

Adaptations during steady state exercise, cont'd.

b. VO₂ Drift

For exercise intensities > 60% VO₂max, prolonged exercise (> 30 min) causes a slight continued increase in VO₂. *(increased temperature and circulating catecholamines)*

c. CHO Catabolism

Increases with an increase is exercise intensity, with an increasing reliance on muscle glycogen.

d. Lipid Catabolism

Decreases with an increase is exercise intensity. The majority of the source of FFA used during exercise is from intramuscular lipid droplets.

VO2 units	System	Equation
		(horizontal + vertical + resting)
Treadmill Walking	1	
mL/kg/min	metric	(km/hr x 1.6667) + ((%grade/100) x km/hr x 30) + 3.5
mL/kg/min	imperial	(mi/hr x 2.6834) + ((%grade/100) x mi/hr x 48.3) + 3.5
Treadmill Running	7	
mL/kg/min	metric	(km/hr x 3.3333) + ((%grade/100) x km/hr x 15) + 3.5
mL/kg/min	imperial	(mi/hr x 5.3668) + ((%grade/100) x mi/hr x 24.15) + 3.5
Cycle Ergometry		
mL/min (ACSM)	Watts	0 + (Watts x 12.236) + (3.5 x kg body mass)
mL/min (ACSM)	kgm/min	0 + (kgm/min x 2) + (3.5 x kg body mass)
mL/min (Latin)	Males	0 + ((Watts x 11.624) + 260) + (3.5 x kg body mass)
mL/min (Latin)	Females	0 + ((Watts x 9.7892) + 205) + (3.5 x kg body mass)
Arm Ergometry		
mL/min	Watts	0 + (kgm/min x 18.354) + (3.5 x kg body mass)
mL/min	metric	0 + (kgm/min x 3) + (3.5 x kg body mass)
Bench Stepping		
mL/kg/min	metric	(steps/min x 0.35) + (step ht cms x steps/min x 0.02394) + 0
mL/kg/min	imperial	(steps/min x 0.35) + (step ht inches x steps/min x 0.06081) + 0
ACSM equations from	n ACSM. Guid	elines for exercise testing and prescription. 4th Edition. Lea & Febiger.
Philadelphia, 1991.		
Latin equations from I	Latin RW, Bei	rg KE, Smith P, <u>Tolle</u> R, <u>Woodby</u> -Brown S. Validation of a cycle ergome
equation for predicting	g steady-rate	VO2. Med Sci Sports Exerc 1993;25(8):970-4.
TTNTNE		

