Catabolism in Skeletal Muscle The Phosphagen System

- Overview of ATP Regeneration
- Anaerobic vs Aerobic Metabolism
- Creatine Kinase Reaction
- Adenylate Kinase Reaction
- Purine Nucleotide Cycle
- Creatine Phosphate Shuttle
- ³¹P MRS and Muscle Metabolism

ATP - energy currency of cell

Muscle contraction can increase the cellular demand for ATP 100-fold ! Resting [ATP] of 8 mmol/kg could be depleted in 2-3s of intense exercise!

OUNM

UNM

The design and function of skeletal muscle metabolism is to meet this ATP demand as well as possible.

Skeletal muscle has sensitive biochemical controls of metabolic pathways involving the sudden activation and inhibition of specific enzymes.

Anaerobic vs Aerobic Metabolism... Old Terminology !

Anaerobic metabolism - does not require the presence of oxygen - creatine kinase & adenylate kinase reactions, and glycolysis.

Aerobic metabolism - the combined reactions of mitochondrial respiration - pyruvate oxidation, the TCA cycle, and the electron transport chain.

These terms are **not entirely accurate** and it is <u>inappropriate</u> to differentiate the pathways as two extremes when they actually share a common central pathway (e.g., glycolysis) and occur simultaneously !

MOLECULE	REST	FATIQUE
MOLECOLE		kg wet wt)*
CrP	24.0	3.0
АТР	5.0	4.5
ADP	0.05	0.5
Cr	4.0	25.0
Pi	3.0	24.0
H+	1.0 × 10 ⁻⁴	4 × 10 ⁻³
Lactate	1.0	25.0
Glycogen	200.0	75.0

Activity, cont'd.

🔊 U N M

Adenosine monophosphate (AMP) is the activator of the allosteric enzymes **phosphorylase** (glycogenolysis) and **phosphofructokinase** (glycolysis), thus stimulating increased carbohydrate catabolism and ATP regeneration.

However, continued increases in AMP would decrease the phosphorylation potential of the cell which is detrimental to the cell.

Phosphorylation Potential = [ATP] / ([ADP] [AMP] [ATP])

Maximal rate of ATP production, time to reach maximal rate, and oxygen requirement of the metabolic reaction	
Defendence of the second se	ons/pathways of ATP product
REACTION/PATHWAY MAXIMAL RATE TIME (mmol ATP/kg wet wts)	O₂ (mmol O₂/ATP)
CrP 2.4 <1.0 sec	0.0
Glucose ↔ Lactate 1.3 <5.0 sec	0.0
Glucose \leftrightarrow CO ₂ + H ₂ O 0.7 3.0 min	0.167
$FFA \leftrightarrow CO_2 + H_2O$ 0.3 30.0 min	0.177

NUCLEI	NATURAL ABUNDANCE	TISSUE*	SENSITIVITY	MR TECHNIQUE	APPLICATIO
Hydrogen (1H)	99.9%	99	1.0	Imaging Spectroscopy	Metabolism Anatomy Fat distributio
Deuterium (² H)	0.015%	Trace	0.001	Spectroscopy	Body water
Sodium (²³ Na)	100%	0.08	0.093	Imaging	Anatomy
Phosphorus (³¹ P)	100%	0.075	0.066	Imaging Spectroscopy	Metabolism
Flourine (19F)	100%	4×10^{-6}	0.083	Contrast imaging	Anatomy
Carbon (¹³ C)	1.1%	Trace	0.016	Contrast imaging Spectroscopy	Metabolism
Vodified from American Hospital Association: <i>Hospital Technology</i> <i>Series</i> 4(3-4):1-235, 1985. Relative to total hydrogen = 100. ¹ For the same number of nuclei it constant field strength.		magnetic resonance (MR) the ability of objects to precess when forced out of align- ment in a magnetic field			

