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What is Thermalization?

• Equilibration
• Approaching a state and remaining 

near that state for most time

• Thermalization
• Equilibrium state only depends 

on certain macroscopic quantities, 
and given by relevant ensemble



Subsystem

Types of Thermalization

Open System

Canonical Ensemble

Closed System

Microcanonical Ensemble



Observable vs Subsystem Thermalization

• Generally considering 
sets of observables

• This can be viewed as a 
special case of the above



Equilibration on Average

• Observable approaches an equilibrium 
value

Analogous expressions hold for subsystem equilibration

• Observable stays close to equilibrium 
value

• Equilibrium value well-approximated 
by long-time average



Thermalization and Information

• Thermalization necessarily implies a loss of information

• Where did it go?

Lost to Environment Inaccessible to 
macroscopic observables

Inaccessible to local 
observables



Classical Thermalization
Equations of Motion

Integrable Chaotic



Classical Thermalization

Chaos Mixing Ergodicity

Ergodicity
"Time average = Phase space average"

Orbits fill the entire energy shell 
uniformly



Classical Thermalization (Closed System)

Number or measure of microstates corresponding to observable value A

Consider a macroscopic observable

Information about initial 
conditions cannot be resolved 

by macroscopic observable



Classical Thermalization (Subsystem)

Assume: S is in microcanonical ensemble at energy E and A,B can 
exchange energy

The initial information contained in A is spread throughout the 
whole system and becomes inaccessible to local observables.

(Canonical Ensemble)



Summary

Chaos Ergodicity
Microcanonical 

Ensemble

Closed System Thermalization 
w.r.t Macroscopic Observable

Subsystem Thermalization to 
Canonical Ensemble



Transition to Quantum Thermalization

Immediate Issues

• No phase space (position and momentum don't commute)

• No well-defined trajectories, initial wave packets will spread

• No clear integrable vs nonintegrable definition

• Difficult to define chaos



Transition to Quantum Thermalization

Microcanonical ensemble

In general, long-time averages are sensitive to the initial conditions



Equilibration Turns Out to be Quite General
The maximal number of approximately degenerate energy gaps in an energy interval of width

For states that populate 
a significant number of 
energy eigenstates

While this addresses how quantum systems equilibrate, we still must show that they thermalize

[Gogolin and Eisert, 2016]



Random Matrix Theory

• Recall, The BGS conjecture states that quantum systems with chaotic 
classical counterparts have spectra with the same statistics as random 
matrices

• Since classical chaotic systems 
thermalize, consider an RMT 
approach to quantum thermalization

• The eigenvectors of a random 
matrix are essentially random unit 
vectors which are mutually 
orthogonal



Random Matrix Theory
We can calculate the average matrix elements of 
observables in the random energy eigenbasis

(Averaging and over the Haar measure)



Random Matrix Theory 

The fluctuations about the average of 
observables in the random energy eigenbasis 
can also be calculated

For the detailed derivation, see [D'Alessio et al., 2016]

(For GUE)



RMT Observable Ansatz

is a zero mean, unit variance random variable

Define:

Ansatz:

No dependence on initial conditions!

Thermalizes*



RMT is Insufficient

1. The equilibrium values in the RMT ansatz are independent of the system 
energy density

2. Relaxation times are observable dependent, and this information should 
be contained in off-diagonal matrix elements



Eigenstate Thermalization Hypothesis

Define:

is a zero mean, unit variance random variable

Ansatz

are smooth functions of their arguments

is the thermodynamic entropy



Comparing ETH to RMT
RMT ETH

1. The diagonal elements in ETH are not the same for all 
eigenstates, and more importantly, energy dependent

2. The off-diagonal elements in ETH depend on the 
envelope function characterizing the relaxation 
time

The results of the ETH ansatz agree with the semi-classical predictions of the 
BGS conjecture [D'Alessio et al., 2016]



ETH Thermalizes

Solving this for (see [Srednicki, 1998] for proof)



The Envelope Function

Ansatz:

is approximately constant

Markovian decay back to 
equilibrium from small fluctuations
[Srednicki, 1998]

decays exponentially



When Will Systems Thermalize?

• In order for a system to thermalize in ETH, the energy variance of the initial state 
should be small

• The energy eigenstates with appreciable populations should be contained in a 
region where does not vary significantly

Depends on initial conditions, 
does not thermalize!



