


















Consequently, **oxidation** involves the loss of electrons, and reduction involves the gaining of electrons. As oxidation and reduction reactions occur together, they are often termed oxidation-reduction or redox reactions. $A:e+B \longleftrightarrow A+B:e$ for example, **pyruvate + NADH + H**+ \longleftrightarrow **lactate + NAD**+ *Lactate dehydrogenase* Question Which of the above molecules was reduced, and which was oxidized in the direction of lactate production?

Why are protons important?

A proton (H⁺) is a hydrogen atom that has lost its electron.

The concentration of protons ([H⁺]) in solution determines the acidity of the solution, and is represented numerically by the negative log of the [H⁺]

$$(\mathbf{pH} = -\log [\mathbf{H}^+])$$

Thus, *a low pH represents high acidity*, and vice-versa.

Cellular pH is important to maintain (7.0 at rest), for when pH falls too far (< 6.8), electrons are forced to leave certain molecules. For proteins (eg. enzymes), this occurrence can alter the shape of the molecule, decreasing its effectiveness.

pH Scale and Examples					14- 13- 12-	1 M NaOH Household bleach Household ammonia	
[H ⁺] (M) 10 ⁰ (1) 10 ⁻¹ 10 ⁻²	рН 0 1 2	[OH ⁻] (M) 10 ⁻¹⁴ 10 ⁻¹³ 10 ⁻¹²	pOH 14 13 12	og(1 (H ⁺])	11- 10- 9-	Increasingly BasicMilk of magnesia (Mg-OH)	
10 ⁻³ 10 ⁻⁴ 10 ⁻⁵ 10 ⁻⁶ 10 ⁻⁷	3 4 5 6 7	10 ⁻¹¹ 10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁷	11 10 9 8 7	pH Scale (pH = -log [H ⁺] = log(8- 7-	NeutralSea water Blood Muscle tissue Severe muscle metabolic	
10 ⁻⁸ 10 ⁻⁹ 10 ⁻¹⁰ 10 ⁻¹¹	8 9 10 11	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³	6 65 4 3	pl- = Hq)	6- 5- 4-	acidosis Black coffee	
10 ⁻¹² 10 ⁻¹³ 10 ⁻¹⁴	12 13 14	10 ⁻² 10 ⁻¹ 10 ⁰ (1)	2 1 0		3- 2-	Increasingly AcidicOrange juice Cola soda Lemon juice Gastric juice	
	IN	M			1- 0-		

Acetic acid Adenosine triphosphate	$CH_{3}COOH \leftrightarrow CH_{3}COO^{-} + H^{+}$	Asstats	pKa
Adenosine triphosphate		Acetate	4.76
achieven and another and	$HATP^{-} \leftrightarrow ATP^{-2} + H^{+}$	ATP-2	6.48
Adenosine diphosphate	$HADP^{-} \leftrightarrow ADP^{-2} + H^{+}$	ADP-2	6.38
Ammonium	$NH4^+ \leftrightarrow NH_3 + H^+$	Ammonia	9.26
Carbonic acid	$H_2CO_3 \leftrightarrow HCO_3^- + H^+$	Bicarbonate	3.77
Formic acid	HCOOH ↔ HCOO ⁻ + H ⁺	Formate	3.75
Histidine	Histidine⁺ ↔ Histidine + H⁺	Histidine	6.0
actic acid	$CH{3}CH(OH)COOH \leftrightarrow CH_{3}CH(OH)COO^{-} + H^{+}$	Lactate	3.67
Phosphoric acid	$H_3PO_4 \leftrightarrow H_2PO_4 + H^+$	Dihydrogen phosphate	2.14
Dihydrogen phosphate	$H_2PO_4 \leftrightarrow HPO_4^{-2} + H^+$	Monohydrogen phosphate	6.75
3-Phosphoglyceric acid	$CH_2OPO_3^{-2}CH(OH)COOH \leftrightarrow CH_2OPO_3^{-2}CH(OH)COO^{-} + H^{+}$	3-Phosphoglycerate	6.21
2-Phosphoglyceric acid	CH ₃ (OH)CHOPO ₃ - ² COOH ↔ CH ₃ (OH)CHOPO ₃ - ² COO ⁻ + H ⁺	2-Phosphoglycerate	7.0
Propionic acid	$CH_3CH_2COOH \leftrightarrow CH_3CH_2COO^- + H^+$	Propionate	4.87
Pyruvic acid	$CH_3COCOOH \leftrightarrow CH_3COCOO^- + H^+$	Pyruvate	2.26

	Questions Calculate the [H⁺] for the following pH values. 					
	7.4	0.39 x 10 -7				
_	7.0	1.00 x 10 -7				
	6.8	1.58 x 10⁻⁷				
	6.4	3.98 x 10 -7				
	6.1	7.94 x 10 ⁻⁷				
2. How many times more acidic is a pH of 6.1 vs 7.0?						
7.94 times as acidic						