

Exercise increases heat production
Heat production during exercise can easily be calculated or estimated

Metabolic efficiency $=\sim 30 \%$
Mechanical efficiency $=\sim 30 \%$

Therefore, heat production can be estimated from calorimetry-based determinations of $\mathrm{VO}_{2}, \mathrm{VCO}_{2}$, and RER.

For example,
Low fitness:
Kcals $=\mathrm{VO}_{2}(\mathrm{~L} / \mathrm{min}) \times \mathrm{Kcals} / \mathrm{L} \times$ Duration (min)
Kcals $=1.0(\mathrm{~L} / \mathrm{min}) \times 4.924 \mathrm{Kcals} / \mathrm{L} \times 60(\mathrm{~min})$
Kcals $=295$

High fitness:

Kcals $=\mathrm{VO}_{2}(\mathrm{~L} / \mathrm{min}) \times \mathrm{Kcals} / \mathrm{L} \times$ Duration (min)
Kcals $=3.0(\mathrm{~L} / \mathrm{min}) \times 4.924 \mathrm{Kcals} / \mathrm{L} \times 60(\mathrm{~min})$
Kcals $=886$

What does a heat production of 900 Kcals mean for body heat loss and storage?

Body specific heat $=0.83 \mathrm{Kcals} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$
For a 75 kg person,
Potential Heat gain $=(900 / 0.83) / 75$
Potential Heat gain $=14.5^{\circ} \mathrm{C}$
What if all this heat was to be lost as sweat?
Evaporative heat loss potential $=580 \mathrm{Kcals} / \mathrm{L}$
Evaporative Water Loss $=900 / 580=1.5 \mathrm{~L}$
If we are 60% efficient at sweat evaporative cooling
$1.5 / 0.6=2.5 \mathrm{~L}=3.3 \%$ dehydration

Physiological changes during dehydration
 * \uparrow Core temperature \quad * \downarrow Skin blood flow
 * \downarrow Plasma volume \quad * Catecholamines
 * \downarrow Venous return \quad * Blood lactate
 * \downarrow Stroke volume
 * \uparrow Heart rate
 * $\uparrow \mathrm{VO}_{2}$
 * CNS dysfunction
 * \downarrow Exercise tolerance
 * $\uparrow \mathrm{a}-\mathrm{vO}_{2} \Delta$
 * \downarrow Sweat rate
 * \downarrow Evaporative cooling

Sawka review, 1992

Improving Exercise Tolerance During Heat Exposure

- Fluid intake (pre-, during and post-exercise)
- Do not rely on thirst mechanism
- Complete heat acclimation or acclimatization

Acclimation - chronic adaptations induced by exposure to artificial environmental conditions
(eg. environmental chambers, sauna, exercise)
Acclimatization - chronic adaptations induced by exposure to a foreign climate
(eg. geographical relocation)

Chronic adaptations to exercise in a hot environment that improve acclimation to exercise in the heat

Acclimation/Adaptation	Physiological Benefit
\uparrow Plasma Volume	\uparrow Blood Volume
	\uparrow Venous return
	\uparrow Cardiac output @ max
	\downarrow Submaximal heart rate
	Sustained sweat response
	\uparrow Capacity for evaporative cooling
	Earlier onset of sweating
Improved evaporative cooling	
\downarrow Osmolality of sweat	Electrolyte conservation (mainly Na^{+})
\downarrow Muscle glycogenolysis	\downarrow Likelihood for muscle fatigue

Walking at $1.56 \mathrm{~m} / \mathrm{s}, 49^{\circ} \mathrm{C}$ \& $20 \% \mathrm{RH}, 7$ consecutive days

Heat Acclimation/Acclimatization Summary

\& Continuous daily 100-min exercise bouts
\& Near complete exercise-heat acclimation occurs after 7-10 days of exposure
\& High levels of endurance training can partially heat acclimate
\& 75% of acclimation occurs within 4-6 days
\& Retention of benefits from acclimation are retained longer for dry than humid heat
\& High levels of aerobic fitness prolong retention of heat acclimation
\& Near complete exercise-heat acclimation occurs after 7-10 days of exposure

Heat Illness, Heat Exhaustion and Heat Stroke
These conditions are more severe clinical symptoms of heat exposure.

Heat Exhaustion - the decreased cardiovascular function that accompanies dehydration and mild hyperthermia.
Heat Stroke - when heat stress continues, or is worsened beyond that of heat exhaustion (core temp > $39.5^{\circ} \mathrm{C}$), physiological symptoms progress to CNS dysfunction - disorientation, confusion, psychoses

Heat exhaustion and heat stroke are both heat illnesses. However, heat stroke can be potentially lethal due potential organ damage and failure.

