

Exercise increases heat production

Heat production during exercise can easily be calculated or estimated

Metabolic efficiency = $\sim 30\%$

Mechanical efficiency = $\sim 30\%$

Therefore, heat production can be estimated from calorimetry-based determinations of VO_2 , VCO_2 , and RER.

Improving Exercise Tolerance During Heat Exposure

- Fluid intake (pre-, during and post-exercise)
- Do not rely on thirst mechanism
- Complete heat acclimation or acclimatization

Acclimation - chronic adaptations induced by exposure to artificial environmental conditions

(eg. environmental chambers, sauna, exercise)

Acclimatization - chronic adaptations induced by exposure to a foreign climate

(eg. geographical relocation)

Acclimation/Adaptation	Physiological Benefit
↑ Plasma Volume	↑ Blood Volume
	↑ Venous return
	↑ Cardiac output @ max
	\downarrow Submaximal heart rate
	Sustained sweat response
	\uparrow Capacity for evaporative cooling
Earlier onset of sweating	Improved evaporative cooling
\downarrow Osmolality of sweat	Electrolyte conservation (mainly Na
\downarrow Muscle glycogenolysis	\downarrow Likelihood for muscle fatigue

Heat Illness, Heat Exhaustion and Heat Stroke

These conditions are more severe clinical symptoms of heat exposure.

Heat Exhaustion - the decreased cardiovascular function that accompanies dehydration and mild hyperthermia.

Heat Stroke - when heat stress continues, or is worsened beyond that of heat exhaustion (core temp > 39.5 °C), physiological symptoms progress to CNS dysfunction - *disorientation, confusion, psychoses*

Heat exhaustion and heat stroke are both heat illnesses. However, heat stroke can be potentially lethal due potential organ damage and failure.

Evaluating Environmental Conditions For Risk of Heat Injury

An index has been developed that incorporates all contributors to thermal heat stress - **Wet Bulb Globe Index** (WBGI)

Dry bulb temperature - measure of air temperature

Black bulb temperature - measure of the potential for radiative heat gain

Wet bulb temperature - measure of the potential for evaporative cooling

WBGI = (0.7 x Tw) + (0.2 x Tb) + (0.1 x Td)

WGBI	Physiological Benefit
23-28	High risk for heat injury: red flag Make runners aware that heat injury is possible, especially for those with a history of susceptibility to heat illness
18-23	Moderate risk for heat injury: amber flag Make runners aware that the risk for heat injury will increase during the race
< 18	Low risk for heat injury: green flag Make runners aware that although the risk is low, there is still a possibility for heat injury to occur
< 10	Possible risk for hypothermia: white flag Make runners aware that conditions may cause excessive heat loss from the body, especially for individuals who will have slov race times and when conditions are wet and windy

Recent Research (*in-review*) from Our Laboratory

Study 1

Compared,

- a. Distilled water (DW)
- b. 100 mEq/L NaCl (80 mEq), KCl (20 mEq) solution (EL)
- c. Gatorade (CHO-EL)
- d. Glycerol hyper-hydration (1.2 g glycerol bolus + 26 mL/kg water) (GBol)
- e. Glycerol solution (5.75 g glycerol/100 mL = 5.75 % glycerol) (GSol)
- f. d + e (GG)

Results

Will be presented as two studies:

- 1. Comparing methods of glycerol ingestion to CHO-EL.
- 2. Comparing glycerol solution (Gsol) to EL, CHO-EL and DW

