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ABSTRACT 

Simulation results conducted for incompressible planar wall-bounded turbulent flows with the 

Reynolds-Averaged Navier-Stokes (RANS) equations with no modeling involved are presented. 

Instead, all terms but the molecular diffusion are represented by the data from direct numerical 

simulation (DNS). In simulations, the transport equations for velocity moments through the second 

order (and the fourth order where the data are available) are solved in a zero-pressure gradient 

boundary layer over a flat plate and in a fully-developed channel flow in a wide range of Reynolds 

numbers using DNS data from Sillero et al. (2013), Lee & Moser (2015), and Jeyapaul et al. (2015). 

The results obtained demonstrate that DNS data are the significant and dominant source of 

uncertainty in such simulations (hereafter, RANS-DNS simulations). Effects of the Reynolds 

number, flow geometry, and the velocity moment order as well as an uncertainty quantification 

technique used to collect the DNS data on the results of RANS-DNS simulations are analyzed. 

New criteria for uncertainty quantification in statistical data collected from DNS are proposed to 

guarantee the data accuracy sufficient for their use in RANS equations and for the turbulence 

model validation.   
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I. INTRODUCTION 

Despite their ubiquity, it is surprisingly difficult to quantitatively characterize the quality of 

direct numerical simulations (DNS) of turbulent flows. Efforts are typically directed towards 

minimizing errors in simulations by utilizing the highest resolution in time and space accessible 

on the latest computational hardware. Statistical errors in data collected from DNS are controlled 

by estimating the statistical convergence of DNS results using heuristics, such as monitoring the 

balance errors in the transport equations for second-order velocity moments.  

This traditional approach to DNS data error analysis, while providing confidence that the 

results obtained meet reasonable standards of accuracy, does not answer the most imperative 

questions, that is, how accurate is a single simulation in the given flow and how much uncertainty 

remains in statistics collected from DNS. As a result, only subjective comparison of the quality of 

different DNS databases can be made. This shortcoming is problematic going forward, as DNS of 

more complex configurations and flows are expected, where the legacy rules of thumb developed 

for pseudo-spectral methods may no longer be relevant. 

The total uncertainty in DNS data comprises errors and uncertainties from various sources, 

such as discretization error, statistical sampling error, and the discretization error in the statistical 

sampling itself1. Ideally, one would like these errors to all be of the same order of magnitude, else 

extra work is being done in some arena for no benefit. To the authors’ knowledge, analyzing the 

coupled sources of error has not been rigorously examined beyond model problems. Starting with 

the work of Orszag2, significant attention has been given to discretization and aliasing errors in 

DNS, however the analysis of errors due to the finite statistical sample sizes available in DNS is 

less mature.  
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A standard procedure for evaluating the total uncertainty in statistical data collected from DNS 

was first used in Mansour et al.3 and possibly in Rogallo4. Neither of the studies directly mentions 

the procedure, but there is a consensus about the origin of the approach. In the procedure, 

uncertainty in the collected Reynolds stresses is linked to the budget balance errors. The errors 

vary for different Reynolds stresses depending upon the spatial coordinates and the averaging time. 

Uncertainty in the data is reduced by increasing the number of flow realizations and demonstrated 

by comparing the orders of magnitude of the budget balance errors to the leading (largest) terms 

in the governing equations. The acceptable level of uncertainty in the collected Reynolds stresses 

is determined by a subjective judgment rather than by a rigorous procedure and is strongly 

influenced by the cost of computations.  

In Hoyas & Jiménez5, the above procedure for evaluating the order of magnitude of the budget 

balance errors is complemented with an estimate of the statistical errors. The statistical error 

estimate is based on the standard deviation of the variables, which are individual terms in the 

Reynolds stresses budgets. A procedure is proposed to represent each of the two estimates (budget 

balance errors and statistical errors) by a single number for the given Reynolds stress. The 

maximum of the two numbers determines the total uncertainty in the Reynolds stress calculation. 

Although a step forward, the procedure is complex to implement, with the results dependent on a 

specification of a non-unique parameter. The results computed in Hoyas & Jiménez5 for a zero-

pressure gradient boundary layer (ZPGBL) adhere to the common perception that the contribution 

of numerical errors in statistics collected from DNS is secondary in comparison with the statistical 

errors due to the limited averaging time (finite number of decorrelated flow realizations). 

Recent uncertainty analysis of DNS data by Oliver et al.6 using a Bayesian extension of 

Richardson extrapolation7 partially confirmed the results of Hoyas & Jiménez5. That is, they 
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demonstrated that large contributions from the discretization errors could not be completely ruled 

out for all collected statistics. On the other hand, the uncertainty model proposed in Oliver et al.6 

may also affect the results, as numerous assumptions and simplifications are made during its 

formulation and application. The procedure is limited to the numerical schemes and flow 

geometries used in Oliver et al.6.   

In the current work, a new approach is demonstrated to examine the uncertainty in statistical 

data collected from DNS. The approach utilizes self-consistency of the Reynolds-averaged Navier-

Stokes (RANS) equations, wherein the computed statistics from DNS themselves are used to solve 

the equations, and their solutions are compared back with the DNS data for velocity moments. 

Hereafter, such computations are called RANS-DNS simulations. The procedure is amenable to 

any flow geometry and straightforward to implement. 

The use of RANS-DNS simulations has further implications for the development and 

evaluation of RANS models. Since DNS data are the most accurate computational representation 

of the individual terms in RANS equations, it is reasonable to assume that the use of DNS data 

instead of RANS models for unknown terms will lead to the most accurate computational solutions 

of RANS equations. When RANS-DNS simulations do not produce accurate results, physics-based 

RANS models, which have the objective of replicating the details of the Reynolds stress behavior, 

cannot be expected to perform any better.   

