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Quantum many-body scars

Weak breakdown of thermalization in quantum chaotic Hamiltonians.

Named after the phenomenon of “guantum scars” seen in eigenfunctions of chaotic
Hamiltonians

First experimentally observed in a 1D array of neutral atoms with Rydberg excitation.

Simple but rich model — PXP Hamiltonian for 1D array of neutral atoms.
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Quantum Scars — Hamiltonian Eigenstates
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Example: Bunimovich stadium

* Left: probability density for
“scarred” eigenstates of the
Hamiltonian.

* Right: Unstable periodic orbits
which scar these eigenstates.

We can construct quasi-eigenstates
using Gaussian wave packets centered
on points along unstable periodic orbit.

Phys. Rev. Lett. 53, 1595 (1984)



Quantum Scars — Dynamics

Time evolution: e 1Ht/A
Example: Bunimovich stadium with Gaussian wave packet as the initial
state.
* (Cyan) Along an unstable periodic orbit.
* (Dark red) Off an unstable periodic orbit by angle /4.
* Revival probability in the time domain.
* Gaussian wave packet along an unstable period orbit has

revivals. f
* Gaussian wave packet not along an unstable period orbit has
negligible revivals. 0.06;
¢ Overlap of initial state with energy eigenstates. 0.05
* Gaussian wave packet along an unstable period orbit has o 004
periodic sequence of peak in overlaps with energy eigenstates j 0.03:
* Gaussian wave packet not along an unstable period orbit has a = 0.02:
continuum of frequencies in overlaps with energy eigenstates. 0.01:
0
Gaussian wave packet along unstable period orbit => quasi-eigenstate. 0 200 400 600 800 1,000 1200
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Quantum Many-Body Scars — Experimental discovery
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Even more striking is the coherent and persistent oscillation
of the crystalline order after the quantum quench. With respect
to the quenched Hamiltonian (A = 0), the energy density of our
Z,-ordered state corresponds to that of an infinite-temperature
ensemble within the manifold constrained by Rydberg blockade.
Also, our Hamiltonian does not have any explicitly conserved quan-
tities other than total energy. Nevertheless, the oscillations persist
well beyond the natural timescale of local relaxation (1/£2) and the
fastest timescale (1/V;;1).

arxiv:1707.04344

Surprising revivals when initial
state is Z,.
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PXP Hamiltonian for Rydberg atom arrays
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H (—X- — AQ ) + Vi1 2 Qi1 Qi Tensor product
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Nearest neighbor Rydberg blockade:
1—-Z; . .
P, = 5 I — |g)g| = |o)o] removg states with adjacent Rydberg
excitations.
Hpxp = E Pj1X; P “Fibonacci chain”, “PXP Hamiltonian”: model for studying the statics,
J dynamics of the Rydberg atom system

arxiv:1711.03528, arxiv:1806.10933



PXP Hamiltonian — Hilbert Space Structure

Nearest neighbor two-site configurations allowed {OO, oe, oo}
Open boundary conditions (OBC) Periodic Boundary Conditions (PBC)
e Configurations can end with ground, o or Rydberg, e. e [-atom configurations for PBC involves taking L-atom configurations and

removing all configurations that begin and end with the Rydberg state

e [L-atom configurations ending with Rydberg - - - ® are obtained by append- o--.and ---e.

ing oe to (L — 2)-atom configurations.

) ] ) ) e This gives the recursion relation for Hilbert Space dimension
e [-atom configurations ending with Rydberg ---o are be obtained by ap-

pending o to (L — 1)-atom configurations. dPBC =dp —dp_4

e This gives the recursion relation for Hilbert Space dimension for L-atom

configurations, df, e Hilbert space dimension for L-atom configuration with PBC is the sum of

(L —1)th and (L + 1)th Fibonacci numbers
dr, =dp_1+dp_2 dPBC = Fp  + Fr

e Initial condition for recurrence
*  Hilbert Space dimension is related to Fibonacci numbers.

do=1,dy =2 “Fibonacci chain”.
L
. ~ol=(1
e Hilbert space dimension for L-atom configuration with OBC with the (L+ dp~ ¢~ = (2 (1 + ‘/g))
2)the Fibonacci number e d;, < 2% butstill exponential!
dr, = Fr42

arxiv:1711.03528, arxiv:1806.10933



PXP Hamiltonian — Symmetries

Hpxp = ;Pj—lXijH X = |e)(o] + [o) (e Pj=— - = |g)g| = [o)ol

* Discrete spatial inversion symmetry.
* Inversion symmetric seFtor, labelled 0 or +. je L—j
* |nversion anti-symmetric sector, labelled T or —.

* “Particle-hole” symmetry in the many body spectrum.
* Operator anti-commuting with the Hamiltonian.
* Eigenstate with energy +FE has a partner eigenstate with

energy —E. C = ® Z,
* Translational symmetry for periodic boundary conditions (PBC). J

* Block diagonal in quasi momentum, k.

