Ergometry

1. What is ergometry?
2. Work and Power
3. Energy Units \& Conversions

UNM

Ergometry

Ergometry is a science that measures work. A device that can be used to measure work is called an ergometer.

$$
W=F \times D
$$

$$
\text { where } \mathbf{W}=\text { Work, } \mathbf{F}=\text { Force, } \mathbf{D}=\text { Distance }
$$

The Force must be applied against gravity, over a Distance

During bench stepping, body mass = Force, and the step height x step rate x time $=$ Distance. For example;

$$
\begin{aligned}
\mathrm{W} & =70 \mathrm{~kg} \times 0.25 \mathrm{~m} / \text { step } \times 30 \mathrm{steps} / \mathrm{min} \times 30 \mathrm{~min} \\
& =70 \mathrm{~kg} \times 225 \mathrm{~m} \\
& =15,750 \mathrm{kgm}
\end{aligned}
$$

Work and Power During Exercise

1 Kcal $=4.168$ Kjoules
2UNM

Cycle Ergometry

W = F x D
where $\mathrm{W}=$ Work, $\mathrm{F}=$ Force, $\mathrm{D}=$ Distance
The Force = Applied load (kg)

The Distance = Cadence (rev/min) x constant ($6 \mathbf{m}$)
For example; when cycling on an ergometer at $75 \mathrm{rev} / \mathrm{min}$, with a load of 2.75 kg for 35 min ;

$$
\begin{aligned}
\mathrm{W} & =2.75 \mathrm{~kg} \times 75 \mathrm{rev} / \mathrm{min} \times 6 \mathrm{~m} / \mathrm{rev} \times 35 \mathrm{~min} \\
& =2.75 \mathrm{~kg} \times 15,750 \mathrm{~m} \\
& =43,312.5 \mathrm{kgm}
\end{aligned}
$$

Bench Stepping

W = F x D
where $\mathrm{W}=$ Work, $\mathrm{F}=$ Force, $\mathrm{D}=$ Distance
The Force = Body Weight (kg)

The Distance $=$ Step Rate $($ steps $/ m i n) \times$ Step Height (m)
For example; when stepping at 30 steps/min, with a load of 78.6 kg , up and down a step height of 0.2 m for 35 min ;

$$
\begin{aligned}
\mathrm{W} & =78.69 \mathrm{~kg} \times 30 \mathrm{steps} / \mathrm{min} \times 0.2 \mathrm{~m} / \mathrm{step} \times 35 \mathrm{~min} \\
& =2.75 \mathrm{~kg} \times 15,750 \mathrm{~m} \\
& =16,525 \mathrm{kgm}
\end{aligned}
$$

n UNM

Power is work expressed relative to time. For example (cycling, then stepping);
$P=43,312.5 \mathrm{kgm} / 35 \mathrm{~min}$
$=1,238 \mathrm{kgm} / \mathrm{min}$

$P=16,525 \mathrm{kgm} / 35 \mathrm{~min}$
$=472 \mathrm{kgm} / \mathrm{min}$
You may not recognize the units of work and power used here; kgm and kgm/min, respectively.
As physical units of work and power can be converted to other expressions of energy, based on the first law of bioenergetics, you need to understand how to convert the kgm unit to other units.

WORK	KJ	Kcal	ft./lb	kgm
KJ	1.0	0.2388	737	1786.9
Kcal	4.1868	1.0	3086	426.8
$\mathbf{f t . / l b}$	0.000077	0.000324	1.0	0.1383
$\mathbf{k g m}$	0.0098	0.002345	7.23	1.0
The table conversion factors represent how 1 unit listed down equals the number of units listed across; eg: 1 Kcal $=4.1868 \mathrm{~kJ}$ UN M M				

POWER	Kgm/min	Watts	Kcal/min	$\mathrm{KJ} / \mathrm{min}$
Kgm/min	1.0	0.16345	0.00234	0.0098
Watts	6.118	1.0	0.014665	0.06
Kcal/min	426.78	69.697	1.0	4.186
KJ/min	101.97	16.667	0.2389	1.0

The table conversion factors represent how 1 unit listed down equals the number of units listed across; eg: 1 Watt $=6.118 \mathrm{kgm} / \mathrm{min}$
$1,443.75 \mathrm{kgm} / \mathrm{min}=236$ Watts

Ergometry can be used to better understand energy expenditure, and the energy cost of performing specific exercise on ergometers.

Performing cycle ergometry at $\mathbf{1 , 2 5 0} \mathbf{~ k g m} / \mathbf{m i n}$ for $\mathbf{4 5} \mathbf{~ m i n}$;
$1,250 \mathrm{kgm} / \mathrm{min}=204.315 \mathrm{Watts}=3.0 \mathrm{Kcal} / \mathrm{min}=12.5 \mathrm{KJ} / \mathrm{min}$ when using $\mathrm{KJ} / \mathrm{min}$,
$12.5 \mathrm{KJ} / \mathrm{min} \times 45 \mathrm{~min}=562.5$ Kjoules
If you think this is an unusually low energy value, you are right!!
The 562.5 KJ refers to the mechanical energy not biological energy
562.5 KJ $=\ldots \ldots . . .$. Kcals ($3 \mathrm{Kcal} / \mathrm{min} \times 45 \mathrm{~min}$)

The efficiency of the body during exercise refers to the ratio between the change in the mechanical energy produced during exercise, to the energy used to cause the exercise (biological energy expenditure).

We can use an estimate of efficiency to adjust the mechanical energy from ergometry to biological energy expenditure

If body mechanical efficiency $=25 \%$;
562.5 KJ $=0.25$ * Biological Energy Expenditure
$562.5 / 0.25=2,250 \mathrm{KJ}=$ \qquad Kcals/min

The concept of efficiency will be defined again, and discussed in more detail, in the section on calorimetry.

[^0]
What Are Other Examples Of Ergometers?

Is a treadmill an ergometer ?
Does swimming involve principles of ergometry?

네 UM

QUESTIONS

1. Is the 562.5 Kjoules in the prior example the value for biological energy expenditure, or mechanical energy production?
2. Is the body 100% efficient in converting biological energy to mechanical energy?
3. What should be larger, the biological or mechanical energy? Why?
4. What do we need to know to convert mechanical energy to biological energy expenditure?

[^0]: a UNM