In the current paper, DNS data collected for two planar wall-bounded flows – a fully-developed 

turbulent channel flow8,9 and a ZPGBL over a flat plate10 – are used to demonstrate the RANS-

DNS approach. In the channel flow simulations, statistics used are obtained at four Reynolds 

numbers: 180Re  , 550, and 5200 in Lee & Moser8  and 392Re   in Jeyapaul et al.9 (𝑅𝑒𝜏 is 

based on the friction velocity and the channel half-height). In the boundary layer, DNS data from 
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Sillero et al.10 are available at six locations along the flat plate in the range of Re  from 4000 to 

6500 with the increment of 500 ( Re  is based on the free stream velocity and the boundary layer 

momentum thickness ). Note that the DNS databases from Lee & Moser8  and  Sillero et al.10 use 

the statistical guidelines developed by Oliver et al.6 in the case of a channel flow, and Hoyas & 

Jiménez5 in the case of a ZPGBL, respectively, providing a comparison of these statistical 

measures against the current RANS-DNS approach. The standard balance error procedure 

described above is used in Jeyapaul et al.9.  

 

II. RANS-DNS SIMULATIONS 

In RANS-DNS simulations, the exact RANS equations are solved, with no modeling involved. 

All budget terms except for the molecular diffusion are substituted with the data collected from 

DNS for these terms. In such a formulation, all equations are uncoupled, that is, there is no 

interdependency of their solutions. The solutions are compared with the DNS data for the 

corresponding velocity moments. The discrepancy between the RANS-DNS simulation solution 

and the DNS profile of the corresponding velocity moment serves as an indicator of the solution 

inaccuracy.  

The following requirements determine the molecular diffusion as the only term left for solving 

in the RANS equations. The simulation framework should be applicable to various flows. From 

the terms containing unknown velocity moments in the RANS equations – molecular diffusion, 

turbulence production, and convection – the convective terms disappear in fully-developed 

turbulent flows, and therefore, cannot be left as the only unknown in the equations. The other 

requirement to RANS-DNS simulations is the use of already existing solvers for RANS 
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simulations. Leaving the turbulence production as unknown would transform the equations from 

differential to algebraic and require different solvers for their solution.  

There are two major contributors to inaccuracy in the RANS-DNS simulation solutions: a 

numerical procedure used to solve the RANS equations and inaccuracies in DNS data. Their 

interaction may also be a factor. As shown in the Results and Discussion section, inaccuracies in 

the DNS data dominate the RANS-DNS simulation results, so that they are insensitive to 

improvements in the numerical procedure. This makes the proposed simulations suitable for 

uncertainty quantification specifically in DNS data.   

In the paper, the RANS equations are solved in a fully-developed turbulent channel flow and 

in a ZPGBL. In the channel flow, transport equations for the mean flow velocity and velocity 

moments through the fourth order are used: 

 

,                                                  (1) 

 

,                                           (2) 

 

.                                         (3) 

 

In a ZPGBL, the equations for velocity moments of the second order (Reynolds stresses) are 

computed using:  

.                                                  (4) 
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In equations (1)-(4), tensors P,  𝑷𝑻, , , 𝑫𝑻, 𝑫𝑴, and 𝑪 are the production by strain (associated 

with the mean velocity gradients),  production by turbulence (associated with the Reynolds stress 

gradients), velocity/pressure-gradient correlations, dissipation, turbulent diffusion, molecular 

diffusion, and convection, respectively.  

Exact expressions used in simulations for each term in equations (1)-(4) are obtained from 

equation (A2) given in the Appendix. Equation (A2) represents RANS equations in planar 

incompressible turbulent flows in the general form. In the channel flow, equation (A2) (along with 

equation (A1) for the mean flow velocity) is simplified under the assumption of a statistically 

stationary fully-developed turbulent flow, while in a ZPGBL, a statistically stationary spatially 

developing flow is assumed.  

 Jeyapaul et al. 9 provide DNS statistics through the fourth-order moments in a channel flow, 

hence the full set of equations (1)-(3) are solved for these moments.   The datasets of Lee & Moser8 

and Sillero et al.10 contain statistics through the second order, hence equations (1) and (4) are used, 

respectively. The mean flow velocity is computed only in the channel flow. In a ZPGBL, solutions 

for the mean flow velocities could not be obtained. We think that this is because the DNS data 

necessary for computing these flow parameters are only available at three locations along a flat 

plate to compare with six locations where the data for the Reynolds stresses are provided. 

The cubic spline function is used when interpolation of the DNS data is required in this study. 

Other interpolation schemes and additional smoothing procedures were tested, and did not change 

the simulation results.   

 

III. NUMERICAL PROCEDURE 

A. Channel flow simulations 
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Two solvers are used in the channel flow simulations with DNS data from Jeyapaul et al.9 in 

order to verify that the computed results are independent of implementation: an in-house second-

order-accurate code for fully-developed axisymmetric flows, and the open-source OpenFOAM 

software11. Simulations were conducted to analyze the effects of discretization errors and a 

numerical scheme in the RANS-DNS simulations.  

In the in-house code, the control volume technique12 is implemented with a pseudo-time 

marching scheme with time step of 0.1s to solve parabolic equations. The grid is non-uniform in 

the direction normal to the channel wall with the total number of nodes in this direction being 100 

(a 97-node grid was used in DNS9). This grid resolution was found to be sufficient for obtaining 

grid-independent results. At the channel wall, a no-slip boundary condition is applied to all flow 

parameters for which the transport equations are solved. At the channel axis,  

 

, 

 

is specified, where , (no summation over ). DNS profiles interpolated to the grid 

nodes are used as initial conditions to accelerate the results convergence.  

 In simulations with OpenFOAM, the simpleFoam application from the OpenFOAM 2.3.0 

library11 is used to solve the Reynolds stress transport equations with a Preconditioned Bi-

Conjugate Gradient solver (PBiCG) and a Diagonal Incomplete LU (DILU) preconditioner. Table 

1 provides a list of numerical schemes used to discretize the equations. 
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Table 1. Numerical schemes as specified in the OpenFOAM fvSchemes file. 

Calculation Keyword Scheme 

Gradient gradSchemes Gauss linear 

Convection divSchemes bounded Gauss linear 

Laplacian laplacianSchemes Gauss linear corrected 

Time derivative timeScheme steadyState 

 

The pressure-gradient source term in the mean flow velocity equation is added by specifying 

the pressureGradientExplicitSource option in the momentumSource dictionary, placed in the 

fvOptions OpenFOAM file inside the system directory of a case under consideration. The applied 

pressure gradient is chosen to match the DNS results.  