* We typically use the quasi momentum, k = 0, inversion-symmetric, + sector to analyze the Hamiltonian with PBC

arxiv:1711.03528, arxiv:1806.10933



PXP Hamiltonian — Energy Level Spacing

Hpxp = ZPj—lXij—i-l
J
X = |o)o| + [o)(e]

Level spacing distribution, P(s), approaches Wigner
Dyson distribution for GOE as system size L is
increased.

Density of states, p(E), has a Gaussian form, with a

spike of density at E = 0 due to zero energy modes.

gZPoisson(S) — €Xp (_S)
ySemi—Poisson(S) =4s exXp (_25)

ESGX <—ES2)
2 7P\ T}

Have level

PWD-GOE(S) = repulsion

PXP Hamiltonian is chaotic!
Eigenstates are not straightforward to find.
We will find quasi-eigenstates.

Level spacing statistics in the zero quasi
momentum, inversion symmetric sector

arxiv:1711.03528, arxiv:1806.10933
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Creating quasi-eigenstates — simple example

_ E _ E + E —
Hparamagnet — Xj — Uj + Uj
J J J

~

Adds excitation to site
J, summed over all
sites

I

Removes excitation
from site j, summed
over all sites

Hparamagnet — ZX] — H-|— + H_

TN

Collective spin raising
operator

Collective spin
lowering operator

arxiv:1711.03528, arxiv:1806.10933

Z eigenbasis states in a hyper cube of
2L dimensions. Here L = 3.

Omid

0j+, o; move around the Z eigenbasis in

a Gray code fashion

Z eigenstates are quasi eigenstates of this
Hamiltonian.



Creating quasi eigenstates — PXP Hamiltonian

Low energy PXP model subspace for L = 6

Hpxp =Y P 1X;Pjy1=Hy+H_
J

H:I: — Z Pj_la;-—LPj+1 + Z Pj_lO';FPj_Fl

jeE€even J€o0dd
Increases Hamming Decreases Hamming o
distance from the Z, distance from the Z, * These s_tate.are quasi engenstates |
state state approximations for the PXP Hamiltonian.
* These are not eigenstates of the PXP
Hamiltonian.

arxiv:1711.03528, arxiv:1806.10933



Creating quasi eigenstates — PXP Hamiltonian

Low energy PXP model subspace for L = 6

Z2) = |@ 0 @0 e0) |Z5) = |[o @0 e0e)

0 1 2 3 4 5 6 D,
Hamming distance from Zs, Dy,

* These state are quasi eigenstates
approximations for the PXP Hamiltonian.
* These are not eigenstates of the PXP
IL —n) (H—)” |Z2) Hamiltonian.
* Thisis the Forward Scattering
Approximation (FSA).

The Hamming distance from n) o (H*)" 1Zs)
the 7Z, state counts number of
excitations, sayn € {0, L}

arxiv:1711.03528, arxiv:1806.10933



PXP Hamiltonian — S
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Density plot of overlap of energy

eigenstates with Z, as a function of energy.

* Band of special eigenstates separated
from other eigenstates.

* Crosses denote overlaps with states
calculated using Forward Scattering
Approximation.

e Tower structure in overlaps

nectrum and special states

(a) 6 -
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Density plot of half chain entanglement

entropy of energy eigenstates as a function

of energy.

* Band of special low entanglement
eigenstates, for example O, ..., 7.

Density plot of overlap of energy

eigenstates with Z, as a function of energy.

* Band of special low entanglement
states (O, ..., 7) are the states with high
overlap!

Special eigenstates (0, ..., 7) span the entire
energy range from lowest energy to
middle. This model has energies in pairs

+ FE.



Dynamics under PXP Hamiltonian — Revivals

1.0 1 75
— d=3
~ 0.8 d=14
Time evolution: =
e_iHPXPt §§0.6 5 R
§0.4 -
0) =|--0cco000000---) 0'2-\ N\
|Z2) =]--e0cececeo--:) 0.0 ; : .
|Z3) =|---e0cceocceoco---) 0 10 ; 20 30
|Z4) =1|--#000@000--") ;
Revivals measured using return probability to Entanglement entropy with midpoint bipartition for
initial state for different |Z,;) for L = 24 with different initial states.
PBC. > |Zy), |Z3), |Z,) states have slower growth of
* |Z,), |Z3), |Z,) states have revivals in an entanglement entropy than |0).
exponentially large Hilbert space.  |Initial state |Z,) leads to oscillations about the

linear growth in entanglement entropy and nearest
neighbor correlations.
arxiv:1711.03528, arxiv:1806.10933



Semiclassical treatment of PXP Hamiltonian using
Matrix Product States (MPS)

Matrix Product State

4t : * Entanglement entropy of a 1-atom
' and 6-atom subsystems depend on *  Factorize the amplitudes as matrix of
Sa 2 —I%) >‘ the initial state. higher rank tensors
55— 5 o ° Entanglement has oscillatory behavior. * Introduce auxiliary or virtual indices
t [I/Q] . ZZ |n|t|a| state |eads to |OW * States Of the PXP Hamiltonian H||bert
1 d 5 ' p \ .
(©) entanglement (approximately area Space can be written as bond-
law) dimension 2 MPS.
* MPS are parameterized by 8 and ¢ at
each site.

