The Biochemistry of Metabolic Acidosis

Robert A. Robergs, Ph.D., FASEP, EPC

Exercise Science Program
Department of Health, Exercise & Sports Sciences
The University of New Mexico
Albuquerque, NM
U.S.A.

What is an acid?

• A proton donor/molecule that will release a proton

\[
\text{CH}_3\text{-COOH} \iff \text{CH}_3\text{-COO}^- + \text{H}^+
\]
Acetic acid \iff Acetate

\[
\text{CH}_3\text{-CHOH-COOH} \iff \text{CH}_3\text{-CHOH-COO}^- + \text{H}^+
\]
Lactic acid \iff Lactate

\[
\text{NH}_4^+ \iff \text{NH}_3 + \text{H}^+
\]
Ammonium ion \iff Ammonia

Do all H\(^+\) released in metabolism come from acids?

NO!
What is acidosis?

\[\text{pH} = -\log [\text{H}^+] \]

where

\[\text{pH} = 7 \]

\[= 0.0000001 \text{ M} \]

\[= 0.0001 \text{ mmol/L} \]

Physiological range of cellular pH

Importance of Metabolic Acidosis
Experimental Research Options

Exacerbate acidosis
- Diet
 - ↓ buffering
- Hypoxia
- Anoxia
- Ischemia

Increase buffering
- Training
 - Na\(^+\)HCO\(_3\)\(^-\)
 - Na\(^+\)Citrate\(^-\)

Fatigue & Acidosis

Intense exercise to failure
- Wingate
- AOD
- VO\(_{2}\)max

In-vitro preparations
- Max steady state
- Resistance exercise
- \(^{31}\)P MRS

Exercise-Induced Metabolic Acidosis
Suggested Mechanisms

Detriment
- Enzyme inhibition (partial)
- ↓ ATP turnover
- ↑ Lactate
- ↓ Membrane excitability
- Systemic acidosis
- Hyperventilation
- ↓ Central drive???

Benefit
- ↓ K⁺ efflux
- Preserve intramuscular K⁺
- Improve contractile force

Severe systemic acidosis induces nausea!
Problems Concerning Acidosis

1. We are still debating the biochemical cause of metabolic acidosis!
2. Our calculations of the muscle buffer capacity have been and remain invalid!
3. We do not know how to compute the H\(^+\) load of contracting muscle during intense exercise.
4. How do we interpret evidence of improved muscle contractile function caused by acidosis?
5. Does the Stewart (Physico-chemical) theory of acid-base balance explain exercise-induced metabolic acidosis?

Historical Metabolic Research

A.V. Hill

1922 Nobel Prize

O. Meyerhof

L.J. Henderson

Validation of acid-base chemistry theories in 1940’s
Historical Summary

- Acid-base chemistry was not established and proven until the mid-1940’s!

- The unproven concept of a lactic acidosis was developed without research evidence, without an understanding of acid-base chemistry, and was left unchallenged for almost 200 years.

- More modern scientific inquiry and interpretation (1950 – 2000) has been based on the tight correlations between lactate accumulation and muscle pH.

- Initial academic challenges to a lactic acidosis began in the 1970’s.

- Lactic acidosis has been cemented as a construct in the basic, clinical and applied sciences, and remains difficult to eradicate.
Metabolic Acidosis
Research Content

The terms “lactic acid” and “lactic acidosis” are still routinely used in research publications from prestigious journals!

- p.1462: “.....the newly formed lactic acid (pK=3.8) must be completely buffered in the cell Because HCO₃⁻ is the predominant buffer of lactic acid”