The computational domain dimensions are 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 0.1 × 2 × 0.1 , in the unit length h, 

which is the channel half-width. Although the flow is fully-developed, three-dimensional grids are 

required by OpenFOAM. The grid size is 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 2 × 193 × 2 nodes. The number of 

grid nodes and the distribution in the wall-normal direction over the channel half-width are 

identical to that of the DNS data points in this direction. Initial values at the cell centers are 

interpolated from the DNS profiles available at the nodes9.  

Periodic (cyclic) boundary conditions are applied at the faces normal to the streamwise 

direction. Faces normal to the spanwise direction are defined as empty, which is a special type of 

boundary conditions used in OpenFOAM for two-dimensional problems. The remaining faces are 

defined as the type wall, where no-slip boundary conditions are applied to all flow parameters for 

which the equations are solved. 

RANS-DNS simulations conducted with the two solvers using DNS data from Jeyapaul et al.9 

produced similar results demonstrating a secondary effect of a numerical procedure on the results 

of RANS-DNS simulations. Therefore, the channel flow simulations with DNS data from Lee & 
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Moser8 and the ZPGBL simulations with the data from Sillero et al.10 were conducted with 

OpenFOAM only.  

For RANS-DNS simulations with the data from Lee & Moser8, different grids were generated 

to match the distribution of grid nodes in DNS: 

 

Table 2. The grid resolution used in RANS-DNS simulations with the data from Lee & Moser8. 

𝑹𝒆𝝉 𝑵𝒙 × 𝑵𝒚 × 𝑵𝒛 

180 2 × 191 × 2 

550 2 × 383 × 2 

5200 2 × 1535 × 2 

 

 

Notice that DNS data8 are not available at the channel axis (𝑦/ℎ = 1). Therefore, data from the 

DNS grid point closest to the channel half-width are used to calculate values of the parameters at 

the center of the cell adjacent to the channel half-width. The bulk mean flow velocity in these 

simulations corresponds to the DNS value of 1 m/s. Other details of the numerical procedure are 

the same as described above for the RANS-DNS simulations with the data from Jeyapaul et al.9. 

 

B. ZPGBL simulations 

Dimensions of the computational domain used in the ZPGBL simulations are: 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 =

494.24 × 39.55 × 1 in the unit length. The 𝐿𝑥 size is chosen to match the range of Reynolds 

numbers for which the DNS data10 are available: 4000 ≤ 𝑅𝑒𝜃 ≤  6500. The length 𝐿𝑦 

corresponds to the maximum location away from the wall at which the DNS data are available.  

 The DNS data10 are available at six locations corresponding to 𝑅𝑒𝜃 = 4000, 4500, 5000, 5500, 

6000, and 6500. The DNS data are interpolated on the grid with the uniform node distribution in 

the streamwise direction. It was found that 100 cells are enough to correctly capture the gradients 
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in this direction in simulations. The number of nodes in the normal-to-the-wall direction 

corresponds to that from DNS. The node locations are determined as the average of the 𝑦 positions 

obtained from the different DNS profiles, which slightly vary at different Reynolds numbers. The 

final grid size is 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 101 × 535 × 2.  

The boundary conditions assigned at the top of the computational domain are interpolated from 

the DNS data. The no-slip boundary condition is assigned at the wall for the Reynolds stresses. 

The data at 𝑅𝑒𝜃 = 4000 and 6500 are used as the inlet and exit boundary conditions. Other details 

of the numerical procedure relevant to the ZPGBL simulations are the same as described above 

for the channel flow simulations. 

 

IV. RESULTS AND DISCUSSION 

A. Channel flow simulations with DNS data from Jeyapaul et al.9 

In Jeyapaul et al.9, DNS data are provided for velocity moments through the fourth order and 

their budget terms at 𝑅𝑒𝜏 = 392, which makes this database unique and of interest for the current 

study.  

The results of RANS-DNS simulations conducted using OpenFOAM with the DNS budget 

terms from Jeyapaul et al.9 are shown in Figs. 1-3 in comparison with the DNS profiles for the 

mean flow velocity and velocity moments from the same database. The DNS profiles in Figs. 1-3 

and the following ones are marked by symbols; lines correspond to the results from RANS-DNS 

simulations. In particular, the calculated mean flow velocities are shown by the dashed lines; the 

solutions of equations (1)-(3) are shown by the dashed lines with and without dots. 

A strong disagreement between the calculated velocity moments and their corresponding DNS 

profiles is observed for all considered velocity moments in the figures. The mean flow velocity 
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calculated from RANS-DNS simulations also deviates from its DNS profile, although to a lesser 

degree than the velocity moments. 

 

B. Channel flow simulations with DNS data from Lee & Moser8 

 DNS statistics from Jeyapaul et al.9 were collected using the standard approach3 to evaluating 

the DNS data accuracy. In Lee & Moser8, the procedure proposed by Oliver et al.6 was used for 

the same purposes as a more rigorous alternative to the standard approach3. Further, a finer grid 

was used in Lee & Moser8 reducing the discretization error in DNS: 192 vs. 97 nodes for a half 

channel width, with the grid spacing at the wall in the y-direction being ∆𝑦+ = 0.019 vs. 0.1, 

where 𝑦+ = 𝑦𝑢𝜏/ . The balance errors reported in Lee & Moser8 are at least the order of 

magnitude less than those in Jeyapaul et al.9. Only the mean flow velocity and Reynolds stresses 

budgets are available in Lee & Moser8. However, the data accuracy and availability at several 

Reynolds numbers allow for the examination of trends in the current study.   

 Here, the results of RANS-DNS simulations conducted with the DNS budget terms from Lee 

& Moser8 at three Reynolds numbers: 𝑅𝑒𝜏 = 180, 550, and 5200, are presented. Equation (1) is 

used to calculate the Reynolds stresses.  

The results of RANS-DNS simulations are shown in Figs. 4-7 by lines. As seen from the 

figures, the trends are similar to those obtained with the data from Jeyapaul et al.9. That is, the 

Reynolds stresses calculated from equation (1) (non-solid lines in Figs. 4-6) deviate from their 

DNS profiles even at the lowest Reynolds number, 𝑅𝑒𝜏 = 180.  

