

The Respiratory

1 Larynx; 2 Pulmonary arteriole; 3 Pulmonary venule; 4 Respiratory bronchiole; 5 Alveoli; 6 Lnugs; 7 Tertiary bronchiole; 8 Secondary bronchiole; 9 Prinmary bronchi; 10 RIght bronchi; 11 Trachea

Items 1, 10, 9, 8, 7 = conduting zone
Items 4 and $5=$ respiratory zone

Note;

The respiratory zone has the greatest surface area and a dense capillary network.

Note the density of the alveoli and their thin walls.

Note the dense capillary network that surrounds alveoli.

Surfactant

A phospholipoprotein molecule, secreted by specialized cells of the lung, that lines the surface of alveoli and respiratory bronchioles. Surfactant lowers the surface tension of the alveoli membranes, preventing the collapse of alveoli during exhalation and increasing compliance during inspiration.

Respiration

The process of gas exchange, which for the human body involves oxygen $\left(\mathrm{O}_{2}\right)$ and carbon dioxide $\left(\mathrm{CO}_{2}\right)$.

Internal respiration - at the cellular level
External respiration - at the lung

Ventilation

The movement of air into and from the lung by the process of bulk flow.

Ventilation $\left(\mathrm{V}_{\mathrm{E}}\right)(\mathrm{L} / \mathrm{min})=$ frequency $(\mathrm{br} / \mathrm{min}) \mathrm{x}$ tidal volume (L)
For rest conditions,

$$
\mathrm{V}_{\mathrm{E}}(\mathrm{~L} / \mathrm{min})=12(\mathrm{br} / \mathrm{min}) \times 0.5(\mathrm{~L})=6 \mathrm{~L} / \mathrm{min}
$$

For exercise at $\mathrm{VO}_{2} \max$,

$$
\mathrm{V}_{\mathrm{E}}(\mathrm{~L} / \mathrm{min})=60(\mathrm{br} / \mathrm{min}) \times 3.0(\mathrm{~L})=180 \mathrm{~L} / \mathrm{min}
$$

Compliance - the property of being able to increase size or volume with only small changes in pressure.

Ventilation During Rest

Inspiration is controlled by a repetitive discharge of action potentials from the inspiratory center.

Expiration involves the passive recoil of the diaphragm.

Minimal regulation from chemoreceptors occurs during normal acid-base conditions.

(UNM

Alveolar Ventilation

The volume of "fresh" air that reaches the respiratory zone of the lung.

$$
\begin{gathered}
\text { Alveolar Ventilation }\left(\mathrm{V}_{\mathrm{A}}\right)(\mathrm{L} / \mathrm{min}) \\
\mathrm{V}_{\mathrm{A}}=\text { frequency }(\mathrm{br} / \mathrm{min}) \mathrm{x}(\text { tidal volume }-0.15)(\mathrm{L})
\end{gathered}
$$

For normal breathing conditions,

$$
\begin{aligned}
\mathrm{V}_{\mathrm{A}} & =12(\mathrm{br} / \mathrm{min}) \times(1.0-0.15)(\mathrm{L}) \\
& =12 \times 0.85=10.2 \mathrm{~L} / \mathrm{min}
\end{aligned}
$$

For rapid shallow breathing conditions,

$$
\begin{align*}
\mathrm{V}_{\mathrm{A}} & =60(\mathrm{br} / \mathrm{min}) \times(0.2-0.15)(\mathrm{L}) \tag{8.2b}\\
& =60 \times 0.05=3.0 \mathrm{~L} / \mathrm{min}
\end{align*}
$$

Lung Volumes and Capacities

(UNM

$\left.$| Measurement | Abbreviation | Description |
| :--- | :---: | :--- |
| Can be measured from spirometry | | |\(\left.\quad \begin{array}{l}Volume of air inhaled and exhaled each

Tidal volume

breath\end{array} \right\rvert\, \begin{array}{l}Maximum volume of air that can be

inhaled after a normal resting end tidal

inspiration\end{array}\right]\)| Maximum volume of air that can be |
| :--- |
| exhaled after a normal resting end tidal |
| expiration |

volume in 1 s
Maximal voluntary
Maximum rate of ventilation that can be

Cannot be measured from spirometry

Control of Ventilation During Exercise	

Diffusion of Gases

The gases of respiration $\left(\mathrm{O}_{2}\right.$ and $\left.\mathrm{CO}_{2}\right)$ diffuse down pressure gradients that exist between,
a. pulmonary blood and the alveoli
b. systemic capillary blood and cells

