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2/17This course

• Format: self-study. Not a class. Not a seminar.

• Participants read materials about the topics they have chosen, and then use what they learned to introduce the topic and 
lead a discussion about it.

• Goals: learn about the fundamentals and get a taste of new developments in a fast-moving field. Accumulate material for 
future reference. 

• Start at ∼ 4 pm MDT – we go until 5.15 
pm MDT including discussion

• Schedule and materials available online 
at http://www.unm.edu/~ppoggi/

• Presentations will be recorded each 
week

• UNM people can access recordings 
via Stream using their NetID

• People outside of UNM can access
a shared folder with the
recordings via this link (password 
required) 

http://www.unm.edu/~ppoggi/
https://web.microsoftstream.com/studio/channels
https://unmm-my.sharepoint.com/:f:/g/personal/ppoggi_unm_edu/Ei1K4sGPJQdDtEV_yLH_MbsBBpdWg-6_484c_DmyWWWyUA?e=x1ZU5m


3/17Quantum chaos: why?

Chaos in classical dynamical systems - deterministic randomness and butterfly effect Extreme sensitivity of 
trajectories to changes in 

initial conditions
Quantum 
systems

No trajectories, observables evolve quasi-periodically in time. No 
obvious characterization of chaos

Correspondence: generic properties of quantum systems whose 
classical counterpart is chaotic (level statistics, eigenstate properties, 
semiclassical analysis, connection to random matrix theory) 

1980’s: G. Casati, M. Berry, O. 
Bohigas, M. Giannoni, C. Schmit

‘Quantum Chaology’

Complete characterization of quantum chaos?

• Dynamics: connection to ergodicity and thermalization in statistical mechanics

• Include systems without a well-defined classical limit. Quantum integrability.

• Properties of quantum features (i.e. entanglement) in generic (nonintegrable) quantum many body systems
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Quantum 
information

Dynamics of interacting quantum systems out of equilibrium
Hard to simulate classically (in general)

Quantum computers to study quantum chaos!

Sensitivity of quantum states to external perturbations Reliable quantum information processing

Quantum metrology

Dynamics of quantum information and generation of randomness Scrambling and random circuits

6,7

8



4/17Today’s menu

1. Classical mechanics and Hamiltonian formalism

2. Integrability in classical systems and KAM theorem

3. Area-preserving maps and transition to chaos

4. Lyapunov exponents

5. Ergodicity and mixing 

Today’s presentation is mostly based on “Nonlinear dynamics and quantum chaos: an Introduction” – by S. Wimberger
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5/17Hamiltonian systems

• Lagrangian formalism

• Hamiltonian formalism

“configuration space”

“phase space”
(degrees of 
freedom)

Equations of 
motion

Or, in fancy form:

Symplectic matrix

Autonomous and non autonomous systems

• 𝐻(𝑞, 𝑝) time-independent ⇒ 𝐻 𝑞 𝑡 , 𝑝 𝑡 = 𝐻 𝑞 0 , 𝑝 0 = 𝐸

• 𝐻(𝑞, 𝑝, 𝑡) = 𝐸(𝑡) explicitly time-dependent

• Mappable to an autonomous system in an extended phase space

• Can be visualized using surfaces of section (coming in a few slides) 

𝜃

e.g. Particle in 1D

Pendulum 𝐻 𝜃, 𝑝𝜃 =
𝑝𝜃
2

2𝑚
−𝑚𝑔𝐿 𝑐𝑜𝑠 𝜃

𝜃

𝑝𝜃

𝐸1

𝐸2

𝐸3

…

Liouville’s theorem: time-evolution of a Hamiltonian system preserves 
phase space volume



6/17Canonical transformations

• I can take my original Hamiltonian and transform coordinates

• Suppose we have a canonical transformation ℳ such that  𝐻′ = 𝐻′(𝑷) (independent of Q) 

and

• In this coordinates, the system is easily solvable 

• ℳ has a generating function 𝑀(𝒒,𝑷) such 
that 𝑝𝑘 = 𝜕𝑀/𝜕𝑞𝑘 and 𝑄𝑘 = 𝜕𝑀/𝜕𝑃𝑘

We look for a transformation such that 

Hamilton-Jacobi equation
(one nonlinear partial 
differential equation) 

• Relevant transformations are those which preserve the form of Hamilton’s EOMs: 

Canonical 
transformations

• Transformation ℳ is canonical if and only if

• Poisson bracket:



7/17Integrable systems

• Hamilton-Jacobi equation is hard to solve in general (except 𝑛 = 1, or separable systems)

