hvwi
¼ huwi ¼ 0; W ¼ W0

on the pipe wall at r¼R.
For the Q-model, the boundary conditions at r¼ 0 were

@U

@r
¼ @e
@r
¼ W ¼ 0;

@Qijk

@r
¼ 0; if i 6¼ j 6¼ k; and

Qijk ¼ 0; if i ¼ j; or j ¼ k; or i ¼ k

At the wall, U ¼ Qijk ¼ 0 and W ¼ W0. More detail on the bound-
ary conditions for the Q-model can be found in Ref. [13].

Table 1 Coefficients in the Uij -models

C1 C�1 C2 C3 C�3 C4 C5

IP 3.6 0 0 0.8 0 1.2 1.2
LRR 3.6 0 0 0.8 0 1.75 1.31
LSSG 3.4 1.8 0 0.36 0 1.25 0.4
SSG 3.4 1.8 4.2 0.8 1.3 1.25 0.4

Fig. 1 Test flow geometry
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For the IP model, initial conditions at the inlet of the stationary
pipe section were the same as in Ref. [11]:

kðrÞ ¼ k0 ¼ 10�3u2
s ; hu2i ¼ 2=3ð Þk0;

hw2i � hv2i ¼ 0; huvi ¼ 0

UðrÞ ¼
usyþ; 0 � yþ � A7=6; A ¼ 8:74

AusðyþÞ1=7; A7=6 < yþ � Res

(

eðrÞ ¼ clfl
� �1=2

k0

@U

@r
; fl ¼ 1� expð�0:01yþÞ; cl ¼ 0:09

For the other models, IP-model profiles for U, Reynolds stresses,
and e at the stationary pipe section exit were used as the initial
profiles to reduce the time of computations. The Q-model requires
initial profiles for many other parameters. They are discussed in
detail in Ref. [13].

4 Results

In the test flow, simulations should accurately reproduce the
effects of the pipe wall and the pipe wall rotation on the behavior
of the mean velocity components and the Reynolds stresses. In
particular, experimental studies [24–27] established the existence
of three regions along the rotating pipe section at a given rotation
rate where rotation has a dramatically different effect on
turbulence:

— the initial region where strong turbulence suppression is
observed

— the transitional region where turbulence statistics tend to
recover

— the final region where turbulence statistics are stabilized at
some level just slightly lower than in the stationary pipe
section

The initial region is relatively short, about 30D. The final
region is a region of fully developed turbulence that is observed at
about 170D at any Reynolds number considered in experiments
[24,27]. Similar dynamics of turbulence statistics was observed in
the given pipe section by increasing the rotation rate [25].

Mean velocity components respond differently to rotation than
turbulence statistics. Specifically, mean velocity component pro-
files are transformed along the pipe tending to shapes expected in
a laminar flow but never reaching those limits. The fully devel-
oped profiles of the mean velocity components occur at approxi-
mately the same distance as the fully developed profiles of
turbulence statistics [24,25,27].

Being the simplest of the considered RST models, the IP model
also has the most difficulty reproducing the experimental results
without additional corrections implemented in the Uij-model. At
Re ¼ 2� 104, strong disagreement with experimental data [28] is
observed (Fig. 2(a)). Rotation enhances this disagreement. At
higher Re (Re ¼ 4� 104), the need for corrections diminishes
(Fig. 2(b)). Corrections are also required to accurately predict the

Fig. 2 The axial mean velocity component of the IP-model at (a) Re ¼ 23104 and (b) Re ¼ 43104.
Notations: IP model: —-; experiments: (a) � N 5 0, � N 5 0.5 [27] and (b) � N 5 0, � N 5 0.6 [25].

Fig. 3 The IP-model profiles of (a) shear stress and (b) turbulent kinetic energy calculated at
Re ¼ 43104 (see notations in Fig. 2(b))
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shear stress huvi and the turbulent kinetic energy k (Fig. 3). The
shear stress in the stationary pipe section is correctly reproduced
with the IP model without corrections. In the figures, R denotes
the pipe radius; Um is the bulk velocity and us0 is the friction ve-
locity at the pipe wall at the exit of the stationary pipe section,
respectively.

Mean velocity profiles calculated in the other four models are
shown in Figs. 4 and 5. These models are capable of reproducing
the axial mean velocity profile at the stationary pipe section exit.
They also successfully predict the transformation of the
axial mean velocity profile under small to medium rotation rates
(N < 1). The smaller Re and the higher N, the more the simulation
results deviate from experimental data. Under strong rotation
(N¼ 1), all models produce results that are far from experimental
data (not shown here).

