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This course
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* Format: self-study. Not a class. Not a seminar.

* Participants read materials about the topics they have chosen, and then use what they learned to introduce the topic and

lead a discussion about it.

* Goals: learn about the fundamentals and get a taste of new developments in a fast-moving field. Accumulate material for

future reference.

e Startat ~ 4 pm MDT — we go until 5.15
pm MDT including discussion

e Schedule and materials available online
at http://www.unm.edu/~ppoggi/

* Presentations will be recorded each
week

* UNM people can access recordings
via Stream using their NetID

* People outside of UNM can access
a shared folder with the
recordings via this link (password
required)

Session | Date Topic Presenter
1 June 2nd Integrability and chaos in classical systems Pablo Poggi
2 June oth Introduction to quantum chaos Pablo Poggi
3 June 16t Random Matrix Theory Changhao Yi
4 June 23™ Quantum integrability Manuel Mufioz
5 June 30th Thermalization in closed quantum systems Sam Slezak / Mason Rhodes
6 July 7th Scrambling and OTOCs | Sivaprasad Omanakuttan
7 July 14th Scrambling and OTOCs Il Tyler Thurtell / Conor Smith
8 July 215 Random unitary evolution Andrew Zhao
9 July 28th TBD Many body localization and quantum scars Anupam Mitra / Karthik Chinni

10

July 28t TBD

Dual unitary circuits

Jun Takahashi + others



http://www.unm.edu/~ppoggi/
https://web.microsoftstream.com/studio/channels
https://unmm-my.sharepoint.com/:f:/g/personal/ppoggi_unm_edu/Ei1K4sGPJQdDtEV_yLH_MbsBBpdWg-6_484c_DmyWWWyUA?e=x1ZU5m

Quantum chaos: why?

Extreme sensitivity of @
trajectories to changes in

initial conditions

Chaos in classical dynamical systems - deterministic randomness and butterfly effect

Quantum —— No trajectories, observables evolve quasi-periodically in time. No
systems \ obvious characterization of chaos 1980's: G. Casati, M. Berry, O.
Correspondence: generic properties of quantum systems whose Bohigas, M. Giannoni, C. Schmit

@ classical counterpart is chaotic (level statistics, eigenstate properties, ORI T2l o)

semiclassical analysis, connection to random matrix theory)

Complete characterization of quantum chaos?
* Dynamics: connection to ergodicity and thermalization in statistical mechanics @

* Include systems without a well-defined classical limit. Quantum integrability.

* Properties of quantum features (i.e. entanglement) in generic (nonintegrable) quantum many body systems

Hard to simulate classically (in general)

Dynamics of interacting quantum systems out of equilibrium ——
Quantum computers to study quantum chaos!

uantum L . i i i i
Q ) Sensitivity of quantum states to external perturbations ___, Reliable quantum information processing
information Quantum metrology

Dynamics of quantum information and generation of randomness — Scrambling and random circuits



Today’s menu 417
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1. Classical mechanics and Hamiltonian formalism = 5 S " % P %

2. Integrability in classical systems and KAM theorem

3. Area-preserving maps and transition to chaos

4. Lyapunov exponents

y<0, k=2.80

5. Ergodicity and mixing

Today’s presentation is mostly based on “Nonlinear dynamics and quantum chaos: an Introduction” — by S. Wimberger



Hamiltonian systems

* Lagrangian formalism £(q, q,t)

* Hamiltonian formalism H(q,p,t) —— z = (q,p) € “phase space”

__ OH

Equations of qi = op;
motion - 0OH
Pi == 9qi

— ( € “configuration space”

z=JVH

0 Hn
—-I, O

Or, in fancy form:

Symplectic matrix J = (

Autonomous and non autonomous systems
* H(q,p) time-independent = H(q(t),p(t)) = H(q(0),p(0)) = E
* H(q,p,t) = E(t) explicitly time-dependent

* Mappable to an autonomous system in an extended phase space

* Can be visualized using surfaces of section (coming in a few slides)

Liouville’s theorem: time-evolution of a Hamiltonian system preserves

phase space volume

dim(q) =n

dim(z) = 2n

n = # d.o.f.