Solutions of equation (1) obtained from RANS-DNS simulations are sensitive to the Reynolds 

number: the higher Reynolds number, the farther solutions deviate from the DNS profiles of the 

Reynolds stresses.  
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Inaccuracies in the DNS budgets impact to a lesser degree the mean flow velocity calculated 

from RANS-DNS simulations (Fig. 7). At 𝑅𝑒𝜏 = 180, the result from RANS-DNS simulations is 

in agreement with the mean flow velocity profile from DNS. At higher Reynolds number, 𝑅𝑒𝜏 =

550, a small discrepancy between the calculated and DNS profiles becomes apparent. At the 

highest Reynolds number, 𝑅𝑒𝜏 = 5200, a difference between the mean flow velocity profiles from 

RANS-DNS simulations and DNS is pronounced.  

 

C. Boundary layer simulations with DNS data from Sillero et al.10 

DNS data in Lee & Moser8 and Jeyapaul et al.9 were obtained in the same flow geometry, a 

planar fully-developed turbulent channel flow. To verify whether the observations made from the 

results of RANS-DNS simulations are general, rather than being specific for the channel flow, 

RANS-DNS simulations were also conducted in another wall-bounded flow, a ZPGBL, with DNS 

data from Sillero et al.10 being used in the simulations. The DNS data10 were collected using the 

procedure proposed in Hoyas & Jiménez5 for evaluating the data accuracy.  

The Reynolds stresses budgets from Sillero et al.10 are available at six locations along the flat 

plate in the range of 𝑅𝑒 from 4000 to 6500 with the increment of 500. Less data are available for 

the mean flow velocity budgets and in the locations different from those where the Reynolds 

stresses budgets are provided10. As a result, solutions for the mean flow velocities could not be 

obtained from the RANS-DNS simulations in this flow. Therefore, only results for the Reynolds 

stresses are discussed in what follows. Solutions for the Reynolds stresses were obtained from 

equation (4) using OpenFOAM. 

In the conducted RANS-DNS simulations, DNS data at 𝑅𝑒 = 4000 and 6500 were used as the 

boundary conditions. Therefore, comparison of the results of RANS-DNS simulations with the 
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Reynolds stresses from DNS was made at four locations along the flat plate corresponding to 

𝑅𝑒𝜃 = 4500, 5000, 5500, 6000. Because comparison led to similar conclusions at the four 

locations, the results are presented at only two locations, 𝑅𝑒𝜃 = 4500 and 6000 (Figs. 8 and 9), for 

brevity. In the figures, DNS profiles are shown by symbols; non-solid lines are the RANS-DNS 

simulation solutions of equation (4) (Figs. 8a, 8b, 9a, and 9b). The figures demonstrate the same 

behavior observed in the channel flow, that is, the results from RANS-DNS simulations deviate 

from the corresponding DNS profiles of the Reynolds stresses. The dependence of this 

phenomenon on the Reynolds number is also observed.   

 

D. Uncertainty analysis in RANS-DNS simulations  

Possible causes of the discrepancy between the results from RANS-DNS simulations and the 

DNS data are uncertainties associated with the numerical procedure used in RANS simulations 

and inaccuracies present in the DNS data. Their interaction may also be a factor. A thorough 

investigation has been conducted to evaluate the contribution of the RANS numerical procedure 

in the results shown in Figs. 1-9, which included conducting simulations in a channel flow with 

two different solvers using different grid refinements and different interpolation schemes.   

Profiles of the Reynolds stresses obtained from RANS-DNS simulations with the two different 

solvers described in Section III are shown in Fig. 10a. DNS data from Jeyapaul et al.9 were used 

in these simulations. In the figure, solid lines are solutions from simulations with OpenFOAM and 

dashed lines are from simulations with the in-house code.  The results from the two separate solvers 

are virtually indistinguishable. 

The Reynolds stresses obtained from RANS-DNS simulations with different interpolations 

schemes are compared in Fig. 10b. The simulations were conducted with the DNS data from Lee 
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& Moser8 using OpenFOAM. Three interpolation schemes were used in the simulations: cubic 

splines, quadratic splines, and Radial Basic Functions13 (RBF). In the figure, results obtained with 

the different schemes are shown by solid (cubic splines), dashed (quadratic splines), and dash-

dotted lines (RBF) at Re 550  .  As with the variation of numerical method, there is essentially 

no sensitivity in the computed results to the type of accuracy of the interpolation scheme chosen. 

Figure 10 indicates that the results of RANS-DNS simulations are hardly affected by variations 

in the RANS numerical procedure. This leaves inaccuracies in the DNS data as the only potential 

cause of uncertainty in the RANS-DNS simulation results. 

To examine this issue, a numerical test is conducted whereby the RANS-DNS simulations are 

performed with the DNS data of Lee & Moser8 interpolated on the coarser grid used by Jeyapaul 

et al.9 Recall from the previous discussion that the RANS-DNS simulations with the DNS data 

from Jeyapaul et al.9 do not maintain consistency, whereas Lee & Moser’s finer resolution data do 

produce the mean-flow profiles consistent with the DNS profiles at smaller Reynolds numbers. 

Figure 11a demonstrates that Lee & Moser’s data also maintains consistency on the grid from 

Jeyapaul et al.9 with coarser resolution.  In fact, this is demonstrated more strongly by coarsening 

the grid even further by removing every second grid point in the grid from Jeyapaul et al.9. The 

RANS-DNS simulation results with Lee & Moser’s data at 550Re  are still consistent with the 

DNS profile of the mean flow velocity. Variations in the grid resolution have similar effect of the 

Reynolds stresses calculated from the RANS-DNS simulations as shown in Fig. 11b at 550Re 

.  Overall, the results obtained indicate that Lee & Moser’s data is inherently different than the 

data of Jeyapaul et al., either due to resolution, post-processing methodology, or other reasons.  



16 

 

Figures 10 and 11 show that the results of RANS-DNS simulations are hardly affected by 

variations in the RANS numerical procedure. This leaves inaccuracies in the DNS data as the only 

potential cause of uncertainty in the RANS-DNS simulation results. 

To confirm this conclusion, RANS-DNS simulations were conducted with the RANS 

equations modified in the following manner:  

 

,                                               (5) 

 

,                                        (6) 

 

,                                     (7) 

 

where the added source terms  describe errors in the DNS budgets.  