The circumferential velocity profiles are more sensitive to mod-
eling pressure-strain correlations (Fig. 5). The Q-model fails to
reproduce the transformation of W under rotation at Re ¼ 2� 104

(Fig. 5(a)). Results produced with other models are closer to the
experimental data. At the medium rotation rate (N¼ 0.6), profiles
obtained for all models deviate from the experimental data
(Fig. 5(a)). It was shown in Ref. [13] that additional corrections
that were introduced into the models did not improve results.

By increasing the Reynolds number (Re ¼ 4� 104Þ, there is a
decrease in the circumferential velocity component’s dependence

on the choice of the Uij-model (Fig. 5(b)). At this Re, rotation also
has less of an effect on agreement between the simulation results
and the experimental data.

Simulation profiles obtained for the shear stress and turbulent
kinetic energy of the four models are shown in Figs. 6–10. At
Re ¼ 2� 104; all models overpredict the shear stress (Fig. 6(a))
in stationary and rotating pipe sections. At Re ¼ 4� 104, the
results are in strong agreement with the experimental data (Fig.
6(b)). No wall corrections are necessary to reproduce the shear
stress at this Re in the stationary pipe section. Under rotation, dif-
ferences between the calculated and experimental profiles become
noticeable in the near-wall area. This difference, however, can be
eliminated by choosing a tensor-invariant turbulent diffusion
model as shown in Ref. [10].

A choice of a turbulent diffusion model is also important for
predicting turbulent kinetic energy at lower Re. With model (3),
all considered RST models overpredict the turbulent kinetic
energy level in the fully developed turbulence region of the rotat-
ing pipe section. Moreover, they predict it to be larger than in the
stationary pipe. This contradicts experimental observations.
Figure 7(a) illustrates this issue for the LRR model at N¼ 0.5. In
the figure, the experimental profile at N¼ 0.5 lies below the pro-
file measured at N¼ 0. The simulation results show the opposite
tendency. Other models predict results similar to those obtained
with the LRR model. Therefore, results for all models are shown

Fig. 4 The axial mean velocity components for LRR —-, LSSG - - - -, SSG � � � � � � ��, and Q- � � ��
models calculated at (a) Re ¼ 23104 and (b) Re ¼ 43104. Experiments: (a) � N 5 0, � N 5 0.5,
� N 5 1 [27] and (b) � N 5 0, � N 5 0.15, � N 5 0.6 [25].

Fig. 5 The circumferential mean velocity components at (a) Re ¼ 23104 and (b) Re ¼ 43104

(see notations in Fig. 4)
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only at N¼ 0. Wall corrections in the models do not solve this
problem [10,13], but using a tensor-invariant model for turbulent
diffusion resolves the issue [10].

In the stationary pipe section at Re ¼ 2� 104, the Q-model
more accurately predicts the turbulent kinetic energy profile than
the other models (Fig. 7(a)). In this figure, q¼ 2k. By using wall

corrections in this model, overall results can be improved in the
near-wall region. Other models underpredict the turbulent kinetic
energy level at any r. Wall corrections will not be sufficient to
improve simulation results.

At higher Reynolds numbers, the four models generate similar
solutions. That is, they all underpredict the turbulent kinetic

Fig. 6 Shear stress at (a) Re ¼ 23104 and (b) Re ¼ 43104 (see notations in Fig. 4)

Fig. 7 Turbulent kinetic energy (a) Re ¼ 23104 and (b) Re ¼ 43104 (see notations in Fig. 4)

Fig. 8 The individual components of turbulent kinetic energy at the exit of the stationary pipe
section at Re ¼ 43104 for: (a) hu2i=u2

so (upper lines), hv2i=u2
so (lower lines) and (b) hw2i=u2

so .
Notations: —- LRR model, - - - - LSSG model, � � � � � � �� SSG model, � � �� Q-model; experiments:�
[25], r [28].
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energy level near the wall (Fig. 7(b)). Under rotation, the
Q-model produces the k-profile in close agreement with the
experimental data, including the near-wall area.

The individual components of turbulent kinetic energy at the
exit of the stationary pipe section are shown in Figs. 8 and 9.
Experimental data from Ref. [28] are plotted in Fig. 8 along with
experimental data from Refs. [25] and [27] and computational
profiles, in order to provide more detailed information about the
flow behavior near the pipe wall. In Ref.[28], the data were
obtained at Re ¼ 5� 104. Therefore, the data can be used only
for a qualitative comparison.