• In some cases, this can be achieved via identifying constants of motion

Quantum integrability – session 4

Integrability: A Hamiltonian system with 𝑛 degrees of 
freedom and 𝑠 = 𝑛 constants of motion 𝑐𝑖 𝒒, 𝒑 is called 

integrable

constants

involution

independent

• In that case, the canonical transformation gives a solution to the H-J equation with 𝑰𝒊 = 𝒄𝒊

• Property: For 𝑛 = 1, all autonomous Hamiltonian systems are integrable: 
the required constant of motion is the energy 𝐻(𝑞, 𝑝)

• Dynamics of an integrable system is restricted to a n-dimensional hypersurface in the 2n-dimensional phase space, 
which can be thought of as torus

Motion is periodic if 
𝝎. 𝒌 = 0 for some 𝒌 ∈ ℤ𝑛



8/17KAM theorem

How stable are the ‘regular’ structures (invariant tori) of 𝑯𝟎?

Consequence: regular structures persist under the presence of a small (non-integrable) perturbation. In 
this regime, the system is ‘quasi-integrable’ (constant of motion are only approximate)

Let 

Integrable
(𝜃, 𝐼)

Non-integrable 
perturbation

• Kolmogorov – Arnold – Moser (KAM) theorem: for small enough 𝜀, 
there exists a torus for 𝐻 with action angle variables 

New torus is ‘near’ the old one, 
and they transform smoothly

Comment: for a given energy, a tori is fixed, and KAM 
assumes is nonresonant (motion is not periodic)

Chaos
perturbation 

strength

complete integrability

KAM regime –
quasi-integrability

wBreakdown of integrability and 
transition to chaos

Sketch of proof in Section 3.7.4 of “Nonlinear dynamics and quantum chaos: an Introduction” by 
S. Wimberger



9/17Poincaré maps and transition to chaos

Poincaré Map (℘):  Gives the evolution in the S.O.S.  𝐳𝐧+𝟏 = ℘ 𝒛𝒏

• We want to study the transition between regular and chaotic motion in simple cases: small 𝑛 (degrees of freedom)

• Recall all autonomous systems with 𝑛 = 1 are integrable – we need to add time-dependence

• Discrete dynamical system

• Time evolution is unique (each initial condition has its own trajectory)

• Inherits many properties from the continuous dynamical system. 

• Area preserving map (as Liouville’s theorem)

• If the system shows a periodic orbit for an initial condition 𝑧0 ∈ 𝑆𝑂𝑆, then 

the map has a fixed point of some order 𝑘 at 𝒛𝟎: ℘𝒌 𝒛𝟎 = 𝒛𝟎

𝑝

𝑞

℘

℘

℘

℘ ℘

℘

Surface of section (SOS): a tool for visualizing trajectories in 
low dimensional systems and to identify differences between 
regular and chaotic motion 

• n=1, non conservative 
and periodic

• n=2, conservative
𝒒
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So, Tr(ℳ 𝒛∗ ) determines type of motion near fixed point: 

Fixed points, stability and instability

Fixed points: ℘ 𝒛∗ = 𝒛∗ for 𝑧∗ ∈ 𝑆𝑂𝑆

Near a fixed point, dynamics is given by the tangent map ℳ 𝒛 =
𝜕℘

𝜕𝒛
=

𝜕℘𝑞

𝜕𝑞

𝜕℘𝑞

𝜕𝑝

𝜕℘𝑝

𝜕𝑞

𝜕℘𝑝

𝜕𝑝

𝑛 = 1

℘ 𝒛∗ + 𝛿𝒛 = 𝒛∗ +ℳ 𝒛∗ . 𝛿𝐳

= 1

Eigenvalues of ℳ 𝒛∗ :

solutions of 𝑥2 − 𝑇𝑟 ℳ 𝑥 + det ℳ = 0

Tr ℳ < 2 → 𝑥± = 𝑒±𝑖𝛽

Elliptic fixed point

Tr ℳ = 2 → 𝑥± = ±1
Parabolic fixed point

𝒛∗

Tr ℳ > 2 → 𝑥± = 𝑒±𝜆

Hyperbolic fixed point

unstable and stable
manifolds

𝒛∗

𝑊+𝑊−

Very unstable under 
perturbations!