In most of the equations, the Err term is the balance errors from the DNS budget for the 

corresponding velocity moment. However, budgets for some velocity moments include non-zero 

values for the terms that should theoretically be zero in planar flows, such as, for example, the 

production term zzP  in the balance of  < 𝑤2 >. (Hereafter, such terms are called “zero-value” 

terms.) Non-zero values of such terms result from insufficient sample size in the DNS. Their effect 

on the results of RANS-DNS simulations was initially studied in Poroseva et al.14 using DNS data 

of Jeyapaul et al.9 for the Reynolds stresses and found to be non-negligible. In the current study, a 

non-negligible effect of “zero-value” terms on the results of RANS-DNS simulations was also 

confirmed for higher-order velocity moments. When a “zero-value” term appears in the DNS 
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budget of a velocity moment, the Err-term in the corresponding equation of (5)-(7) is a sum of the 

budget balance errors and “zero-value” terms.   

Balance errors are not available for the mean flow velocity budgets. Therefore, simulations 

similar to those with equations (5)-(7) for the velocity moments were not conducted for this flow 

parameter in the current study.  

 The solutions of equations (5)-(7) in a channel flow are shown in Figs. 1-6 by solid lines. The 

calculated velocity moments of all considered orders and at all considered Reynolds numbers are 

now in excellent agreement with their DNS profiles. That is indeed, the DNS data are the dominant 

uncertainty source in RANS-DNS simulations. The results also suggest that the observed effect of 

the Reynolds number on the solutions of equation (1) is due to inaccuracies in the DNS budgets.   

In a ZPGBL, the computed results (solid lines in Figs. 8c, 8d, 9c and 9d) also become consistent 

with the DNS data if one modifies equation (4) in a manner similar to the modifications applied to 

equations (1)-(3): 

M T

ij ij ij ij ij ij ijC D D P Err      .                                               (8) 

 

To summarize the results shown in Figs. 1-11, they suggest that the errors in DNS budgets are 

significant and the primary source of uncertainty in the results of RANS-DNS simulations in both 

considered flow geometries. Only at the lowest Reynolds number in the channel flow (𝑅𝑒𝜏 = 180) 

these errors can be considered negligible in simulations of the mean flow velocity and the smallest 

Reynolds stresses, < 𝑣2 > and < 𝑢𝑣 >. Since statistics in the considered DNS datasets8-10 were 

collected to ensure that the balance errors are small, the RANS-DNS simulation results imply that 

the criteria used in those studies do not guarantee that the errors are small enough.   

 



18 

 

E. The analysis of DNS balance errors  

As demonstrated in Section D, the DNS data are the dominant uncertainty source in RANS-

DNS simulations and uncertainties associated with the RANS numerical procedure have negligible 

effect on the simulation results. This makes RANS-DNS simulations a plausible framework for 

the analysis of uncertainty in statistics collected from DNS. Below, we investigate the velocity 

moment budgets8-10 with the purpose of better understanding the requirements for the balance 

errors to be considered small enough for their use of DNS data in RANS-DNS simulations.         

  Let us first compare the balance errors in different datasets8,9 in the fully-developed channel 

flow at the close Reynolds numbers:  𝑅𝑒𝜏 = 392 and 550. These two datasets were collected using 

different procedures3,6 for uncertainty quantification in DNS statistics. The errors in both datasets 

appear small, less than 0.1% of the Reynolds stress values, as shown in Fig. 12 for the smallest of 

Reynolds stress components, < 𝑣2>. However, as demonstrated in Figs. 1 and 5, this error level is 

not small enough when the data are used in RANS-DNS simulations.  

Comparison of the balance errors with the velocity moment values is still informative when 

comparing the accuracy of different datasets. Figures 1 and 5 show that the RANS-DNS simulation 

results obtained with the DNS data from Lee & Moser8 are more accurate than those obtained with 

the data from Jeyapaul et al.9 at a lower Reynolds number. This is in agreement with the results in 

Fig. 12a for < 𝑣2 > showing that the normalized balance errors from Lee & Moser8 are at least 

the order of magnitude less than those reported in Jeyapaul et al.9 Similar observations were made 

for all Reynolds stresses.  

Although available data allows for comparison of the accuracy of the two DNS datasets8,9, they 

do not provide enough information for evaluating a contribution of the uncertainty quantification 

procedure into the data accuracy. In addition to differences in the procedures used, different grids 
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were utilized in the two studies, among other factors. That is, the grid with 192 nodes in a half 

channel width was used in Lee & Moser8 to compare with 97 nodes used in Jeyapaul et al.9. The 

grid spacing at the wall in the normal-to-the-wall direction was ∆𝑦+ = 0.019  and 0.1 in Lee & 

Moser8 and Jeyapaul et al.9, respectively, where 𝑦+ = 𝑦𝑢𝜏/ .  

Comparison of the balance errors to the velocity moment values may also be misleading. For 

example, the RANS-DNS simulation results in the channel flow (Figs. 4-7) obtained with the DNS 

data from the same dataset8 at different Reynolds numbers unambiguously demonstrate 

degradation of the data accuracy with increasing the Reynolds number. This tendency is also 

apparent in a ZPGBL (Figs. 8-9). However, no such loss in the DNS data accuracy is detected 

when one monitors the balance errors normalized by the Reynolds stress values. Moreover, the 

errors in the channel flow seem to reduce with the increase in the Reynolds number. This is 

illustrated in Figs. 13 and 14 for the smallest Reynolds stress < 𝑣2 >, but such results were 

obtained for all Reynolds stresses.  

Similarly, if one compares the balance errors with the leading terms in a velocity moment 

budget, no growth of errors with increasing the Reynolds number is observed. With such 

normalization, the balance errors instead tend to collapse to the same level at different Reynolds 

numbers.   Figs. 15 and 16 present the balance errors in the budgets of the largest and smallest 

Reynolds stresses – < 𝑢2 > and < 𝑣2 > – in the channel flow and in a ZPGBL, respectively. In 

the < 𝑣2 >-budgets, the leading terms are velocity/pressure-gradient correlations and viscous 

dissipation, and in the < 𝑢2 >-budgets, the production and viscous dissipation lead. Although the 

results in the figures are shown for the balance errors in comparison with 
yy and xxP , similar 

observations are made when compared against the dissipation terms. Also, similar results are 

obtained for the two other Reynolds stresses not shown here.   
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It is interesting to note that the error level in such normalization is the same for different 

Reynolds stresses, that is, less than 1%  in Lee & Moser8 in the most of the channel flow except 

for the area close to the channel axis, and somewhat higher, less than 10% in Sillero et al.10  The 

same level of balance errors as in Sillero et al.10 is obtained with the data from Jeyapaul et al.9 

(Fig. 12b).  