(degrees of
freedom)

e.g. Particle in 1D

H=2L2 +V(g)

. _O0H _ p p5_— _9H _ 09V
q= dp  m pP= 9q 9q
2
Pendulum H(6,pg) = 5—:;1 —mglL cos 0
<+ E1




Canonical transformations 6/17

* | can take my original Hamiltonian and transform coordinates (q, p) M, (Q(q,p,t),P(q,p,t))

| |
H(q,p) H'(Q,P)
: : e A, _ OH' 5 . OH'’
* Relevant transformations are those which preserve the form of Hamilton’s EOMs: (. = o P, P, = 90x

)

Canonical

transformations . i of o of 8
* Poisson bracket: {f, g} = {f,g}q’p — % (an; apgk _ 8le 3pgk)

* Transformation M is canonical if and only if {Q;,Q;} ={P;, P;} =0 and {Q;, P;} =6, ;

r = {aqx, H}
pr = {pk, H}

* Suppose we have a canonical transformation M such that H' = H'(P) (independent of Q)

—> P, = _% —0 = |P, = constant! | and Qi = g—ﬂ = const. ={Qx(t) = Qr(0) + g—fét

* In this coordinates, the system is easily solvable — We look for a transformation such that H (q, %—Ag) = H'(P)

* M has a generating function M(q, P) such

Hamilton-Jacobi ti
that P = aM/aqk and Qk — aM/aPk amiiton-Jaconi equation

(one nonlinear partial
differential equation)



Integrable systems 717

* Hamilton-Jacobi equation is hard to solve in general (except n = 1, or separable systems)

* |n some cases, this can be achieved via identifying constants of motion

Integrability: A Hamiltonian system with n degrees of — constants  ¢;(q(t), p(?)) = ¢i(a(0),p(0))
freedom and s = n constants of motion {c;(q,p)}iscalled —— involution {c;,c;} =0Vi,j=1,...,n

integrable — independent vectors Vc¢; are l.i.

* Inthat case, the canonical transformation (q, p) — (@, I) gives a solution to the H-J equation with I; = ¢;

* Dynamics of an integrable system is restricted to a n-dimensional hypersurface in the 2n-dimensional phase space,
which can be thought of as torus

Or(t) = 01(0) + wi (1)t < Motion is periodic if
S w.k = 0 for some k € Z"

where wg(I) = 57— =const.

* Property: Forn = 1, all autonomous Hamiltonian systems are integrable:
the required constant of motion is the energy H(q, p)

Quantum integrability — session 4



KAM theorem 8/17

et H — HO 4+ ng How stable are the ‘regular’ structures (invariant tori) of H,?
Va X * Kolmogorov — Arnold — Moser (KAM) theorem: for small enough ¢,
Integrable  Non-integrable there exists a torus for H with action angle variables
0,1 i
6,1) perturbation =20+ 59(5) 9) New torus is ‘near’ the old one,
J =1+ ef(e 9) and they transform smoothly
?
Comment: for a given energy, a tori is fixed, and KAM Sketch of proof in Section 3.7.4 of “Nonlinear dynamics and quantum chaos: an Introduction” by
assumes is nonresonant (motion is not periodic) S. Wimberger

Consequence: regular structures persist under the presence of a small (non-integrable) perturbation. In
this regime, the system is ‘quasi-integrable’ (constant of motion are only approximate)

KAM regime —
guasi-integrability

e =10

complete integrability

Breakdown of integrability and
transition to chaos

perturbation
> 8 strength



Poincaré maps and transition to chaos

* We want to study the transition between regular and chaotic motion in simple cases: small n (degrees of freedom)

e Recall all autonomous systems with n = 1 are integrable — we need to add time-dependence

Surface of section (SOS): a tool for visualizing trajectories in /\?
low dimensional systems and to identify differences between
regular and chaotic motion