Separatrix: 𝑊− and 𝑊+ coincide

pendulum𝜃

𝑝𝜃

rotation

libration

separatrix



11/17Perturbed motion: all hell breaking loose
We introduce a nonintegrable perturbation:

𝑊− and 𝑊+ coincide (separatrix) Fixed 𝐼

𝑊− and 𝑊+ intersect (homoclinic points) Variable 𝐼 (broken integrability)

• A homoclinic point (HP) is a point in the SOS which belongs to both 𝑊− and 𝑊+

• Since 𝑊± are ‘invariant curves’ ℘ 𝑊± = 𝑊±, then if 𝑧 is a HP ⇒ ℘(𝑧) is a HP.  So: there is an infinite sequence of them, 
bunched up together 

• Points in the either 𝑊± which are not HP’s, also evolve according to ℘, area preserving map

Complicated motion, highly 
unstable with large 

deviations with respect to 
initial conditions! – onset of 

Chaos

℘

Fixed point

Homoclinic 
points

…



12/17Homoclinic tangle and stochastic layer

Homoclinic tangle

From S. Wimberger, Nonlinear dynamics and quantum chaos: an Introduction From R. Ramirez-Ros, Physica D: Nonlinear Phenomena, 210 149-179 (2005)

Stochastic layer: complex motion around the (former) separatrix, makes the SOS trajectories look like randomly distributed 
points

Driven pendulum
𝜖 = 0 𝜖 > 0

A. Chernikov, R. Zagdeev and G. Zaslavsky, “Chaos: how regular can it be?” Physics Today 41, 11, 27 (1988)



13/17Transition to chaos in a kicked top
Phase space variables are the components of the angular 

momentum 𝑱 = (𝐽𝑥 , 𝐽𝑦 , 𝐽𝑧). Also, 𝑱2 = 𝐽𝑥
2 + 𝐽𝑦

2 + 𝐽𝑧
2 is 

conserved 

Phase space dimension = 2 ⇒ 𝒏 = 𝟏perturbation

F. Haake, M. Kus and R. Scharf, Classical and quantum chaos for a kicked top. Z. Phys. B – Cond. Mat. 65, 381-395 (1987) 



14/17Lyapunov exponents

exponential separation of nearby phase space trajectoriesChaos

• Dynamics near a fixed point   ℘ 𝒛∗ + 𝛿𝒛 = 𝒛∗ +ℳ 𝒛∗ . 𝛿𝐳

• Hyperbolic FP:   ℳ 𝒛∗ = 𝑒𝜆 0
0 𝑒−𝜆

(in normal coordinates)

• After 𝑛 time steps: ℘𝑛 = 𝒛∗ + 𝑒𝑛𝜆𝛿𝒛𝒖 + 𝑒−𝑛𝜆𝛿𝒛𝒔

Lyapunov exponent (𝝀)

More generally:

• Maximal Lyapunov exponent Λ 𝒛 = lim
𝑛→∞

lim
𝛿𝒛→0

1

𝑛
log

| ℘𝑛 𝒛+𝛿𝒛 −℘𝑛 𝒛 |

| 𝛿𝒛 |

• For a generic 𝛿𝒛, Λ 𝒛 = max. eigenvalue of ℳ 𝒛

• If I take a set of {𝛿𝒛𝒊}, I get a ‘Lyapunov spectrum’ {𝜆𝑖}

• In a globally chaotic regime, Λ 𝒛 is mostly independent of initial condition 

OTOCs and scrambling – Sessions 6 and 7 From M. Muñoz et al PRLPhys. Rev. Lett. 124, 110503  (2020)

Kicked top



15/17Ergodicity and mixing

Some notation: 𝑇: Dynamical system   𝑇: 𝐺 × Ω → Ω 𝐺 ∼ time Ω ∼ phase space 𝑇𝑡 𝜔 ∈ Ω

𝜈: Measure such that 𝜈(Ω) = 1, invariant under 𝑇:  𝜈 Tt A = 𝜈(A)

Ergodicity A dynamical system is ergodic if all 𝑻-invariant sets (𝑻𝒕 𝑨 = 𝑨) are such that either 𝝂 𝐀 = 𝟏 𝒐𝒓 𝟎

i.e, there cannot be an invariant set which is not a fixed point, or the whole space

Phase space average = time-average: where Orbits fill the whole 
available phase space

Note that: Ergodicity              Chaos Integrable systems can lead to ergodicity in the available phase space (torus)

Mixing A dynamical system is (strongly) mixing if for any two sets 𝑨,𝑩 ⊆ 𝛀, 

𝐴

𝑇𝑡(𝐴)

Ω

𝑇𝑡(𝐴)

Ω
𝐴

Not mixing Mixing
Mixing ⇒ Ergodicity Chaos ⇒ Mixing

Thermalization in closed quantum systems – Session 5



16/17Ergodic hierarchy and correlation functions

Take a correlation function

with functions in Ω

and

Ergodic hierarchy

Ergodic Weak Mixing Mixing

𝑪(𝒕) = 𝟎 |𝑪 𝒕 | = 𝟎 𝑪(𝒕) → 𝟎⊃ ⊃ ⊃ …

• Analyzing the behavior of correlation functions is 
useful for systems with many d.o.f.s where is hard 
to characterize chaos ‘globally’ (Lyapunovs, etc)