Validity of ETH

• For which observables?
• ETH is expected to hold for all few-body observables

• In [Garrison and Grover, 2015], it is conjectured ETH holds for observables 
with support on up to half of the system size

• For which parts of the spectrum?
• ETH is expected to be valid for the bulk of the spectrum, not near the edges

• Strong ETH: Holds everywhere in the bulk

• Weak ETH: Holds for most eigenstates in the bulk



ETH Subsystem Formulation
• Consider the set of all local observable on a subsystem A and assume 

ETH holds for each of them



ETH Subsystem Formulation

• "Excited eigenstates are thermal"



Classical vs Quantum Ergodicity

Classical ergodicity is a direct result of the dynamics 
of the system

Quantum ergodicity is not caused by the dynamics 
of the system, it is already present in the initial 
state

This will start to dephase 
and destructively interfere



ETH and Quantum Error Correction

• Recently, a connection between ETH, chaotic Hamiltonians, and 
quantum error correction was demonstrated in [Brandao, Crosson et 
al., 2018]

• If local errors are of the form of the ETH matrix ansatz, they satisfy 
the approximate Knill-Laflamme condtions where the codespace is 
the eigenstates contained in a small energy window



ETH and Quantum Error Correction

• A more physical formulation of this idea is introduced in [Bao and 
Cheng, 2019] which extends to a more general definition of chaotic 
Hamiltonians

• Recall that information about initial conditions in the subsystem 
picture must become distributed throughout the whole system and 
becomes inaccessible locally

• The method by which this is achieved via ETH and RMT is that 
nearby energy eigenstates are already locally indistinguishable



ETH and Quantum Error Correction

• If an adversarial environment cannot learn anything about the encoded 
information by local measurements, this implies an approximate quantum 
error correcting code [Beny and Oreshkov, 2010]

• Sets of nearby energy eigenstates 
in ETH form approximate quantum 
error correcting codes!



Further Topics

• Thermalization in integrable systems and the generalized Gibbs 
ensemble [D'Alessio et al., 2016, section 8] [Gogolin and Eisert, 2016, 
section 5.2]

• Other mechanisms of thermalization
• Typicality [Gogolin and Eisert, 2016, section 6] [Deutsch, 2018]

• Open System [Deutsch, 2018]

• Maximum Entropy Principles [Gogolin and Eisert, 2016, section 5.1]

• Quantum Ergodic Theorem [D'Alessio et al., 2016, section 4.1]



Summary

• In classical systems, there is a well-understood route to 
understanding thermalization through chaotic dynamics

• Notions of quantum chaos are quite different from classical chaos, 
requiring a different means of analyzing quantum thermalization

• Random matrix theory almost solves the thermalization problem, but 
does not contain any energy dependence or relaxation time 
information (non-physical)

• Modifying RMT yields the Eigenstate Thermalization Hypothesis, 
which characterizes thermalization for local observables



References

• Deutsch, Joshua M. "Eigenstate thermalization hypothesis." Reports on Progress in Physics 81.8 (2018): 
082001.

• Gogolin, Christian, and Jens Eisert. "Equilibration, thermalisation, and the emergence of statistical 
mechanics in closed quantum systems." Reports on Progress in Physics 79.5 (2016): 056001.

• Garrison, James R., and Tarun Grover. "Does a single eigenstate encode the full Hamiltonian?." Physical 
Review X 8.2 (2018): 021026.

• Mark Srednicki. "The approach to thermal equilibrium in quantized chaotic systems." Journal of Physics A: 
Mathematical and General 32.7 (1999): 1163.

• D'Alessio, Luca, et al. "From quantum chaos and eigenstate thermalization to statistical mechanics and 
thermodynamics." Advances in Physics 65.3 (2016): 239-362.

• Brandao, Fernando GSL, et al. "Quantum error correcting codes in eigenstates of translation-invariant spin 
chains." Physical review letters 123.11 (2019): 110502.

• Bao, Ning, and Newton Cheng. "Eigenstate thermalization hypothesis and approximate quantum error 
correction." Journal of High Energy Physics 2019.8 (2019): 1-29.

• Bény, Cédric, and Ognyan Oreshkov. "General conditions for approximate quantum error correction and 
near-optimal recovery channels." Physical review letters 104.12 (2010): 120501.


