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Review of Eigenstate Thermalization

• Thermal phase and MBL phase are opposite dynamical 
phases.

• Interacting many-body systems associated with highly 
excited states.

• Pure states in isolated quantum systems reach thermal 
equilibrium values: memory of the initial state is lost
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Review of Eigenstate Thermalization

• For an eigenstate |𝛼⟩ obeying ETH, all observables within A 
will have thermal expectation values. This implies that the 
reduced density matrix 𝜌𝐴 = Tr𝐵(|𝛼⟩⟨𝛼|) (𝐵 = ҧ𝐴 ) is thermal. 

• Entanglement entropy is equal to the thermodynamic entropy.

𝑆ent 𝐴 = −tr 𝜌𝐴 log 𝜌𝐴 = 𝑆th 𝐴

Thermodynamic entropy is extensive, so entanglement entropy     
of the subsystem follows volume law, 𝑆ent 𝐴 ∝ vol(𝐴).

• Sensitivity of eigenstates to perturbations and Wigner-Dyson 
statistics.



Deviations from ETH

• Systems that fail to thermalize:

1. Traditional integrable systems: extensive sum of 
local operators, equilibrate to generalized Gibbs 
ensemble, isolated point in the family of 
Hamiltonians, Poisson statistics.

2. Many-body localization (MBL): complete set of 
localized conserved operators, stable phase, KAM 
type integrability, Poisson statistics.

3. Quantum many-body scars: scarred systems that 
are thermal in weak sense, isolated point in the 
phase space of Hamiltonians.

Choi et al. Science(2016)



Many-body Localization

• Anderson localization: localization of a single 
particle
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† 𝑎𝑛 + 𝑡𝑛(𝑎𝑛
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where 𝜀𝑛 ∈ [−𝑊,𝑊].

• For 𝑡 = 0, all the sites are unconnected and the 
eigenfunctions are totally localized. For 𝑊 = 0, 
eigenfunctions are Bloch functions, which are not 
spatially localized. There exists 𝑊/𝑡 critical.

• For W/t > 𝑊/𝑡 critical, 𝐻, 𝑛𝛼 = 𝑛𝛼 , 𝑛𝛽 = 0, 
complete set of localized operators.

Aspect and Inguscio, Physics Today (2009)



Area-law Entanglement of MBL Eigenstates

• Interacting many-particle systems: effect of local perturbations remains 
local.

• Area-law entanglement: entanglement of 

eigenstates proportional to the area of the subsystem.

• Heuristic argument: 𝐻 = 𝐻𝐴 +𝐻𝐵 + 𝑉𝐴𝐵

▪ With coupling turned off, 𝐼 𝐴𝐵 = 𝛼 𝐴 ⊗ 𝛽 𝐵

▪ Introduction of local coupling will only affect degrees of freedom 
within localization length from the boundary.*

* Follows volume-law entanglement following a quantum quench.



Quasilocal Integrals of Motion

• Area law implies that MBL eigenstates are connected to product states 
by a sequence of quasilocal unitary transformations*.

• Quasilocal unitary: 𝑈 = Π𝑖 …𝑈𝑖,𝑖+1,𝑖+2
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• Such unitary transformations diagonalize the Hamiltonian in a given 
product state basis.
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Quasilocal Integrals of Motion

• Example: 𝐻𝑋𝑋𝑍 =
𝐽⊥
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• New integrals of motion: 𝜏𝑖
𝑧 = 𝑈𝜎𝑖

𝑧𝑈† where 
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• Complete basis of operators 𝜏𝑖
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and MBL Hamiltonian:
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Complete set of independent 

quasilocal integrals of motion 

(LIOMs): localized bits or l-

bits.



Dynamical Properties of the MBL Phase

1. Logarithmic growth of entanglement following a 
quench:

• A given spin acquires a phase dependent on another spin at 
x away after a time 𝑡 𝑥 set by the condition ෨ℎ𝑖,𝑖+𝑥𝑡 ∼ 1.

• The effective magnetic field is exponentially suppressed 
෨ℎ𝑖,𝑖+𝑥 ∼ 𝐽0𝑒

−𝑥/𝜉′ leading to 𝑥𝑒𝑛𝑡 𝑡 = 𝜉′ log 𝐽𝑜𝑡 and

𝑆ent ∝ 𝜉′log 𝐽𝑜𝑡

• In a finite system, 𝑠ent ∞ ∝ 𝐿



• Logarithmic propagation of entanglement is different growth in 

ergodic, integrable models and Anderson systems.

2. Generic local observables equilibrate to equilibrium value in a power-

law fashion. 

Dynamical Properties of the MBL Phase



Number entropy,

𝑆𝑛 = −σ𝑝𝑛log(𝑝𝑛)

Number entanglement stems from 

a superposition of states with 

different particle numbers in the 

subsystems and is generated 

through particle motion across the 

boundary.

Configurational entanglement 

stems from a superposition of 

states with different particle 

arrangement in the subsystems 

and requires both particle motion 

and interactions.
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Video References:

• Annabelle Bohrdt: https://www.youtube.com/watch?v=yyZOi1BVPZI&t=2134s

• David Huse: https://www.youtube.com/watch?v=-Ou702pChUo

• Julian Leonard: https://www.youtube.com/watch?v=47KG1D_qQKQ
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