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Randomness and chaos

Random matrix ensembles to model quantum chaos

Spectral distributions

OTOC 
scrambling

Fidelity decay
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Overview

Is there a more practical way to understand this randomness?

What are sufficient conditions for reproducing this randomness?

Can we gain a deeper understanding of quantum chaos?
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The Haar measure

For any compact group        there exists a unique (up to normalization), translationally 
invariant measure called the Haar measure:

Def. A group is a set        with associative binary operation                              such that:

Provides a notion of integration over groups:

“bounded”



5

Probability distributions over groups

Normalizing                       allows us to interpret      as a probability measure:

Uniform distribution over       = Haar distribution over

How to sample from     ? Simplest example is when        is finite:
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Sampling from continuous groups

Focus on unitary group over      qubits:                (generalization to             straightforward)

We can in principle sample from this matrix group, but:

What do the corresponding quantum circuits look like?
● Exponentially long circuits [quant-ph/9508006]

Can we do away with the complicated continuous measures/integrals?

(Weyl integration formula)
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Spherical t-designs

Adv. Comput. Math. 18 357 (2003)
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Unitary t-designs

Def. Let                                                                          . We say       is a unitary   -design for some         
if

for all complex polynomials       of degree           , where the polynomial is understood as a 
function of matrix elements,                                                                                                          .

Sampling from a unitary    -design reproduces the first      moments of the unitary group

Primary reference: [quant-ph/0611002]
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Unitary t-designs

Sampling from a unitary    -design reproduces the first      moments of the unitary group

Twirling channel:
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Unitary t-designs

Sampling from a unitary    -design reproduces the first      moments of the unitary group

Twirling channel:
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Representation theory primer

Def. A representation of a group       on a vector space       is map

such that                                                                   (i.e., it is a group homomorphism).

Def. A representation       is reducible if there is a nontrivial subspace                   such that

is itself a representation. Otherwise,        is said to be an irreducible representation (irrep).
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Representation theory primer

Thm (Peter-Weyl). Every unitary representation                                  admits the 
decomposition

where                                      are irreps,                           , and          is the multiplicity of each      .

What this means: every unitary representation is completely characterized by its irreps

Why do we care: twirling is intimately connected with irreps
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Representation theory primer

Lemma (Schur). Let                                         be an irrep. The only linear maps on        which 
commute with       , i.e.,

are multiples of the identity,                         .

Twirling over an irrep yields a multiple of the identity:
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A representation-theoretic perspective

For a reducible representation (no multiplicities):

Back to t-designs: the t-fold twirl over:

The unitary group The subgroup

Goal: match the irreps of 
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The frame potential

With some work we can determine the irreps of       (Schur-Weyl duality)

OTOH, checking the irreps of       for arbitrary       may be arduous

An equivalent formulation can be found via the theory of frames:

Def. The         frame potential of                                                                            is

If       is a group then
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Representation theory primer pt. 2

Def. Let       be a representation for a finite group      . The character of       is the trace map,

Characters live in               , which has the natural inner product

The characters of irreps are orthonormal (Schur orthogonality),

hence form a basis for               :
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Where did it come from?

Back to the frame potential

How does it relate to designs?

1.

2.

3.         is a t-design iff 

(Calculated using Schur-
Weyl duality for              )
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Interpreting the frame potential

Representation theory gives a clean algebraic interpretation

Frames, however, are very geometrical in nature

The frame potential measures how “evenly distributed” the frame is: think of 

as a repulsive force, and we want to minimize the average potential

1-design 2-design

. . .
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The Clifford group

A prominent example of a unitary design

Let                                                                denote the n-qubit Pauli group. The n-qubit Clifford 
group is the set of all unitary transformations which permute Paulis among themselves:

Clifford transformations are:
● classically simulable [quant-ph/9807006]
● generated by {H, S, CNOT} [quant-ph/9807006]
● implemented with                             elementary gates [quant-ph/0406196]
● randomly sampled with classical time complexity                [2003.09412, 2008.06011]
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The Clifford group is a 3-design

Recognized early that the Clifford group is a 2-design
● [quant-ph/0103098, quant-ph/0405016, quant-ph/0512217]

In fact, it is a 3-design
● [1510.02619, 1510.02769]
● It is a minimal 3-design: except for n = 2, 
● Analysis fully generalized to qudits (only a 2-design!)

c.f.
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Some generalizations to briefly mention

Approximate designs:
● Take random circuits of length                                   [1208.0692]

Designs over nonuniform distributions

Designs for arbitrary compact groups
● Match the irreducible components of 
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Connecting circuit complexity with quantum chaos

Designs are useful for practicality – can we learn something fundamental from them?

Roberts & Yoshida, Chaos and complexity by design [1610.04903]

Designs are directly motivated by notions of circuit complexity

Designs are also defined through random unitaries

Chaos is understood through models of random unitary evolution

Quantum circuit complexity  Quantum chaos?↔

Unitary 
designs
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Some motivation

Consider the Heisenberg evolution of some local observable       :

A common measure for quantum chaos is the OTOC:

If sufficiently chaotic, the OTOC decays to                                                                                ,

U a random unitary

Does U really have to be sampled from the Haar measure? Can we already diagnose 
quantum chaos with a simpler ensemble?
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Chaos and designs

Consider the 2k-point correlator

where the average is evaluated on the maximally mixed state,                                         , and      
                           for U drawn from some ensemble      of unitaries

Roberts & Yoshida show that:
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1. OTOCs specify twirls
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2. OTOCs are frame potentials
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Implications

The notions of quantum chaos and pseudorandomness are equivalent to those of 
unitary designs

Decay of OTOCs is directly connected to how uniformly random the ensemble is

Recall:

Hence: smaller average OTOC → closer to a k-design → system more random/chaotic

“evenly distributed”
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Designs and complexity

Designs are clearly related to quantum circuit complexity

Loose lower bound:

# of elementary gates to 
prepare any circuit in 

# of gates we can choose 
from, per step in the circuit
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Designs and complexity

Counting argument: allotted complexity C, 

To generate all elements of     , we need at least 

Finally, the frame potential bounds       :
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Chaos and complexity via designs

The closer       is to a k-design, the smaller                is:

          Minimal complexity of an ensemble increases with its chaoticity

Recall: k-design has 

Also naturally relates to entropy:

(von Neumann entropy of the probability distribution associated with     )
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Some other results

If      is continuous, then we can only generate elements with    -close circuits:

If generated by an ensemble of Hamiltonians, then 

Explicit calculation with 8-point OTOC:
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Closing remarks

1. Continuous groups can be approximated by finite groups, up to an order t
● This approximation is sufficient for most purposes

2. Finite groups are easier to study theoretically and implement practically
● Clifford group!!!

3. Representation theory offers an elegant mathematical 

     framework

4. Chaos  Designs  Complexity↔ ↔