When comparing the accuracy of data in different DNS datasets for the same flow geometry, 

the conclusion does not change whether the balance errors are normalized by the leading terms in 

the Reynolds stresses budgets or by the Reynolds stress values. That is, the data in Lee & Moser8 

are about one order of magnitude more accurate than the data in Jeyapaul et al.9 as shown in Fig. 

12 for < 𝑣2 > as an example.  

These results suggest that neither comparison of the DNS balance errors with the velocity 

moment values nor with the leading terms in their budgets are capable to detect a loss in the DNS 

data accuracy observed in the RANS-DNS simulations. Furthermore, such comparisons can be 

misleading.  

When the balance errors are compared to the molecular diffusion terms, the smallest balance 

terms over a large portion of considered flows, one can observe that the balance errors are 

extremely large. In Figs. 17a and 17b, such a comparison is shown for < 𝑣2 > and  < 𝑢2 >, 

respectively, in the channel flow8. More importantly, the balance errors in such normalization are 

sensitive to the Reynolds number, increasing with the Reynolds number. This trend is observed 

for the balance errors in the budgets of all Reynolds stresses, with some dependence on the 

Reynolds stress at a fixed Reynolds number.  
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  The results shown in Figs. 17a and 17b provide a minimum estimate for the target level of 

the balance errors when compared with the results of RANS-DNS simulations in Figs. 4-6. That 

is, the balance errors have to be at least one order of magnitude less than molecular diffusion.   

For completeness, the use of turbulent diffusion for the balance error normalization was also 

examined, and found to be ineffective in accounting for the trends observed in the RANS-DNS 

simulations. That is, the errors normalized in such a manner are not noticeably affected by 

variations in the Reynolds number as shown in Figs. 17c and 17d for the < 𝑣2 > - and < 𝑢2 > -

budgets in the channel flow.  

In the ZPGBL simulations, the balance error values are two orders of magnitude higher than 

the molecular diffusion terms (Fig. 18). The variation of Reynolds number is too small in this flow 

to reveal the dependence of the balance errors on the Reynolds number when normalized by 

molecular diffusion. Results for the balance errors normalized by the turbulent diffusion are similar 

to those discussed above for the channel flow and when the errors are normalized by the convective 

terms. It is worth mentioning that the balance errors in comparison with the turbulent diffusion 

terms are one order of magnitude higher in a ZPGBL than in the channel flow8. 

It is of interest to see how the DNS data accuracy changes with increasing the order of velocity 

moments. The comparison of the balance errors normalized by molecular diffusion from Jeyapaul 

et al.9 (Fig. 19) shows that for all considered moments, the errors are of the same level.  

Notice also that normalization by molecular diffusion leads to the same conclusion about the 

accuracy of different datasets that was previously obtained with normalization by the Reynolds 

stress values and the leading terms in the Reynolds stress budget. That is, the balance errors from 

Lee & Moser8 are at least one order of magnitude less than those reported in Jeyapaul et al.9 
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Overall, the results presented in Figs. 12-19 demonstrate that the balance errors are not 

negligible when compared with the other terms in DNS budgets of velocity moments. This explains 

why physical solutions cannot be obtained from RANS-DNS simulations unless the errors are 

included in the RANS equations.  

The results also lead to the definition of the balance errors small enough, that is, they have to 

be at least one-two orders of magnitude smaller than the molecular diffusion term in a velocity 

moment budget. The cost of DNS to obtain such data has yet to be determined. The need for such 

data is apparent: if one cannot obtain accurate solutions of the RANS equations with DNS data as 

demonstrated in Figs. 1-9, there are no reliable reference data to validate models for the unknown 

terms in such equations.  

 

E. Uncertainty quantification metrics 

Comparison of the balance terms against molecular diffusion provides a valuable insight into 

the accuracy of DNS budgets, but in a form of estimates. The stochastic nature of the errors and 

their dependence on spatial coordinates make it difficult to use them for a quantitative analysis.  

Results of RANS-DNS simulations on the other hand are smooth and sensitive to variations in 

the DNS data inaccuracy. They demonstrate the accuracy of DNS data in an unambiguous manner. 

Such simulations can be conducted with any reliable solver of the RANS equations in any flow of 

interest making the procedure easily repeatable and accessible to a broad community.  

A difference between the RANS-DNS simulation results and the DNS data for velocity 

moments is a natural basis for the metrics of uncertainty quantification in the DNS budgets for 

velocity moments. Multiple uncertainty quantification metrics can be formulated on this basis. One 

of the simplest possible metrics is based on the 𝐿∞-norms: 



23 

 

 

max

( ) ( )

( )

g y f y

g y





  ,                                                       (9) 

 

where ( )g y  represents DNS data for a velocity moment, and ( )f y  is the solution obtained from 

RANS-DNS simulations for this moment.    

 

Table 3. Values of max describing the accuracy of DNS budgets from Lee & Moser8 (in %). 

max  2u   2v   uv   2w   

𝑹𝒆𝝉 =180 6 5 5 13 

𝑹𝒆𝝉 =550 10 17 21 20 

𝑹𝒆𝝉 =5200 287 548 173 308 

 

 

Table 4. Values of max describing the accuracy of DNS budgets from Jeyapaul9 et al. (in %). 