Blood Lactate Accumulation, the LT and Acidosis

Does this data support a lactic acidosis?
Important Reactions to Proton Balance

Glycolysis

Table 15-2
Reactions of glycolysis

<table>
<thead>
<tr>
<th>Step</th>
<th>Reaction</th>
<th>Enzyme</th>
<th>Type*</th>
<th>ΔG°</th>
<th>ΔG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Glucose + ATP → glucose 6-phosphate + ADP + [H+³]</td>
<td>Hexokinase</td>
<td>a</td>
<td>−4.0</td>
<td>−8.0</td>
</tr>
<tr>
<td>2</td>
<td>Glucose 6-phosphate → fructose 6-phosphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fructose 6-phosphate + ATP → fructose 1,6-bisphosphate + ADP + [H+³]</td>
<td>Fructose 1,6-bisphosphatase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fructose 1,6-bisphosphate → dihydroxyacetone phosphate + glyceraldehyde 3-phosphate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Dihydroxyacetone phosphate → glyceraldehyde 3-phosphate</td>
<td>Triose phosphate isomerase</td>
<td>c</td>
<td>+1.8</td>
<td>+0.6</td>
</tr>
<tr>
<td>6</td>
<td>Glyceraldehyde 3-phosphate + P₃ + NADH → 1,3-bisphosphoglycerate + NADH + [H+³]</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
<td>e</td>
<td>+1.5</td>
<td>−0.4</td>
</tr>
<tr>
<td>7</td>
<td>1,3-Bisphosphoglycerate + ADP → 3-phosphoglycerate + ATP</td>
<td>Phosphoglycerate kinase</td>
<td>a</td>
<td>−4.5</td>
<td>+0.3</td>
</tr>
<tr>
<td>8</td>
<td>3-Phosphoglycerate → 2-phosphoglycerate</td>
<td>Phosphoglyceromutase</td>
<td>b</td>
<td>+1.1</td>
<td>+0.2</td>
</tr>
<tr>
<td>9</td>
<td>2-Phosphoglycerate + P₃ + ADP + [H+³] → enolase</td>
<td></td>
<td>d</td>
<td>+0.4</td>
<td>−0.8</td>
</tr>
<tr>
<td>10</td>
<td>Phosphoenolpyruvate + ATP + [H+³] → pyruvate + ATP</td>
<td>Pyruvate kinase</td>
<td>a</td>
<td>−7.5</td>
<td>−4.0</td>
</tr>
</tbody>
</table>

Note: ΔG° and ΔG are expressed in kcal/mol. ΔG, the actual free-energy change, has been calculated from ΔG° and known concentrations of reactants under typical physiological conditions.

*Reaction type: (a) Phosphoryl transfer (b) Phosphoryl shift (c) Isomerization (d) Dehydration (e) Aldol cleavage (f) Phosphorylation coupled to oxidation

PGK reaction does not cause a decrease in pH
Lactate Production

Lactate Production Is Good For Muscle

Metabolic Acidosis
Summary of Glycolysis and Lactate Production

Glucose + 2 Pi + 2 ADP → 2 Pyruvate + 2 NADH + 2 H+ → 2 ATP + 2 H2O

CK Reaction Consumes Protons

Creatine phosphate + ADP → Creatine + ATP
ATP Hydrolysis Releases Protons

ATP Hydrolysis, cont’d

pKa’s of inorganic phosphate are:

- 2.15
- 6.82
- 12.38
ATP Hydrolysis, cont’d

Metabolic Acidosis

What causes metabolic acidosis in skeletal muscle?

Acidosis develops when the rate of H^+ production exceeds the rate of H^+ removal/buffering

H^+ production
- Glycolytic flux
- ATP hydrolysis
- *FT motor unit recruitment*
- Proton release from reactions
- Electrolyte shifts

H^+ removal/buffering
- CrP hydrolysis
- Mitochondrial transport
- Proteins/amino acids
- HCO_3^-
- Inorganic phosphate
- Sarcolemmal transport
- Lactate production
Conclusions

- Modeling proton load and metabolic buffering reveals the importance/validity of ATP hydrolysis as the cause of metabolic acidosis in contracting skeletal muscle.
- Controversy still exists as to the likelihood that electrolyte shifts contribute to acidosis.
- Both the LDH and CK reactions cause the initial alkalization of contracting skeletal muscle.
- Lactate production is the most important metabolic \(\text{H}^+ \) buffering reaction.
- If muscle did not produce lactate, we would not be able to perform intense exercise for durations in excess of 10 – 20 s.