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We review the use of POVM’s as an error-free method to distinguish the members of a finite set
of quantum states, but with a finite probability of an inconclusive result. This is only possible for
a set of linearly independent states. Minimization of the probability of an inconclusive result is
discussed for a number of cases, including the case of two states with arbitrary a priori probabilities
and the case of N symmetric states with equal a priori probabilities.

INTRODUCTION

The ability to distinguish a given quantum state from
a set of possible states is of fundamental importance
in quantum information processing. The properties of
quantum states are such that they make available com-
munications protocols that are theoretically superior to
those possible classically. But the same properties that
make quantum states such powerful resources also make
some basic operations impossible or very difficult, namely
state determination [1].

Exactly determining the state of an arbitrary quan-
tum system with complete confidence is impossible. This
is the cornerstone of the famous no-cloning theorem of
Wooters and Zurek [2]. Research in the past two decades
has shed light on how well a given state can be deter-
mined. It turns out that, while it is impossible to de-
termine arbitrary states, it is possible to discriminate a
finite set of states without making errors, as long as an
inconclusive result is considered acceptable [1].

This paper will work through a simple illustrative ex-
ample of how a well-chosen POVM can be used to distin-
guish states without ever misidentifying any, as well as
look at strategies to choose POVM’s such that the prob-
ability of an inconclusive result occurring is minimized.

USING POVM’S TO DISCRIMINATE
NON-ORTHOGONAL STATES

POVM’s are one of the basic tools of quantum informa-
tion theory. They are a specific form of general measure-
ment, but more general than projective measurements
[3]. Specifically, they are not bound by the condition
PiPj = δijPi that applies to projectors, though the ele-
ments of a POVM, {Ei}, must satisfy the conditions that
they be positive and complete:

〈ψ|Ei|ψ〉 ≥ 0 (1)

∑
i

Ei = 1̂1 (2)

One scenario in which it is possible to distinguish all
of the given states is that of a set of mutually orthog-
onal states. In that case, one can simply choose one-
dimensional projectors as the POVM elements. Only the
projector (e.g. |ψi〉〈ψi|) that corresponds to the state
(e.g. |ψi〉) will yield a measurement result.

To illustrate this, suppose we have three states, |0〉,
|1〉, and |2〉, such that 〈i|j〉 = δij . If we choose the fol-
lowing projectors as the POVM elements, E0 = |0〉〈0|,
E1 = |1〉〈1|, E2 = |2〉〈2|, we will get the following
measurement statistics:

pEi(|j〉) = 〈j|Ei|j〉 = 〈j|i〉〈i|j〉 = δij (3)

From these probabilities, it is easy to see that only
measuring with the POVM element that corresponds to
the given state will yield a result. In this case it is trivial
to unambiguously distinguish the states.

If, on the other hand, the states in the set are non-
orthogonal, the states cannot be perfectly distinguished
without error or uncertainty1. Suppose we have the fol-
lowing two states,

|ψ1〉 = |0〉 (4)

|ψ2〉 = a|0〉+ b|1〉 (5)

where, for i, j = 0, 1, 〈i|j〉 = δij , and |a|2 + |b|2 = 1. If
we were able to distinguish these states reliably, we could
choose POVM elements {E1, E2}, such that

∑
i Ei = 1̂1,

and we would know both of the following:

〈ψ1|E1|ψ1〉 = 〈ψ2|E2|ψ2〉 = 1 (6)

〈ψ1|E2|ψ1〉 = 〈ψ2|E1|ψ2〉 = 0 (7)

The completeness of the set of POVM elements results
in eq. 7, which implies that√

E2|ψ1〉 =
√
E1|ψ2〉 = 0 (8)

1 Adapted from Nielsen and Chuang [3], p.87.
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Here we’ve used the fact that all Ei are positive, which
allows us to write Ei =

√
Ei

√
Ei. Now let us take a

closer look at 〈ψ2|E1|ψ2〉:

〈ψ2|E1|ψ2〉 = (a∗〈0|+ b∗〈1|)E1(a|0〉+ b|1〉) (9)
= |a|2〈0|E1|0〉+ a∗b〈0|E1|1〉

+ab∗〈1|E1|0〉+ |b|2〈1|E1|1〉 (10)

= |a|2 + a∗b〈0|
√
E1

√
E1|1〉

+ab∗〈1|
√
E1

√
E1|0〉+ 0 (11)

= |a|2 + 0 + 0 + 0 = |a|2

= 0

Where we have utilized eq. (8). This means for
〈ψ2|E1|ψ2〉 = 0, we must have a = 0 ⇔ |ψ2〉 = |1〉.
What we have shown is that the assumption of distin-
guishability requires our states to be orthogonal.