From P. Claeys and A. 
Lamacraft, “Ergodic and 
Nonergodic Dual-Unitary 
Quantum Circuits with 
Arbitrary Local Hilbert 
Space Dimension” PRL 
126 100603 (2021)



17/17Summary

• Integrable systems are characterized by conserved quantities which allow for the dynamics to be solved using action-
angle variables. Motion lies on invariant tori

• Upon addition of a nonintegrable perturbation, tori persist (KAM theorem) for a while. After that, proliferation of 
instabilities leads to complex motion, and hypersensitivity to initial conditions

• Global chaotic behavior can be characterized at short times via Lyapunov exponents, and for long times via mixing and 
ergodicity

References

• Main reference: Nonlinear dynamics and quantum chaos: an Introduction – by Sandro Wimberger

• S. Aravinda et al, From dual-unitary to quantum Bernoulli circuits: Role of the entangling power in constructing a quantum ergodic hierarchy, 
arxiv:2101.04580.

• A. Chernikov, R. Zagdeev and G. Zaslavsky, Chaos: how regular can it be?. Physics Today 41, 11, 27 (1988)

• Notes from the course “Chaos and Quantum Chaos 2021” at TU Dresden, taught by Roland Ketzmerick. Some materials publicly available in English at 
https://tu-dresden.de/mn/physik/itp/cp/studium/lehrveranstaltungen/chaos-and-quantum-chaos-2021?set_language=en

Next week: Introduction to quantum chaos. Some good reads to get some background:

• F. Haake – ‘Quantum signatures of chaos’ – Chapter 1

• M. Berry – ‘Chaos and the semiclassical limit of quantum mechanics’ (link)

• D. Poulin – ‘A rough guide to quantum chaos’ (link)

https://tu-dresden.de/mn/physik/itp/cp/studium/lehrveranstaltungen/chaos-and-quantum-chaos-2021?set_language=en
https://michaelberryphysics.files.wordpress.com/2013/07/berry337.pdf
https://www.physique.usherbrooke.ca/poulin/utilisateur/files/enseignement/rgtqc.pdf


Extra stuff



Autonomous and non autonomous systems

• 𝐻(𝑞, 𝑝) time-independent ⇒ 𝐻 𝑞 𝑡 , 𝑝 𝑡 = 𝐻 𝑞 0 , 𝑝 0 = 𝐸

• 𝐻(𝑞, 𝑝, 𝑡) = 𝐸(𝑡) explicitly time-dependent

𝑝′ = −𝐸, 𝑝
𝑞′ = (𝑡, 𝑞)

Can be mapped to an 
autonomous system 
in an extended phase 

space 

ℋ 𝑝′, 𝑞′ = 𝐻 𝑞, 𝑝, 𝑡 − 𝐸(𝑡)
𝑑𝑞′

𝑑𝜏
=

𝜕ℋ

𝜕𝑝′
,
𝑑𝑝′

𝑑𝜏
= −

𝜕ℋ

𝜕𝑞′

𝑞0

𝑝0

New Hamiltonian

New EOMs

This leads to

•
𝑑𝑞0

𝑑𝜏
=

𝜕ℋ

𝜕𝑝0
↔

𝑑𝑡

𝑑𝜏
= −

𝜕ℋ

𝜕𝐸
= 1 → 𝜏 = 𝑡 + 𝑐𝑜𝑛𝑠𝑡.

•
𝑑𝑝0

𝑑𝜏
= −

𝜕ℋ

𝜕𝑞0
↔ −

𝑑𝐸

𝑑𝑡
= −

𝜕ℋ

𝜕𝑡

This variable becomes ‘trivial’

One extra independent variable
“one and a half 

degrees of freedom”

Also ሶ𝑞 =
𝜕𝐻

𝜕𝑝
, ሶ𝑝 = −

𝜕𝐻

𝜕𝑞

for the old variables 





Phase space variables are the components of the angular 
momentum 𝑱 = (𝐽𝑥 , 𝐽𝑦 , 𝐽𝑧). Also, 𝑱2 = 𝐽𝑥

2 + 𝐽𝑦
2 + 𝐽𝑧

2 is 

conserved 

Phase space dimension = 2 ⇒ 𝒏 = 𝟏perturbation



Existence / separability of H-J equations and integrability 

From: ‘Integrable vs non-integrable 
systems’ on Physics.StackExchange. See
also: ‘Constants of motion vs integrals of

motion vs first integrals’ on
Physics.StackExchange

https://physics.stackexchange.com/questions/44576/integrable-vs-non-integrable-systems
https://physics.stackexchange.com/questions/55861/constants-of-motion-vs-integrals-of-motion-vs-first-integrals