Evaluating Environmental Conditions For Risk of Heat Injury

An index has been developed that incorporates all contributors to thermal heat stress - Wet Bulb Globe Index (WBGI)

Dry bulb temperature - measure of air temperature
Black bulb temperature - measure of the potential for radiative heat gain

Wet bulb temperature - measure of the potential for evaporative cooling

$$
\text { WBGI }=(0.7 \times \text { Tw })+(0.2 \times \mathrm{Tb})+(0.1 \times \mathrm{Td})
$$

The relative risks for heat injury at different ranges of the WBGI
 WGBI Physiological Benefit

23-28 High risk for heat injury: red flag
Make runners aware that heat injury is possible, especially for those with a history of susceptibility to heat illness

18-23 Moderate risk for heat injury: amber flag Make runners aware that the risk for heat injury will increase during the race
< 18 Low risk for heat injury: green flag
Make runners aware that although the risk is low, there is still a possibility for heat injury to occur
< 10 Possible risk for hypothermia: white flag
Make runners aware that conditions may cause excessive heat loss from the body, especially for individuals who will have slow race times and when conditions are wet and windy

GLYCEROL and HYDRATION

What you need to know!
By
Robert Robergs, Ph.D., FASEP, EPC
Exercise Physiology Laboratories
Exercise Science Program
Dep't Physical Performance and Development
The University of New Mexico

How Much Water is in the Body?

Exercise or a Hot or Humid Environment?

Dehydration

Dehydration is quantified by the amount of body weight lost.

For example

Pre-exercise weight $=70.0 \mathrm{~kg}$
Post-exercise weight $=68.5 \mathrm{~kg}$
Weight Loss $=1.5 \mathrm{~kg}$
$(1.5 / 70) \times 100=2.1 \%$

PROBLEM \#1

It is very difficult to prevent a significant dehydration

PROBLEM \#2

It is very difficult to regulate the kidneys to maintain hydration

For most beverages, increasing fluid ingestion causes a decreased effectiveness of water reabsorption

Can Pre-exercise Hydration Be Increased?
 YES
 Robergs \& Griffin. Sports Med. 26(3):145-167, 1998

 Fig. 5. Relative fluid retention resulting from glycerol hyperhydration during rest conditions. Lyons et al. ${ }^{[20]}$ assessed hyperhydration

 after 2.5 hours, Freund et al. ${ }^{[17]}$ after 3 hours, Riedesel et al. ${ }^{[19]}$ after 4 hours, Montner et al. ${ }^{[16]}$ after 2.5 hours, and Montner et al. ${ }^{[22]}$ after 2 hours
How Does Glycerol Work?

1. Glycerol hyper-hydration is accompanied by a decrease in urine volume

Recent Research (in-review) from Our Laboratory

Study 1
Compared,
a. Distilled water (DW)

b. $\quad 100 \mathrm{mEq} / \mathrm{L} \mathrm{NaCl}(80 \mathrm{mEq}), \mathrm{KCl}(20 \mathrm{mEq})$ solution (EL)
c. Gatorade (CHO-EL)
d. Glycerol hyper-hydration (1.2 g glycerol bolus $+26 \mathrm{~mL} / \mathrm{kg}$ water) (GBol)
e. Glycerol solution (5.75 g glycerol $/ 100 \mathrm{~mL}=5.75 \%$ glycerol) (GSol)
f. $\mathrm{d}+\mathrm{e}(\mathrm{GG})$

Subjects and Methods

Male	Female	Weight (kg)	LBM (kg)	Body Fat (\%)
9	3	73.2 ± 12.8	62.5 ± 11.2	14.2 ± 7.8

DW, EL,
CHO-EL, $\mathrm{GSol}=4.0,6.4,5.2,5.2$, and $5.2 \mathrm{~mL} / \mathrm{kg}$ $\mathrm{GBol}=40 \%$ glycerol, $6.4,5.2,5.2$, and $5.2 \mathrm{~mL} / \mathrm{kg}$ DW $\mathrm{GG}=40 \%$ glycerol, $6.4,5.2,5.2$, and $5.2 \mathrm{~mL} / \mathrm{kg}$ GSol

Results

Will be presented as two studies:

1. Comparing methods of glycerol ingestion to CHO-EL.
2. Comparing glycerol solution (Gsol) to EL, CHO-EL and DW

Symptoms

Dr. Robert A. Robergs, Ph.D.

Free Water Clearance

Free Water Clearance

Change in Body Water

What we recommend to athletes:

4-5\% glycerol solution in half strength Gatorade
eg: glycerol $=1.25 \mathrm{~g} / \mathrm{mL}$
1 L of 5% glycerol solution
5 g or 4 mL of glycerol, and add half strength Gatorade to equal 1 L

Drink prior to exercise (1 to 2 L over 2 hrs)
Drink as needed during exercise