. \ -
™ $08 = (e en N
« n=2, conservative SOS = {(q,p) :q2 =0,H(q, p) = E}
Poincaré Map (§): Gives the evolutionintheS.0.S. Zy411 = SO(Zn) rP o

* Discrete dynamical system O/

* Time evolution is unique (each initial condition has its own trajectory) \ § v

* Inherits many properties from the continuous dynamical system. /O go/ \50

* Area preserving map (as Liouville’s theorem) § e £ e

* If the system shows a periodic orbit for an initial condition zy € SOS, then
the map has a fixed point of some order k at zy: $%(z,) = z,




Fixed points, stability and instability

10/17

Fixed points: o(z*) = z" forz* € SOS

Y

Near a fixed point, dynamics is given by the tangent map M'(z) =

So, Tr(M (z*)) determines type of motion near fixed point:

°J|°a

=1
l 0%q 08q
M ( dq dp

aq op

(z"+06z) =z"+ M(z").6z
Eigenvalues of ]V[(z ):

__________
- RN
e

N
~ -7
---------

ITr(M)| <2 - x4 = et
Elliptic fixed point

).
)

ITr(M)| =2 - x4 = +1
Parabolic fixed point

ITr(M)| > 2 - x4 = et?
Hyperbolic fixed point

A

/o
N

74 W,

unstable and stable
manifolds

Separatrix: IW_ and I/ coincide —)» verturbations!

Po -

Very unstable under

__rotation

— separatrix

libration

0 pendulum




Perturbed motion: all hell breaking loose 11/17

We introduce a nonintegrable perturbation: H = Hgy + ¢H;y

e =0 —— W._ and W, coincide (separatrix) _

Fixed [

€ 7é 0 — W_ and I/, intersect (homoclinic points) — bee\ey—> Variable I (broken integrability)
X X

* A homoclinic point (HP) is a point in the SOS which belongs to both W_ and I/,

Since W are ‘invariant curves’ p(W,) = Wy, then if zis a HP = §(z) is a HP. So: there is an infinite sequence of them,
bunched up together

Points in the either W, which are not HP’s, also evolve according to %, area preserving map

o Y

Homoclinic
points

Complicated motion, highly
unstable with large
deviations with respect to
initial conditions! — onset of
Chaos

—O=P
I\ Fixed point




Homoclinic tangle and stochastic layer 12/17

Homoclinic tangle

Fig. 3. The homoclinic tangle fora =1, b =4/5, e = 2, and P(s) = 52,

From S. Wimberger, Nonlinear dynamics and quantum chaos: an Introduction From R. Ramirez-Ros, Physica D: Nonlinear Phenomena, 210 149-179 (2005)

Stochastic layer: complex motion around the (former) separatrix, makes the SOS trajectories look like randomly distributed
points

e=10 : €e>0
O D
I + w?sin(z) = esin(kz — Q1) /\ /\ / 4 swcm _
. F IR NN \/
BES s S

Driven pendulum

A. Chernikov, R. Zagdeev and G. Zaslavsky, “Chaos: how regular can it be?” Physics Today 41, 11, 27 (1988)



ransition to chaos in a kicked to 13/17

Phase space variables are the components of the angular

m=-+oco
H = %Jy —+ %f [# JZ2 f&)y= > 0o(t—mr) momentum J = (Jy,Jy,/,). Also, J* = JZ + J5 + JZ is
meTee conserved
HO perturbation —> Phase space dimension=2=n=1
0, k=0.00 y<0, k=2.35

