

Element	Atomic Number	Electron Configuration
Hydrogen	1	1s ¹
Helium	2	1s ²
Lithium	3	1s ² 2s ¹
Beryllium	4	1s ² 2s ²
Boron	5	1s22s22p1
Carbon	6	1s ² 2s ² 2p ²
Nitrogen	7	$1s^22s^22p^3$
Oxygen	8	1s ² 2s ² 2p ⁴
Fluorine	9	1s ² 2s ² 2p ⁵
Neon	10	1s ² 2s ² 2p ⁶
Sodium	11	1s22s22p63s1
Magnesium	12	1s22s22p63s2
Aluminum	13	1s22s22p63s23p1
Silicon	14	1s22s22p63s23p2
Phosphorous	15	1s22s22p63s22p3
Sulfur	16	1s22s22p63s22p4
Chlorine	17	1s22s22p63s22p5

Why are protons important?

A **proton** (H^+) is a hydrogen atom that has lost its electron.

The concentration of protons ([H⁺]) in solution determines the acidity of the solution, and is represented numerically by the negative log of the [H⁺]

 $(pH = -log [H^+])$

Thus, *a low pH represents high acidity*, and vice-versa.

Cellular pH is important to maintain (7.0 at rest), for when pH falls too far (< 6.8), electrons are forced to leave certain molecules. For proteins (eg. enzymes), this occurrence can alter the shape of the molecule, decreasing its effectiveness.

pH F	Sca Sca	ale a	nd		14- 13-	1 M NaOH	
	-//01	npioc			12-		
[H+] (M)	рН	[OH⁻] (M)	рОН		11- 10-	Increasingly BasicMilk of magnesia	
10 ⁰ (1)	0	10 ⁻¹⁴ 10 ⁻¹³	14		0		
10-2	2	10-12	12	ale	9-		
10 ⁻³	3	10-11	11	Ü I	8-	Sea water	
10-4	4	10-10	10	ທ <u>+</u>		Blood	
10-5	5 6	10-8	9	т ^т	7-	Muscle tissue	
10-7	7	10-7	7	d	6-	Severe muscle metabolic	
10-8	8	10-6	6	Ť	Ŭ	acidosis	
10 -9	9	10 -5	65		5-	Black coffee	
10-10	10	10-4	4	d d			
10-11	11	10-3	3	Ŭ	4-	In our entre des Antalia. Our para lution	
10-13	12	10-1	2		3-	Increasingly AcidicOrange Juice	
10-14	14	100(1)	0		0		
					2-	Lemon juice	
						Gastric juice	
					1-		
					0-		
I C	N	M			0-		_

Acid	Ionization Reaction	Base	рКа
Acetic acid	$CH_3COOH \leftrightarrow CH_3COO^- + H^+$	Acetate	4.76
Adenosine triphosphate	$HATP^- \leftrightarrow ATP^{-2} + H^+$	ATP-2	6.48
Adenosine diphosphate	$HADP^{-} \leftrightarrow ADP^{-2} + H^{+}$	ADP-2	6.38
Ammonium	$NH4^+ \leftrightarrow NH_3 + H^+$	Ammonia	9.26
Carbonic acid	$H_2CO_3 \leftrightarrow HCO_3^- + H^+$	Bicarbonate	3.77
Formic acid	HCOOH ↔ HCOO ⁻ + H ⁺	Formate	3.75
Histidine	Histidine⁺ ↔ Histidine + H⁺	Histidine	6.0
Lactic acid	$CH_3CH(OH)COOH \leftrightarrow CH_3CH(OH)COO^- + H^+$	Lactate	3.67
Phosphoric acid	$H_3PO_4 \leftrightarrow H_2PO_4 + H^+$	Dihydrogen phosphate	2.14
Dihydrogen phosphate	$H_2PO_4 \leftrightarrow HPO_4^{-2} + H^+$	Monohydrogen phosphate	6.75
3-Phosphoglyceric acid	CH ₂ OPO ₃ - ² CH(OH)COOH ↔ CH ₂ OPO ₃ - ² CH(OH)COO ⁻ + H ⁺	3-Phosphoglycerate	6.21
2-Phosphoglyceric acid	CH ₃ (OH)CHOPO ₃ - ² COOH ↔ CH ₃ (OH)CHOPO ₃ - ² COO ⁻ + H ⁺	2-Phosphoglycerate	7.0
Propionic acid	$CH_3CH_2COOH \leftrightarrow CH_3CH_2COO^- + H^+$	Propionate	4.87
Pyruvic acid	CH ₃ COCOOH ↔ CH ₃ COCOO ⁻ + H ⁺	Pyruvate	2.26