At Re ¼ 4� 104, all models under-predict hu2i and hv2i in the
near-wall area (Fig. 8). The LRR-model profile of hu2i deviates
from the experimental data at any r. The SSG model underpredicts
the level of hw2i at any r, whereas the other three models provide
an accurate prediction of this component. Figure 9 shows similar
tendencies. Both figures demonstrate that hu2i is the most chal-
lenging Reynolds stress to predict.

Rotation influences the individual components of the turbulent
kinetic energy in a manner similar to the effect of rotation on their
sum. That is, at a lower Re, all components are significantly over-
predicted (not shown here). At a higher Re and small N
(N¼ 0.15), there is an acceptable agreement with the experimental
data, including in the near-wall area (Fig. 10). In the figure, Ku,
Kv, and Kw are damping coefficients defined as

Kui ¼
hu2

i iðN > 0Þ
hu2

i iðN ¼ 0Þ ; where ui ¼ u; v; or w

Under stronger rotation, hu2i and hv2i are reproduced in close
agreement with the experimental profiles, whereas hw2i is the
most challenging to predict for all models (Fig. 10). Clearly, wall
corrections will not improve these results.

5 Conclusions

Results of the present study demonstrate that the IP model is
too simplified to be used in test flow without adding corrections to
pressure-strain models. The other four RST models tested in the
present study were able to capture the flow physics significantly
better. Profiles of the mean velocity components that were calcu-
lated without wall corrections were in agreement with the experi-
mental data. Different models produce close results, but at
Re ¼ 2� 104; the circumferential mean velocity component pro-
files that were calculated with the Q-model deviate far from ex-
perimental data and show the wrong tendency towards flow
relaminarization. With increasing the Reynolds number, the dif-
ference between the profiles calculated for the different models
becomes negligible at considered rotation rates.

Calculation of the huvi profile for the four models does not
require wall corrections at higher Re. The deviation from experi-
mental data that occurred near walls can be corrected using a
tensor-invariant model for the turbulent diffusion, rather than
model (3) utilized in the current study [10]. Whether this substitu-
tion would be sufficient to improve the solution for this Reynolds
stress at a lower Re is not currently clear. However, the use of
wall corrections will certainly not resolve the issue, as the

Fig. 9 Individual components of the turbulent kinetic energy at the exit of the stationary pipe

section at Re ¼ 23104 for: (a)
ffiffiffiffiffiffiffiffiffiffi
hu2i

p
=Um (upper lines),

ffiffiffiffiffiffiffiffiffiffi
hv2i

p
=Um (lower lines) and (b)ffiffiffiffiffiffiffiffiffiffiffi

hw2i
p

=Um. Notations: —- LRR model, - - - - LSSG model, � � � � � � �� SSG model, � � �� Q-model;
experiments: � [27].

Fig. 10 Effect of rotation on the individual components of turbulent kinetic energy at Re ¼ 43104 (see notations in Fig. 4)
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simulation results deviate from the experimental data at any r, not
only in the near-wall area.

The choice of a model for turbulent diffusion is also important
for predicting turbulent kinetic energy at a lower Re. With a gradi-
ent-diffusion-type model such as model (3), all considered RST
models overpredict the turbulent kinetic energy level in the fully
developed turbulence region of the rotating pipe section. More-
over, they predict it to be larger than in the stationary pipe. This
contradicts experimental observations.

In the stationary pipe section, all models underpredict the level of
turbulent kinetic energy near the pipe wall at both Reynolds num-
bers. Under rotation at a higher Re, the Q-model gives results close
to the experimental data, including in the near-wall area. Other mod-
els underpredict the level of turbulent kinetic energy near the wall.

The individual components of the turbulent kinetic energy behave
differently when under rotation and in the near-wall area. The LRR
model has more difficulties reproducing these differences than other
models. The SSG model completely fails under strong rotation
(N¼ 1), predicting flow relaminarization. Other models also predict
flow relaminarization in contradiction to experimental observations,
but this occurs at higher rotation rates. Overall, the LSSG model
without wall corrections produces the best results in the tested flow
within considered ranges of the flow parameters.

The Reynolds number and the rotation rate have similar effects
on the accuracy of simulation results. By increasing either of these
parameters (excluding strong rotation), results of simulations tend
to be in closer agreement with experimental data, including in the
near-wall area.
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