y<0, k=2.80

F. Haake, M. Kus and R. Scharf, Classical and quantum chaos for a kicked top. Z. Phys. B — Cond. Mat. 65, 381-395 (1987)



Lyapunov exponents 14/17

Chaos | —> exponential separation of nearby phase space trajectories

Alargest

z1(t)
p A h
* Dynamics near a fixed point p(z* + 6z) = z* + M (z%).6z d12 - eAt
. ) e 21(0)
* HyperbolicFP: M (z*) = ( —A) (in normal coordinates) \
0 e o N
« After n time steps: fo,, = z* + e™6z, + e 6z, z2(0) 22(t) q
Lyapunov exponent (A1)
2.5
d .
More generally: (d) Kicked top 2.0
. . 1 6z)—
« Maximal Lyapunov exponent A(z) = lim lim —log (||50n(z+ 2) gon(z)H) — CKT 1.5
n-o 6z-0 N |162]| —e— N=10° OD=300
* Forageneric 6z, A(z) = max. eigenvalue of M'(2) =3 1 . 1.0
* If | take a set of {6z;}, | get a ‘Lyapunov spectrum’ {1;} 0.5
. . . . e _ -0.0
* In a globally chaotic regime, A(z) is mostly independent of initial condition 100 30
k

OTOCs and scrambling — Sessions 6 and 7 From M. Mufioz et al PRLPhys. Rev. Lett. 124, 110503 (2020)



Ergodicity and mixing 15/17

Some notation:  7': Dynamical system T:(G X {0l = (J—— Tt(a)) € () G ~time  Q ~ phase space

V: Measure such that v(€) = 1, invariant under T: v(T(A)) = v(A)

Ergodicity | A dynamical system is ergodic if all T-invariant sets (T(A4) = A) are such that either v(A) = 1 07 0

I L, i.e, there cannot be an invariant set which is not a fixed point, or the whole space

Orbits fill the whole

— _ t
Phase space average = time-average: f — fQ f Ay where f(u) = Jim Z_:Of(T”(w)) e Ese e

Note that: Ergodicity q@> Chaos — Integrable systems can lead to ergodicity in the available phase space (torus)

Mixing A dynamical system is (strongly) mixing if for any two sets A, B C (), tgl’l(;lo v (A A Tt(B)) = V(A)I/(B)

T*(4) T*(4)

Not mixing o o
A A

§) §)

it o - .
Mixing Mixing = Ergodicity = Chaos = Mixing

Thermalization in closed quantum systems — Session 5




Ergodic hierarchy and correlation functions 16/17

Take a correlation function C(t; f, g) = <f (Tt (.CL‘)) g(a:)) — <f(:15’)> (g(m)>
with f(z), g(x) functionsin Q

and (h(z) = [oh(z)dv  Fw)=lim 3 F(T"(w))

t— o0 n—>0
Ergodic hierarchy
Ergodic Weak Mixing Mixing
— D D
Ct)=0 C(t)| =0 C(t)—0

1.0

T
Ergodic,

stationary

Non-ergodic,
stationary

Cpe(t,t)

* Analyzing the behavior of correlation functions is L . E;‘r’n”;C"raiae\E/i ao”d?CAénd
VAR , “Ergodi

useful for systems with many d.o.f.s where is hard Nonergodic Dual-Unitary

to characterize chaos ‘globally’ (Lyapunovs, etc) 1.0 : - : . Quantum Circuits with
Ergodic, Nomn-ergodic, Arbitrary Local Hilbert

0.5 non-stationary i non-stationary i Space Dimension” PRL
126 100603 (2021)

cpo(tit)




Summary

Integrable systems are characterized by conserved quantities which allow for the dynamics to be solved using action-
angle variables. Motion lies on invariant tori

Upon addition of a nonintegrable perturbation, tori persist (KAM theorem) for a while. After that, proliferation of
instabilities leads to complex motion, and hypersensitivity to initial conditions

Global chaotic behavior can be characterized at short times via Lyapunov exponents, and for long times via mixing and
ergodicity

Next week: Introduction to quantum chaos. Some good reads to get some background:
* F. Haake — ‘Quantum signatures of chaos’ — Chapter 1

M. Berry — ‘Chaos and the semiclassical limit of guantum mechanics’ (link)

e D. Poulin — ‘A rough guide to quantum chaos’ (link)

References

Main reference: Nonlinear dynamics and quantum chaos: an Introduction — by Sandro Wimberger

S. Aravinda et al, From dual-unitary to quantum Bernoulli circuits: Role of the entangling power in constructing a quantum ergodic hierarchy,
arxiv:2101.04580.

