Metabolic Adaptations to Steady State Exercise

ดUNM

ดUNM

Adaptations during steady state exercise, cont'd.

b. VO_{2} Drift

For exercise intensities $>60 \% \mathrm{VO}_{2}$ max, prolonged exercise (> 30 min) causes a slight continued increase in VO_{2}. (increased temperature and circulating catecholamines)
c. CHO Catabolism

Increases with an increase is exercise intensity, with an increasing reliance on muscle glycogen.
d. Lipid Catabolism

Decreases with an increase is exercise intensity. The majority of the source of FFA used during exercise is from intramuscular lipid droplets.

The lower the exercise intensity, the longer the time to muscle glycogen depletion.

treadmill angle $\left[{ }^{\circ}\right]=\sigma ; \sin \sigma=$ rise/hypotenuse; $\sigma=$ inverse $\sin \times$ (rise/hypotenuse);
$\tan \sigma=$ rise/ run
if $\sigma=5^{\circ}$; then $\tan \sigma=0.0875 ; \%$ grade $=\tan \sigma \times 100=8.75 \%=1: 11.43$ slope ratio

Douglas Bag Collection of Expired Air

네 NM

VO2 units	System	Equation
		(horizontal + vertical + resting)
Treadmill Walking		
$\mathrm{mL} / \mathrm{kg} / \mathrm{min}$	metric	$(\mathrm{km} / \mathrm{hr} \times 1.6667)+((\%$ grade $/ 100) \times \mathrm{km} / \mathrm{hr} \times 30)+3.5$
mL/kg/min	imperial	$(\mathrm{mi} / \mathrm{hr} \times 2.6834)+((\%$ grade $/ 100) \times \mathrm{mi} / \mathrm{hr} \times 48.3)+3.5$
Treadmill Running		
$\mathrm{mL} / \mathrm{kg} / \mathrm{min}$	metric	$(\mathrm{km} / \mathrm{hr} \times 3.3333)+((\%$ grade $/ 100) \times \mathrm{km} / \mathrm{hr} \times 15)+3.5$
$\mathrm{mL} / \mathrm{kg} / \mathrm{min}$	imperial	$(\mathrm{mi} / \mathrm{hr} \times 5.3668)+((\%$ grade $/ 100) \times \mathrm{mi} / \mathrm{hr} \times 24.15)+3.5$
Cycle Ergometry		
$\mathrm{mL} / \mathrm{min}$ (ACSM)	Watts	0 + (Watts $\times 12.236)+(3.5 \times \mathrm{kg}$ body mass)
$\mathrm{mL} / \mathrm{min}$ (ACSM)	kgm/min	$0+(\mathrm{kgm} / \mathrm{min} \times 2)+(3.5 \times \mathrm{kg}$ body mass$)$
$\mathrm{mL} / \mathrm{min}$ (Latin)	Males	$0+(($ Watts $\times 11.624)+260)+(3.5 \times \mathrm{kg}$ body mass $)$
$\mathrm{mL} / \mathrm{min}$ (Latin)	Females	$0+(($ Watts $\times 9.7892)+205)+(3.5 \times \mathrm{kg}$ body mass $)$
Arm Ergometry		
$\mathrm{mL} / \mathrm{min}$	Watts	$0+(\mathrm{kgm} / \mathrm{min} \times 18.354)+(3.5 \times \mathrm{kg}$ body mass $)$
$\mathrm{mL} / \mathrm{min}$	metric	$0+(\mathrm{kgm} / \mathrm{min} \times 3)+(3.5 \times \mathrm{kg}$ body mass $)$
Bench Stepping		
$\mathrm{mL} / \mathrm{kg} / \mathrm{min}$	metric	$($ steps $/ \mathrm{min} \times 0.35)+($ step ht $\mathrm{cms} \times$ steps $/ \mathrm{min} \times 0.02394)+0$
$\mathrm{mL} / \mathrm{kg} / \mathrm{min}$	imperial	$($ steps $/ \min \times 0.35)+($ step ht inches \times steps $/ \min \times 0.06081)+0$
ACSM equations from ACSM. Guidelines for exercise testing and prescription. $4^{\text {th }}$ Edition. Lea \& Febiger, Philadelphia 1991. Latin equations from Latin RW, Berg KE, Smith P, Tolle R, Woodby-Brown S. Validation of a cycle ergometry equation for predicting steady-rate VO2. Med Sci Sports Exerc 1993:25(8):970-4.		

Exercise Increases Muscle and Whole Body Energy Demand In a Predictable Manner