 2u   2v   uv   2w   

max  164 663 629 507 

 3u   3v   2uv   2u v   

max  625 1290 1170 243 

 4u   4v   3uv   3u v   

max  125 1970 474 354 

 
 

Table 5. Values of max describing the accuracy of DNS budgets from Sillero et al.10 (in %). 

max  2u   2v   uv   2w   

𝑹𝒆𝜽 =4500 2793 3635 2177 1998 

𝑹𝒆𝜽 =6000 4464 4532 2723 3793 

 

 

Tables 3-5 show the values of max  corresponding to the results discussed previously. These 

results confirm the general observations made from the analysis of the balance errors. That is, all 
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results from RANS-DNS simulations, which were received without taking into account the balance 

errors, are unphysical with the exception of those in the channel flow at 𝑅𝑒𝜏 = 180 and 550 

obtained with the DNS data from Lee & Moser8. In these two flows, max < 100%. The errors grow 

with the Reynolds number in the channel flow8 and in a ZPGBL10. The errors in the DNS budgets 

from Lee & Moser8 are the smallest from the three considered datasets. At the closest Reynolds 

numbers in the channel flow, the errors from Lee & Moser8 are at least one order of magnitude 

smaller than those from Jeyapaul et al.9. No particular growth in the errors is observed with 

increasing the order of velocity moments. Exceptions are the moments with the increasing power 

of the velocity fluctuation 𝑣 in the direction normal to the wall (Table 5) such as, for example,  

2v  , 3v  , and 4v  .  

The later observation was not apparent from the analysis of balance errors presented above. 

Also, the analysis of balance errors did not reveal that the errors in the DNS budgets of 2v   

tend to be much higher than the errors in the budgets of other Reynolds stresses at higher Reynolds 

numbers (Tables 3 and 5). The recommended threshold for max when collected statistics from 

DNS is 5%. Overall, the proposed metric is a simple, accurate, and reliable criterion to be used for 

evaluating the accuracy of DNS budgets.   

Other metrics integrated over y can also be used, but whether they will be a better fit for the 

task is a subject for future studies as additional DNS data are required for a conclusive analysis.  

 

V. CONCLUSIONS 

The results of RANS-DNS simulations presented in the paper demonstrate that inaccuracies in 

the DNS budgets used in the simulations are the dominant source of uncertainty in the simulation 

results, whereas uncertainties introduced by a numerical procedure employed for simulations have 
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no recognizable effect. This makes the RANS-DNS simulations a plausible framework for 

quantifying the total uncertainty in statistical data collected from DNS.    

The RANS-DNS simulations conducted with the data from three DNS datasets8-10 in the 

channel flow and in a ZPGBL revealed that with the exception of data8 at the lowest Reynolds 

number in the channel flow, 𝑅𝑒𝜏 = 180, the balance errors in the DNS budgets are too high, 

leading to unphysical simulation results. This is in spite of the use of standard and advanced 

uncertainty quantification procedures3,5,6 when collecting the data. 

The conducted analysis of the balance errors in DNS budgets revealed that for the balance 

errors to be small enough, they have to be at least the order of magnitude smaller than the molecular 

diffusion terms. The analysis also demonstrated that comparison with the leading terms in DNS 

budgets as well as directly with the velocity moments may be misleading in evaluation of the data 

accuracy.    

The analysis of the balance errors although informative, gives only qualitative estimates. A 

metric based on comparison of the results of RANS-DNS simulations with the DNS data for the 

corresponding velocity moments is proposed for a quantitative analysis of the DNS budget 

accuracy. Rigor of the proposed uncertainty quantification procedure, availability of reliable 

RANS solvers, and low computational cost of such simulations makes the proposed approach for 

evaluating the DNS data accuracy accessible and attractive to a broad community. 
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APPENDIX 

Here, the exact RANS equations in planar incompressible turbulent flows are provided. The 

equations for the mean flow velocity components are: 

  

 

 

 

                    (A1) 

 

 

 

 

where x and y are coordinates in the streamwise and normal-to-the-wall directions, respectively; 

U and V are the mean velocity components in the x and y-directions; u and v are the turbulent 

velocity fluctuations in the same directions; 𝑃̅ is the mean pressure;  is the density, and  is the 

kinematic viscosity.  

The transport equation for velocity moment  of an arbitrary order is the following: 
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(A2) 

 

Additional notations are: w is the turbulent velocity fluctuation in the spanwise direction, z, and p 

is the pressure fluctuation; integers n, m, and k run from 0 to infinity, with 𝑛 + 𝑚 + 𝑘 ≥ 2. Terms 

like  < ⋯ 𝑢𝑖
𝑠−𝑡 ⋯ > do not contribute in the transport equations for velocity moments with  𝑠 < 𝑡.  

 In (A2), terms representing the viscous diffusion and the turbulent diffusion are  
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, 

 

respectively. Other terms are the viscous dissipation   (viscous terms not relevant to the viscous 

diffusion), production-by-strain, P, with the mean velocity gradients and the production-by-

turbulence, 𝑷𝑻, with the Reynolds stress gradients. The production-by-turbulence terms appear in 

the transport equations for velocity moments of the third and higher orders. Terms with the 

pressure fluctuation gradients are the velocity/pressure-gradient correlations, , representing the 

interaction of turbulent velocity and pressure fluctuation fields.  

 

 

  

1 1n m k n m ku v w u v w

x y

      
  

 

T
D



31 

 

 

FIGURES 

 
 

                     

   a)                                                                                       b) 

 

c) 

FIG. 1.  The Reynolds stresses and the mean flow velocity in a fully-developed turbulent channel flow at : 

 ,   ,  ,   ,  U  DNS9;    ,      RANS-DNS simulations with equation 

(1) and the transport equation for the mean flow velocity;           RANS-DNS simulations with equation (5).    

 

  

Re 392 

2u  2v  2w  uv 
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a)                                                                                              b) 

FIG. 2.  The third-order velocity moments in a fully-developed turbulent channel flow at :  ,  

,  ,    DNS9;    ,       RANS-DNS simulations with equation (2);           RANS-

DNS simulations with equation (6). 

  

Re 392 
3u 

2u v  3v  2uv 
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a)                                                                                        b) 

FIG. 3.  The fourth-order velocity moments in a fully-developed turbulent channel flow at :  ,  

,  ,  ,    DNS9;   ,     , and        RANS-DNS simulations with 

equation (3);            RANS-DNS simulations with equation (7). 