A. Chernikov, R. Zagdeev and G. Zaslavsky, Chaos: how regular can it be?. Physics Today 41, 11, 27 (1988)

Notes from the course “Chaos and Quantum Chaos 2021” at TU Dresden, taught by Roland Ketzmerick. Some materials publicly available in English at
https://tu-dresden.de/mn/physik/itp/cp/studium/lehrveranstaltungen/chaos-and-quantum-chaos-2021?set language=en



https://tu-dresden.de/mn/physik/itp/cp/studium/lehrveranstaltungen/chaos-and-quantum-chaos-2021?set_language=en
https://michaelberryphysics.files.wordpress.com/2013/07/berry337.pdf
https://www.physique.usherbrooke.ca/poulin/utilisateur/files/enseignement/rgtqc.pdf

Extra stuff



Autonomous and non autonomous systems

* H(q,p) time-independent = H(q(t),p(t)) = H(q(O),p(O)) =F
* H(q,p,t) = E(t) explicitly time-dependent

New EOMs
- Po
Can be mapped to an dq' 0K dp’ O
autonomoussystem P’ = (=E,p) == H(p',q') = H(q,p,t) —E(t) == ~op’dr  oq
in an extended phase q' = (t,q) — p T q
space \ New Hamiltonian
do
This leads to

d oH dt 0H
% = E © % " 3E 1 - 7 =t+ const. «<— This variable becomes ‘trivial’ OH OH

0 Alsoqg=—,p=——

“ ap aq

dpo 0K dE _ 0H _ , one and a half _
— = a_qo o — = Ty <— One extra independent variable degrees of freedom” for the old variables
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> doldp' - dgdp



Jz+ 5+ ]z is

2=>n=1

(]x»]y;]z)- Also, J*
conserved

momentum J

Phase space variables are the components of the angular
—> Phase space dimension

mT)

=400
2. ot-

m
m=—0o0

£(8) =

perturbation

o
-
Hy

y<0, k=1.00

u * - -

taatts ot sasgfagma, "8
.“.._-...“..«um.... B .w.nua N e ._u.. .
- Aol i ] - e ¢

.m.r_.__.h.ut_.. 40 W .lm..vm. T

- A . ...Mn..r...\.....- .,

a i ...olﬁ&..n.wh.....-ﬁ.u“. we v .n.r..—....\“..»....u...... = g Y

X, ._._...4...“#“ S ..3_.......“ Ay NEMG

. ._._.__m_.”..\.,._.a.. . u_m ..M“u._”......_...ak.

v




Existence / separability of H-J equations and integrability

Let there be given a 2n-dimenional real symplectic manifold (M, w) with a globally defined real
function H : M x [t;,t¢] — IR, which we will call the Hamiltonian. The time evolution is

governed by Hamilton's (or equivalently Liouville's) equations of motion. Here £ £ [¢;, ¢ .F] is time.

1. On one hand, there is the notion of complete integrability, aka. Liouville integrability, or

sometimes just called integrability. This means that there exist n independent globally
defined real funetions

I, ie{l,...,n}
(which we will call action variables), that pairwise Poisson commute,

{L, Litpg = 0, i,je{1,...,n}

2. On the other hand, given a fixed point z(g) € M, under mild regularity assumptions, there

always exists loeally (in a sufficiently small open Darboux! neishborhood of T(p)) an n-

parameter complete solution for Hamilton's principal funetion

S(g",....q"% h,... . In;t)

to the Hamilton-Jacobi equation, where

I, ie{l,...,n},

are integration constants. This leads to a loeal version of property 1.

The main peint is that the global property 1 is rare, while the loeal property 2 is generie.

From: ‘Integrable vs non-integrable
systems’ on Physics.StackExchange. See
also: ‘Constants of motion vs integrals of

motion vs first integrals’ on
Physics.StackExchange



https://physics.stackexchange.com/questions/44576/integrable-vs-non-integrable-systems
https://physics.stackexchange.com/questions/55861/constants-of-motion-vs-integrals-of-motion-vs-first-integrals