DISTINGUISHING NON-ORTHOGONAL
STATES WITHOUT ERROR

While it is not possible to always distinguish states
without error, it turns out that it is possible to distin-
guish the states some portion of the time without error,
if the possibility of an inconclusive outcome is allowed.
This procedure was first discovered by Ivanovic [4] and
later more fully explored by Dieks [5] and Peres [6]. In
this scenario, for N states there are N+1 outcomes: one
certain outcome for each of the N states and one outcome
that tells us that we do not know the state. We will first
look at how this is possible with just two states in a two
dimensional system.

A simple example of two states

We will now look at a simple example of a POVM
which yields an error-free distinction of two non-
orthogonal states, but also includes an inconclusive re-
sult2. Suppose we are given the following states:

|ψα〉 = |0〉 (12)

|ψβ〉 =
1√
2
(|0〉+ |1〉) (13)

We can see that it would be impossible to distinguish
these states perfectly using von Neumann measurements.
By choosing the right POVM elements we can distinguish

2 Adapted from Nielsen and Chuang [3], p.92.

the two without error. Consider the following three ele-
ment POVM:

E1 =
√

2
1 +

√
2
|1〉〈1| (14)

E2 =
√

2
1 +

√
2

(|0〉 − |1〉)(〈0| − 〈1|)
2

(15)

E3 = 1̂1− E1 − E2 (16)

E3 =
√

2
1 +

√
2

[ (
√

2+1)|0〉〈0|+(
√

2−1)|1〉〈1|+|0〉〈1|
2

+ |1〉〈0|
2 ] (17)

We can see that our POVM elements satisfy the nec-
essary completeness relation:

∑
i Ei = 1̂1. Note that

none of these elements are orthogonal, as EiEj 6= δij
for distinct i, j.

Now lets look at the probabilities of the possible out-
comes. If we have state |ψα〉, we will get results E1, E2,
and E3 with the following probabilities:

pE1(|ψα〉) = 〈ψα|E1|ψα〉 = 0 (18)

pE2(|ψα〉) = 〈ψα|E2|ψα〉 =
1
2
(

√
2

1 +
√

2
) (19)

pE3(|ψα〉) = 〈ψα|E3|ψα〉 = 1− 1
2
(

√
2

1 +
√

2
) =

1√
2

(20)

From this, we can be certain that if we get result E1

we don’t have |ψα〉. Now let’s look at the measurement
statistics for state |ψβ〉.

pE1(|ψβ〉) = 〈ψβ |E1|ψβ〉 =
1
2
(

√
2

1 +
√

2
) (21)

pE2(|ψβ〉) = 〈ψβ |E2|ψβ〉 = 0 (22)

pE3(|ψβ〉) = 〈ψβ |E3|ψβ〉 = 1− 1
2
(

√
2

1 +
√

2
) =

1√
2

(23)

Analogous to the previous case, we can be certain that
the state is not |ψβ〉 if the result is E2. In this case,
regardless of which state we have, the probability of an
inconclusive result is PI = 1√

2
≈ 0.71.

Geometrically, we can think of the POVM elements as
projector-like operators, corresponding to states, |ψ⊥i 〉,
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orthogonal to the states in the set, |ψi〉. For our two-
dimensional example, we chose state vectors that lie per-
pendicular to the state vector in question. Since the sec-
ond state is not the same as the first (and assuming it is
non-zero), it must have some component in the perpen-
dicular direction of the first. A result that corresponds
to a projection into the perpendicular direction (to the
first state vector) means the state in hand must be the
second state (|ψβ〉 in the example). In other words,

E1 ∝ |ψ⊥α 〉〈ψ⊥α | = |1〉〈1| (24)

was chosen because 〈ψ⊥α |ψα〉 = 〈1|0〉 = 0. Similarly

〈ψ⊥β |ψβ〉 = (
1√
2
)(

1√
2
)(〈0| − 〈1|)(|0〉+ |1〉) = 0 (25)

and

E2 ∝ |ψ⊥β 〉〈ψ⊥β | =
1
2
(〈0| − 〈1|)(|0〉 − |1〉) (26)