	$\begin{gathered} \text { Sea Level } \\ \mathrm{P}_{\mathrm{B}}=760 \mathrm{mmHg} \\ \mathrm{P}_{\mathrm{B}}-47=713^{*} 0.9906=706.3 \end{gathered}$			$\begin{gathered} 5,280 \mathrm{ft}(1,610 \mathrm{~m}) \\ \mathrm{P}_{\mathrm{B}}=620 \mathrm{mmHg} \\ \mathrm{P}_{\mathrm{B}}-47=573 * 0.9906=567.6 \end{gathered}$
Gas	Air Fraction	Alveolar Fraction	PAgas (mmHg)	Pagas (mmHg)
Nitrogen	0.78084	0.7868	561	447
Oxygen	0.209476	0.1472	104	84
Carbon Dioxide	0.000314	0.0566	40	32

The data of alveolar partial pressures at any barometric pressure (altitude) can be calculated from memorizing the bold values
The factors that govern the directionality and magnitude of gas diffusion are?

What Determines Gas Exchange?

The factors that govern the directionality and magnitude of gas diffusion are,

- the gas diffusion capacity
- the gas partial pressure gradient
- characteristics of the medium through which diffusion occurs (hydration, thickness, cross sectional area)

The fact that alveolar and blood gas partial pressures approximately reach equilibrium within the lung enables researchers to estimate arterial blood gas partial pressures from alveolar partial pressures!

2UNM

Gas Partial Pressures in Atmospheric and Alveolar Air				
Gas	Air* Fraction	Air* Partial Pressure	Alveolar Fraction^	Alveolar Partial Pressure
$\mathbf{H}_{\mathbf{2}} \mathbf{O}$	0	0	----	47
\mathbf{O}_{2}	0.2095	159.0	0.1459	104
$\mathbf{C O}_{\mathbf{2}}$	0.0003	0.3	0.0561	40
\mathbf{N}_{2}	0.7808	600.6	0.7980	569

* assumes dry air at sea level, $\mathrm{P}_{\mathrm{B}}=760 \mathrm{mmHg}$
\wedge note that the water vapor pressure is removed to calculate alveolar gas fractions

Sea Level

Oxy-hemoglobin Dissociation Curve
Note the relatively flat region of the curve btwn $80-100 \mathrm{mmHg}$

Note the small range of PO_{2} in muscle during exercise when intramuscular PO_{2} may \downarrow to less than 5 mmHg .

Exchange of gas at the cellular level

(i.e., systemic capillary blood and muscle cells)

In addition to the Bohr and Haldane effects, unloading of oxygen is also aided by the molecule myoglobin.

Myoglobin is found within skeletal muscle fibers and is similar to hemoglobin in that it contains a heme prosthetic group that can bind oxygen.

When PaO2 drops below $60 \mathbf{m m H g}$, myoglobin has a higher affinity for oxygen than does hemoglobin.

This allows for a unidirectional transfer of O2 from
hemoglobin (blood) to the myoglobin (muscle fiber).

네 NM

Transport of Oxygen in the Blood

Oxygen is transported in blood bound to hemoglobin (Hb). 1 gram of Hb can maximally bind 1.34 mL of oxygen ($1.34 \mathrm{~mL} \mathrm{O}_{2} / \mathrm{g} \mathrm{Hb} @ 100 \%$ saturation).

Table 8.1: Examples of hemoglobin (Hb) and oxygen carrying capacity conditions (98% saturation and $\mathbf{p H}=7.4$)

Population/Condition	$[\mathrm{Hb}]$	$\boldsymbol{m L} \boldsymbol{O}_{2} / \mathbf{L}$
Males	14.0	183.8
Females	12.0	157.6
Blood Doping	18.0	236.4
Anemia	<10.0	<131.3