v %0 20 40 60 80 100 120
t /9]
0(0,6) = Tr (A1(01,61), Az(0, 6) -+ AL (01, 61))

soooo00e0

arxiv:1807.01815, arxiv:1905.08564



Semiclassical treatment of PXP Hamiltonian using
Matrix Product States (MPS)

* Bond dimension 2 MPS

* Assume each spin evolves in x — z plane, with
¢p=0

e 2-site translational invariance, 8,,, = 0,

* Equations for motion for Gayen, 8044 Using the

0)s— |0); 10Yi41

Time Dependent Variational Principle (TDVP)
u(& [ ‘ %% ] * Non-linear equations => phase space picture for
1

Heven: Hodd

{AMH HAM}" 0000000

Time Dependent Variational Principle (TDVP)
e Variationally optimize the projection of a
guantum state on a desired manifold. :
 Here the manifold is that of bond-dimension 2 Q?V'e“ = f(Oeven; oaa)
MPS with two-site cell parameterized by Oayep, Oodd = f(Oodd, Oeven)

Bodd

‘w(eevena 90dd)> = Tr ( T Aeven<eeven)Aodd (Qodd) T )

arxiv:1807.01815, arxiv:1905.08564



Semiclassical treatment of PXP Hamiltonian using
Matrix Product States (MPS)

®|Z,) ®|Z;) @]|0)

e Bond-dimension 2 MPS

%« Suggestive of mixed « Assume each spin evolves in x — z plane, with

-  . phase space. =0

* Color represents rate of e 2-site translational invariance, 8,,, = 6,

NN leakage y out of the * Equations for motion for Bgyen, fodq Using the
MPS manifold. Time Dependent Variational Principle (TDVP)

* Non-linear equations => phase space picture for

gevenr Qodd-
* Leakage out of MPS manifold is quantified.

M 60000000

t [1/9)

: . eevena 90 = Tr(--- Aeven eeven Ao 90 Tt
Flow diagrams of Oayen, 0oqq for different initial conditions. W aa)) , ( ( JAada(0oaa) )
* Unstable periodic orbit between states |Z,) and |Z5). Ocven = f(Ocven; Ooda)
* Motion from state |0) proceeds towards a saddle point. éodd = f(0odd, Oeven)
* Similarity with persistent oscillations for |Z,) and

equilibration for |0).
arxiv:1807.01815, arxiv:1905.08564



Deforming the PXP Hamiltonian

Density (arb. units)
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PXP Hamiltonian can be deformed with

long-range interactions to obtain

e Stronger revivals.

* Entanglement entropy oscillations

* More separation of “special
eigenstates” from bulk spectrum

Deformed PXP Hamiltonian is still

chaotic

e Energy level spacing distribution
approaches Wigner Dyson for GOE
as system size increases



Deforming the PXP Hamiltonian — Emergent SU(2)

Density (arb. units)
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Projector on to “special band”

e
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R
0Hp =—Y > haPX;P(Zj—2+ Zj1a)

J d=2
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J

Emergent SU(2) structure

(a) (b) — . ;.

10 4 ® Optimized e Left: matrix elements of H™ is approaches
) i those of a representation of the spin raising
E— 8 - . 01 operator, S.
oy a) 30 * Right: matrix elements of HZ is approaches
T 165 a 001 ! ) those of a representation of the spin
= -2041 900 - operator, SZ.
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Mechanism of weak ergodicity breaking

H = Hscar D Hihermal

Thermal

Approximate block
diagonal structure that is
not related to symmetries
of the Hamiltonian.

b (d
< AN
4 DOS DOS
—OEU) }0 — I . 2 (!)O—E _— @ L 2 O—E
Spectrum generating algebra Krylov restricted
* Operator Q recursively thermalization
generates the eigenstates of * Hamiltonian generates
the Hamiltonian, like a dynamics in a restricted
ladder operator. subspace.

* Time evolution operator
has a tridiagonal
structure in the scar
subspace

arxiv:2011.09486

" . DOS

E

Projector embedded scarred
Hamiltonian

Construct scarred
Hamiltonian by
embedding projectors to
create the approximate
block-diagonal structure.



Summary and Other Topics

Summary

Quantum many body scars lead to weak breaking

of ergodicity in a chaotic Hamiltonian.
Scarred Hamiltonian have a special energy band
which have anomalous properties

* Low entanglement entropy,

* High overlaps with specific states

* High revival probability during quench

dynamics.

Semi classical treatment using Matrix Product
States and Time Dependent Variational Principle
suggests a possible mixed phase space.

Other topics

Weak violation of ETH for matrix elements in the
special energy band.

Construction of scarred Hamiltonians from well
known models.

Deformations of scarred Hamiltonians and
possible integrability.

Robustness of quantum many body scars to
some perturbations.

Hamiltonians with general fracturing of Hilbert
space.

Beyond 2 level local Hilbert Space.
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