Another approach to two non-orthogonal states

In their 1996 paper, Huttner et al. [7] described a
general procedure for two states, |ψα〉 and |ψβ〉, where
|〈ψα|ψβ〉| = cos γ, and γ is the angle between the state
vectors in two dimensions. Their procedure involves ex-
tending the two dimensional Hilbert space to three di-
mensions. This is accomplished by using a third state,
|φ0〉, which is orthogonal to both |ψα〉 and |ψβ〉. They
further choose two more states, |φ1〉 and |φ2〉, such that
〈φi|φj〉 = δij , for i, j = 0, 1, 2, forming a three di-
mension orthonormal basis. Using a unitary evolution
operator, U , they rotate the state off the original plane
by angle θ about a vector

|v〉 ≡ 1√
2
(|φ1〉 − |φ2〉) (27)

If θ is chosen such that cos θ = tan γ
2 , the original states

|ψα〉 and |ψβ〉 are transformed (with some simplification)
to

|ψ′α〉 = U |ψα〉 =
√

2 sin
γ

2
|φ1〉+

√
cos γ|φ0〉 (28)

|ψ′β〉 = U |ψβ〉 =
√

2 sin
γ

2
|φ2〉+

√
cos γ|φ0〉 (29)

We can see that |ψ′α〉 and |ψ′β〉 are orthogonal to |φ2〉 and
|φ1〉 respectively3. By choosing POVM elements

E1 = |φ1〉〈φ1| (30)

3 See the Huttner et al. paper [7] for a good graphical depiction
of their procedure.

E2 = |φ2〉〈φ2| (31)

we can easily distinguish the initial states, |ψα〉 and |ψβ〉.
Of course we are also bound by the completeness relation,∑

iEi = 1̂1, so we must have

E3 = 1̂1− E1 − E2 = |φ0〉〈φ0| (32)

which corresponds to an inconclusive result. We see that
the measurement statistics are

pE1(|ψα〉) = 〈ψ′α|E1|ψ′α〉 = 2 sin2 γ

2
(33)

pE2(|ψα〉) = 〈ψ′α|E2|ψ′α〉 = 0 (34)

pE3(|ψα〉) = 〈ψ′α|E3|ψ′α〉 = cos γ (35)

and

pE1(|ψβ〉) = 〈ψ′β |E2|ψ′β〉 = 0 (36)

pE2(|ψβ〉) = 〈ψ′β |E1|ψ′β〉 = 2 sin2 γ

2
(37)

pE3(|ψβ〉) = 〈ψ′β |E3|ψ′β〉 = cos γ (38)

Noting that

2 sin2 γ

2
+ cos γ = 2 sin2 γ

2
+ (1− 2 sin2 γ

2
) = 1

we see that the POVM is complete. In effect, Huttner
et al. have mapped two non-orthogonal states to two
orthogonal-like states (they can be distinguished with
projectors), albeit in three dimensions. Here the proba-
bility of an inconclusive result is pI = cos γ, which is
also |〈ψα|ψβ〉|. We see that orthogonal states (γ = π

2 )
will be perfectly distinguishable with pI = 0.

CONDITIONS FOR ERROR-FREE STATE
DISCRIMINATION

In 1998, Chefles [8] showed that error-free discrimina-
tion of states is only possible if the states form a linearly
independent set. He used the following proof. We first
assume that we have N distinguishable states, |ψi〉. Our
POVM will then have N elements, Ei, to distinguish each
of the N states, and one element, EI , which corresponds
to the inconclusive result. For the N elements to distin-
guish the states, we must have

〈ψi|Ej |ψi〉 = piδij (39)

Without assuming the states are linearly dependent, we
can express them as

|ψi〉 =
∑

k

cik|ψk〉 (40)
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If we now plug this back into eq. (39), we get

〈ψi|Ej |ψi〉 =
∑
k,k′

c∗ik′cik〈ψk′ |Ej |ψk〉 = piδij (41)

To simplify 〈ψk′ |Ej |ψk〉, we can use the Cauchy-Schwartz
inequality:

|〈ψk′ |Ej |ψk〉|2 6 〈ψk′ |Ej |ψk′〉〈ψk|Ej |ψk〉 = pk′δk′jpkδkj

(42)
Using this with eq. (39) we get

〈ψk′ |Ej |ψk〉 = pkδkk′δkj (43)

Inserting this into eq. (41), we get∑
k

|cik|2〈ψk|Ej |ψk〉 = piδij (44)

From eq. (39) we can conclude that we must have
|cik|2 = δik. Looking at eq. (40), we see this condi-
tions implies that the states are linearly independent of
one another, if they are to be distinguishable.