$[\mathrm{Hb}]=\mathrm{g} / 100 \mathrm{~mL}$

[^0]The oxygen content $\left(\mathrm{CaO}_{2}\right)$ of blood can be calculated;

$$
\begin{aligned}
& \mathrm{CaO}_{2}=[\mathrm{Hb}] \times \mathrm{O}_{2} /{\mathrm{g} \mathrm{Hb} \mathrm{x} \mathrm{Hb}-\mathrm{O}_{2} \text { saturation }} \\
&=150 \mathrm{~g} / \mathrm{L} \mathrm{x} 1.34 \mathrm{~mL} \mathrm{O}_{2} / \mathrm{g} \mathrm{x} 0.98 \\
&=197 \mathrm{~mL} \mathrm{O}_{2} / \mathrm{L}
\end{aligned}
$$

Another small source of oxygen in blood is the volume of oxygen dissolved in plasma. However, due to the low solubility of oxygen,this value is small and approximates, dissolved $\mathrm{O}_{2}=0.003 \mathrm{~mL} / 100 \mathrm{~mL}$ blood $/ \mathrm{mmHg} \mathrm{PO} 2$
$\sim 0.3 \mathrm{~mL} / 100 \mathrm{~mL}$ at sea level $\left(\mathrm{PaO}_{2} \sim 100 \mathrm{mmHg}\right)$

Carbonic anhydrase

Carbonic acid Bicarbonate

Buffering

When acid is produced from metabolism, the liberated proton can bind with bicarbonate, eventually forming CO_{2}, which is then expired by the lung.

Carbonic anhydrase

The bicarbonate-carbon dioxide system relies on ventilation for proper function as a buffer system.

a UNM

It is this increased production of carbon dioxide from the bicarbonate buffering of acid that accounts for the increase in RER above $\mathbf{1 . 0}$ during intense exercise.

Remember, the respiratory exchange ratio (RER) is calculated by;

$$
\mathrm{VCO}_{2} / \mathrm{VO}_{2}
$$

Transport of Carbon Dioxide in the Blood

The volume of CO_{2} in the blood is approximately 10 -fold greater than O_{2}.

Transport Location	Form	Percentage
Plasma	Dissolved	5
$(<\mathbf{1 0 \%})$	$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$	<1
	Bound^{-}to proteins	5
Red Blood Cell	$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$	65
$(\mathbf{9 0 \%})$	Dissolved	5
	Bound to hemoglobin	20
UNM M		

Acidosis

Quantified by the pH scale, where pH equals the negative logarithm of the hydrogen ion concentration $\left(\left[\mathrm{H}^{+}\right]\right)$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \text { or } \quad\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}
$$

Normal blood pH is $\sim 7.4=\left[\mathrm{H}^{+}\right]=\underline{0.00000004 \mathrm{M}}$
The main determinants of blood pH are;Balance of proton release/consumption \square Buffer capacity
$\square \mathrm{PaCO}_{2}$
Renal excretion of electrolyes, protons and bases
Ventilation
Concentration of $\mathrm{HCO}_{3}{ }^{-}$and other bases or acids QUNM —

Acute Adaptations of Pulmonary Function During Exercise

After the onset of exercise there is;
a rapid \uparrow in ventilation
(proportional to intensity)
a similar rapid \uparrow in pulmonary blood flow
van improved V_{E} vs Q relationship in the lung
(both ventilation \& perfusion become more evenly distributed)

- \uparrow lung compliance
- airway dilation and \downarrow resistance to air flow
(enlargement of trachea, dilation of bronchi \& bronchioles)

Ventilatory Threshold

Exercise intensity at which there is a deviation from linearity in ventilation and an increase in $\mathrm{VE} / \mathrm{VO}_{2}$.

The abrupt increase in acidosis and subsequent increase in PaCO , disproportionately increases ventilation above that of oxygen use.

Mechanics of Ventilation

As ventilation increases, both tidal volume and breathing frequency increase, with an eventual plateau seen in tidal volume.

As ventilation and intensity increase;
\uparrow air remaining in lung after expiration
\uparrow inspiratory pleural pressure
\uparrow work of breathing

Exercise-Induced Hypoxemia

A lowering of partial pressure of oxygen $\left(\mathrm{PaO}_{2}\right)$ (hypoxia) resulting in a reduced CaO_{2} (hypoxemia) during exhausting exercise in highly endurance-trained individuals, even at sea level.

- decreased pulmonary transit time
- decreased / uneven diffusion capacities in lung
- venoarterial shunts
- ventilation-perfusion inequalities
- inadequate hyperventilation

(UNM

[^0]: n UNM

