

This is a cast of the airways that conduct air to the lungs.

Why is this morphology potentially detrimental to air conductance into and from the lungs?

Note; The respiratory zone has the greatest surface area and a dense capillary network.

Surfactant

A phospholipoprotein molecule, secreted by specialized cells of the lung, that *lines the surface of alveoli and respiratory bronchioles*. Surfactant *lowers the surface tension* of the alveoli membranes, *preventing the collapse* of alveoli during exhalation and *increasing compliance* during inspiration.

Respiration

The process of gas exchange, which for the human body involves oxygen (O_2) and carbon dioxide (CO_2) .

Internal respiration - at the cellular level

External respiration - at the lung

Ventilation

The movement of air into and from the lung by the process of bulk flow.

Ventilation (V_E) (L/min) = frequency (br/min) x tidal volume (L)

For rest conditions,

 V_E (L/min) = 12 (br/min) x 0.5 (L) = 6 L/min

For exercise at VO₂max,

 V_E (L/min) = 60 (br/min) x 3.0 (L) = 180 L/min

Compliance - the property of being able to increase size or volume with only small changes in pressure.

Alveolar Ventilation

UNM

The volume of "fresh" air that reaches the respiratory zone of the lung.

Alveolar Ventilation (V_A) (L/min)

 V_A = frequency (br/min) x (tidal volume - 0.15) (L)

For normal breathing conditions,

 $V_A = 12$ (br/min) x (1.0 - 0.15) (L)

 $= 12 \times 0.85 = 10.2 \text{ L/min}$

For rapid shallow breathing conditions,

 $V_A = 60 \text{ (br/min)} x (0.2 - 0.15) (L)$ (8.2b)

 $= 60 \times 0.05 = 3.0 \text{ L/min}$

Can be measured from Tidal volume	V _T	Volume of air inhaled and exhaled each	
		breath	
Inspiratory reserve volume	IRV	Maximum volume of air that can be inhaled after a normal resting end tidal inspiration	
Expiratory reserve volume	ERV	Maximum volume of air that can be exhaled after a normal resting end tidal expiration	
Inspiratory capacity	IC	Sum of IRV + VT	
Expiratory capacity	EC	Sum of ERV + VT	
Vital capacity	VC	Maximum volume or air exhaled after reaching IC = IC + ERV	
Forced vital capacity	FVC	Same as for VC, but with forced rapid exhalation	
Forced expiratory volume in 1 s	FEV1	Maximum volume of air that can be expired in 1 s when starting at IC	
Maximal voluntary ventilation	MVV	Maximum rate of ventilation that can be attained with voluntary effort	
Cannot be measured f	rom spirometry	/	7
Residual volume	RV	Volume of air remaining in the lungs at ERV.	
Functional residual capacity	FRC	Sum of RV + ERV	
Total lung capacity	TLC	Sum of V _T + IRV + ERV + RV	

<text><text><list-item><list-item><list-item><list-item>

Gas	Air* Fraction	Air* Partial Pressure	Alveolar Fraction^	Alveolar Partial Pressure
H ₂ O	0	0		47
O ₂	0.2095	159.0	0.1459	104
CO ₂	0.0003	0.3	0.0561	40
N_2	0.7808	600.6	0.7980	569
* assumes dry air at sea level, P _B =760 mmHg ^ note that the water vapor pressure is removed to calculate alveolar gas fractions				

Transport of	Oxygen in	the Blood	

Oxygen is transported in blood bound to **hemoglobin** (Hb). 1 gram of Hb can maximally bind 1.34 mL of oxygen (1.34 mL O_2/g Hb @ 100% saturation).

Table 8.1: Examples of hemoglobin (Hb) and oxygen carrying capacity conditions (98% saturation and pH = 7.4)

Population/Condition	[H b]	$mL O_2/L$
Males	14.0	183.8
Females	12.0	157.6
Blood Doping	18.0	236.4
Anemia	< 10.0	< 131.3

The oxygen content (CaO₂) of blood can be calculated; $CaO_2 = [Hb] \times O_2/g Hb \times Hb-O_2 \text{ saturation}$ $= 150 \text{ g/L} \times 1.34 \text{ mL } O_2/g \times 0.98$ $= 197 \text{ mL } O_2/L$ Another small source of oxygen in blood is the volume of oxygen dissolved in plasma. However, due to the low solubility of oxygen,this value is small and approximates, dissolved $O_2 = 0.003 \text{ mL} / 100 \text{ mL } \text{blood} / \text{ mmHg } PO_2$ $\sim 0.3 \text{ mL} / 100 \text{ mL } \text{at sea level } (PaO_2 \sim 100 \text{ mmHg})$

Transport of Carbon Dioxide in the Blood

The volume of CO_2 in the blood is approximately 10-fold greater than O_2 .

Transport Location	Form	Percentage
Plasma	Dissolved	5
(<10%)	$CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$	<1
	Bound to proteins	5
Red Blood Cell	$CO_2 + H_2O \rightarrow H_2CO_3 \rightarrow H^+ + HCO_3^-$	65
(90%)	Dissolved	5
	Bound to hemoglobin	20

Acidosis

Quantified by the pH scale, where pH equals the negative logarithm of the hydrogen ion concentration ([H⁺])

 $pH = -\log [H^+]$ or $[H^+] = 10^{-pH}$

Normal blood pH is $\sim 7.4 = [H^+] = 0.00000004 \text{ M}$

The main determinants of blood pH are;

□ Balance of proton release/consumption □ Buffer capacity

 \square PaCO₂

□ Renal excretion of electrolyes, protons and bases

□ Ventilation

UNM

 \square Concentration of HCO₃⁻ and other bases or acids