MINIMIZING THE PROBABILITY OF AN
INCONCLUSIVE RESULT

While avoiding the mis-identification of states is very
useful, it is also desireable to minimize the probability of
inconclusive results for a given system. In this section
we will look at the work reported by different authors on
minimizing the probability of an inconclusive result, pI ,
for different cases.

Two states

The early work of Ivanovic [4], Dieks [5], and Peres
[6] looked at the discrimination of two states with equal
a priori probabilities, p1 = p2 = 1

2 , as in the above
examples. They found the probability of an inconclusive
result to be

pI = |〈ψ1|ψ2〉| (45)

which again shows that fully reliable discrimination only
occurs when the states are orthogonal.

In their 1995 paper [9], Jaeger and Shimnoy looked
at two states with arbitrary a priori probabilities,
p1 = 1 − p2. Following a procedure similar to Huttner
et al., they found that the minimum probability of an
inconclusive result for two states, pI , was

pmin
I =

1
2
− 1

2

√
(1− 4p1p2|〈ψ1|ψ2〉|2) (46)

Three states

In 1998 Peres and Terno [10] published results on min-
imizing pI for three linearly independent states in three
dimensions with arbitrary a priori probabilities. Follow-
ing a procedure with similarities to the above procedure
by Huttner et al., Peres and Terno found the coefficients,
ki, of the POVM elements

Ei = ki|φi〉〈φi| (47)

which are constrained by the fact that

EI = 1̂1−
3∑

i=1

Ei (48)

must be positive. For pmin
I , the coefficients, ki should

be as large as possible. They found that these coeffi-
cients lie on a convex surface in the first octant of three
space, though they did not give an analytical expression
for pmin

I .

N symmetric states with equal a priori probabilities

In their 1998 paper [10], Peres and Terno also laid out
a strategy to achieve pmin

I for N states. In the same
year, Chefles and Barnett [11] were able to analytically
determine the necessary POVM corresponding to pmin

I

for N symmetric states with equal a priori probabilities.
A set of states is symmetric if there is a a unitary

transformation operator, U , such that

|ψi〉 = U |ψi−1〉 = U i|ψ0〉 (49)

|ψ0〉 = U |ψN−1〉 (50)

UN = 1̂1 (51)

For equal a priori probabilities, they found that the min-
imum probability for an inconclusive result was

pmin
I > 1−N ×min(|cr|2) (52)

where N is the number of states and cr comes from a
state expansion

|ψi〉 =
N−1∑
k=0

cke
2πijk

N |φk〉 (53)

which has the reciprocal (orthogonal) state

|ψ⊥i 〉 = Z− 1
2

N−1∑
r=0

c∗−1
r e

2πijr
N |φr〉 (54)
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where Z =
∑

r |cr|−2 and (finally)

|cr|2 =
1
N2

∑
i,i′

e
−2πir(j−j′)

N 〈φj′ |φj〉 (55)

Once again it can be seen that if the states are all or-
thogonal, and thus |cr|2 = N

N2 = N−1, we will have
pI = 0 and the states will be fully distinguishable.

CONCLUSION

We have reviewed the use of POVM’s as a method
to distinguish quantum states from a finite set. This
provides us with an error-free way to tell even non-
orthogonal states apart, as long as an inconclusive result
is acceptable. For certain situations, physicists have been
able to find the minimum possible probability of an in-
conclusive result and/or the POVM elements which will
yield the minimum probability.

ACKNOWLEDGEMENTS

This paper was written as part of Carlton Caves’ quan-
tum information theory course at the University of New

Mexico (Fall 2005). For helpful comments and discussion,
I would like to thank Carlton Caves and Sergio Boixo.

∗ Electronic address: roy@unm.edu

[1] A. Chefles, Contemp. Phys. 41, 401 (2000).
[2] W. Wootters and W. Zurek, Nature 299, 802 (1982).
[3] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press,
2000).

[4] I. D. Ivanovic, Phys. Lett. A 123, 257 (1987).
[5] D. Dieks, Phys. Lett. A 126, 303 (1988).
[6] A. Peres, Phys. Lett. A 128, 19 (1988).
[7] B. Huttner, A. Muller, J. D. Gautier, H. Zbinden, and

N. Gisin, Phys. Rev. A 54, 3783 (1996).
[8] A. Chefles, Phys. Lett. A 239, 339 (1998).
[9] G. Jaeger and A. Shimony, Phys. Lett. A 197, 83 (1995).

[10] A. Peres and D. R. Terno (1998), quant-ph/9804031.
[11] A. Chefles and S. M. Barnett, Phys. Lett. A 250, 223

(1998).


