Treadmill Running \& Metabolic Equations

Treadmill Walking and Running

VO2 units	System	Equation
		(horizontal + vertical + resting)
Treadmill Walking		
$\mathrm{mL} / \mathrm{kg} / \mathrm{min}$	metric	$(\mathrm{km} / \mathrm{hr} \times 1.6667)+((\%$ grade $/ 100) \times \mathrm{km} / \mathrm{hr} \times 30)+3.5$
$\mathrm{mL} / \mathrm{kg} / \mathrm{min}$	imperial	$(\mathrm{mi} / \mathrm{hr} \times 2.6834)+((\%$ grade $/ 100) \times \mathrm{mi} / \mathrm{hr} \times 48.3)+3.5$
Treadmill Running		
$\mathrm{mL} / \mathrm{kg} / \mathrm{min}$	metric	$(\mathrm{km} / \mathrm{hr} \times 3.3333)+((\%$ grade $/ 100) \times \mathrm{km} / \mathrm{hr} \times 15)+3.5$
$\mathrm{mL} / \mathrm{kg} / \mathrm{min}$	imperial	$(\mathrm{mi} / \mathrm{hr} \times 5.3668)+((\%$ grade $/ 100) \times \mathrm{mi} / \mathrm{hr} \times 24.15)+3.5$
Cycle Ergometry		
$\mathrm{mL} / \mathrm{min}$ (ACSM)	Watts	$0+$ (Watts $\times 12.236)+(3.5 \times \mathrm{kg}$ body mass)
$\mathrm{mL} / \mathrm{min}$ (ACSM)	$\mathrm{kgm} /$ / min	$0+(\mathrm{kgm} / \mathrm{min} \times 2)+(3.5 \times \mathrm{kg}$ body mass)
$\mathrm{mL} / \mathrm{min}$ (Latin)	Males	$0+(($ Watts $\times 11.624)+260)+(3.5 \times \mathrm{kg}$ body mass $)$
$\mathrm{mL} / \mathrm{min}$ (Latin)	Females	$0+(($ Watts $\times 9.7892)+205)+(3.5 \times \mathrm{kg}$ body mass $)$
Arm Ergometry		
$\mathrm{mL} / \mathrm{min}$	Watts	$0+(\mathrm{kgm} / \mathrm{min} \times 18.354)+(3.5 \times \mathrm{kg}$ body mass $)$
$\mathrm{mL} / \mathrm{min}$	metric	$0+(\mathrm{kgm} / \mathrm{min} \times 3)+(3.5 \times \mathrm{kg}$ body mass $)$
Bench Stepping		
$\mathrm{mL} / \mathrm{kg} / \mathrm{min}$	metric	$($ steps $/ \mathrm{min} \times 0.35)+($ step ht $\mathrm{cms} \times$ steps $/ \mathrm{min} \times 0.02394)+0$
$\mathrm{mL} / \mathrm{kg} / \mathrm{min}$	imperial	$($ steps $/ \mathrm{min} \times 0.35)+($ step ht inches \times steps $/ \mathrm{min} \times 0.06081)+0$
ACSM equations from ACSM. Guidelines for exercise testing and prescription. 4th Edition, Lea \& Febiger. Philadelphia 1991. Latin equations from Latin RW, Berg KE, Smith P, Tolle R, Woodby-Brown S. Validation of a cycle ergometry equation for predicting steady-rate VO2. Med Sci Sports Exerc 1993:25(8):970-4.		

Exercise Increases Muscle and Whole Body Energy Demand In a Predictable Manner

1. Click on an exercise mode to call up the protocol controls on
2. Manipulate the protocol controls to get the desired protocol.
3. Manipu an

Based on text content, remember you want a protocol with a consistent linear trend in predicted VO2, a VO2 slope that is not too large ($<5 \mathrm{~mL} / \mathrm{kg} / \mathrm{min} / \mathrm{min}$), and attains a VO2 that is sufficient to meet your subject's anticipated fitness in approximately 8 to 10 min .

Calculations

What is the steady state VO_{2} for the following?

1. Walking at $4.5 \mathrm{mi} / \mathrm{hr}$ at 3.5% grade.
2. Running at $10.5 \mathrm{mi} / \mathrm{hr}$ at 0% grade
3. Cycling at 300 Watts for an 81 kg male (cadence independent)
4. Cycling at 2.75 kg at $80 \mathrm{rev} / \mathrm{min}$ for a 70 kg female (cadence dependent)
5. Running at $9.4 \mathrm{mi} / \mathrm{hr}$ at 10% grade

aUNM

Answers

1. Walking at $4.5 \mathrm{mi} / \mathrm{hr}$ at 3.5% grade $=23.2 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$
2. Running at $10.5 \mathrm{mi} / \mathrm{hr}$ at 0% grade $=59.9 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$
3. Cycling at 300 Watts for an 81 kg male (cadence independent)

$$
=4.03 \mathrm{~L} / \mathrm{min}
$$

4. Cycling at 2.75 kg at $80 \mathrm{rev} / \mathrm{min}$ for a 70 kg female (cadence dependent)

$$
=2.56 \mathrm{~L} / \mathrm{min}
$$

5. Running at $9.4 \mathrm{mi} / \mathrm{hr}$ at 10% grade $=76.6 \mathrm{~mL} / \mathrm{kg} / \mathrm{min}$