 

Re 392 
4u 

3u v  2 2u v  4v  3uv 
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a)                                                                                       b) 

FIG. 4.  The Reynolds stresses in a fully-developed turbulent channel flow at Re 180  :   ,   , 

 ,    DNS8;   ,      RANS-DNS simulations with equation (1);            RANS-DNS 

 simulations with equation (5).    

 

    

  

2u  2v 
2w  uv 
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   a)                                                                                       b) 

FIG. 5.  The Reynolds stresses in a fully-developed turbulent channel flow at Re 550  :   ,   , 

 ,    DNS8;   ,      RANS-DNS simulations with equation (1);            RANS-DNS  

simulations with equation (5).    

  

2u  2v 
2w  uv 



36 

 

                    

a)                                                                                       b) 

FIG. 6.  The Reynolds stresses in a fully-developed turbulent channel flow at :   ,   , 

 ,    DNS8;   ,      RANS-DNS simulations with equation (1);            RANS-DNS  

simulations with equation (5).    

  

Re 5200 
2u  2v 

2w  uv 
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FIG. 7.  The mean flow velocity in a fully-developed turbulent channel flow:    RANS-DNS simulations; 

,  ,    DNS8.  

  

Re 180  Re 550  Re 5200 
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                                                 a)                                                                                            b)                                                                          

 

            
                                                c)                                                                                              d) 

 

FIG. 8.  The Reynolds stresses in a ZPGBL at :  ,   ;  ,    DNS10; 

  ,      RANS-DNS simulations with equation (4);            RANS-DNS simulations with equation (8).    

  

Re 4500 
2u  2v  2w  uv 
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                                                             a)                                                                              b) 

 

            
                                                           c)                                                                               d) 

 

FIG. 9.  The Reynolds stresses in a ZPGBL at :  ,   ,  ,    DNS10; 

   ,      RANS-DNS simulations with equation (4);           RANS-DNS simulations with equation (8).    

 

  

Re 6000 
2u  2v  2w  uv 
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                                              a)                                                                                    b) 

 

FIG. 10.  The Reynolds stresses in a fully-developed turbulent channel flow obtained from RANS-DNS simulations 

using a) different solvers, b) different interpolation schemes. Notations: a)
 
  ,   ,   

DNS9;     the in-house code;            OpenFOAM; b)  ,   ,   DNS8 at Re 550  ,  

            cubic splines,     quadratic splines,      radial basis functions. 

  

2u  2v  2w 
2u  2v  2w 
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                                              a)                                                                                     b) 

 

 

FIG. 11. The grid resolution effect in RANS-DNS simulations in a fully-developed turbulent channel flow with DNS 

data8: a) mean flow velocities at three Reynolds numbers, b) Reynolds stresses. DNS profiles: a)   ,  

,   ; b)  ,   ,   at Re 550  . RANS-DNS simulations: 

 native grids from DNS8 (Table 2): 191yN   ( Re 180  ), 383yN   ( Re 550  ), and 1535yN   ( Re 5200  );  

    grid from DNS9 : 193yN   (for all Re );      grid with 97yN   ( Re 550  ). 

Re 180 

Re 550  Re 5200 
2u  2v 

2w 
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                                               a)                                                                                      b) 

 

FIG. 12. Normalized absolute values of the DNS balance errors for in the channel flow: a)

2*yy yyErr Err v   , b) yy yy yyErr Err

  . Notations:            Jeyapaul et al.9 ( Re 392  ),    Lee & Moser8 

( ). 

 

  

2v 

Re 550 
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FIG. 13. Normalized absolute values of the DNS8 balance errors 2*yy yyErr Err v   in the channel flow. 

Notations:    ,            ,    . 

  

Re 180  Re 550  Re 5200 
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Fig. 14. Normalized absolute values of the DNS10 balance errors 2*yy yyErr Err v   in a ZPGBL. Notations:  

    ,    ,    ,           . Re 4500  Re 5000  Re 5500  Re 6000 
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                                                a)                                                                                        b) 

 

FIG. 15. Ratio of the balance errors to the leading terms, Err
 , in the DNS8 budgets of the Reynolds stresses in the 

channel flow: a) yy yy yyErr Err

  , b) xx xx xxErr Err P  . Notations:     ,            ,   

. 

  

Re 180  Re 550 

Re 5200 
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                                                  a)                                                                                        b) 

 

FIG. 16. Ratio of the balance errors to the leading terms, Err
 , in the DNS10 budgets of the Reynolds stresses in a 

ZPGBL: a) yy yy yyErr Err

  , b) xx xx xxErr Err P  . Notations:     ,    ,    

,           . 

  

Re 4500  Re 5000 

Re 5500  Re 6000 
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                                                  a)                                                                                         b) 

                                               
                                                c)                                                                                        d)                                                                                    

 

FIG. 17. Ratios of the balance errors to molecular and turbulent diffusion terms, MErr Err D  
  and 

TErr Err D  
  , in the DNS8 budgets of the Reynolds stresses in the channel flow: a) yyErr


, b) xxErr  , c) 

yyErr


, d) xxErr  . Notations:     ,            ,    . 

 

 

  

Re 180  Re 550  Re 5200 
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                                                   a)                                                                                       b) 

 

FIG. 18. Ratio of the balance errors to the molecular diffusion terms, MErr Err D  
  , in the DNS10 budgets of 

the Reynolds stresses in a ZPGBL: a) yyErr


, b) xxErr  . Notations:     ,    ,    

,           . 

 

                 

  

Re 4500  Re 5000 

Re 5500  Re 6000 
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                                              a)                                                                                b) 

                
                                               c)                                                                              d) 

 

Fig. 19. Ratio of the balance errors to the molecular diffusion terms / M
Err Err D  in the DNS9 budgets of velocity 

moments of different orders in the channel flow at : a) yyErr


, yyyErr


, yyyyErr


, b) xxErr  , xxxErr  , 

xxxxErr   , c), xyErr


, xyyErr


, xyyyErr


and d) xyErr


, xxyErr


, xxxyErr


, and xxyyErr


. Notations:         

           errors in the Reynolds stresses budgets ,    errors in the 3rd-order velocity moment budgets,     errors in 

the 4th-order velocity moment budgets except for xxyyErr


,      errors in the 4th-order velocity moment budget for 

xxyyErr


.  

 

 

  

 

 

 

 

 

Re 392 


