
H⁺ Consumption and Release Stoichiometry

H⁺ binding or release are not singular during chemical reactions involving H⁺ as substrates or products.

To understand H⁺ balance during chemical reactions, fractional H⁺ binding must be understood and computed.

Accurate computations of factional H⁺ binding require adjustments for competitive binding of metabolites with other cations.

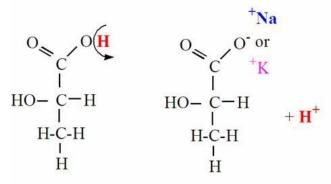
O UN M

Methods

Latest electronic version of the NIST data base.

 pK_{L-M+} data were identified for as many metabolite cation complexes of non-mitochondrial energy metabolism as possible.

Data not in the NIST date base were obtained from prior research.


21 metabolites, 104 L-M⁺ complexes, 17 reactions

Reaction	Enzyme	ΔH÷
$HCrP + ADP + H^+ \leftrightarrow Cr + ATP$	Creatine kinase	+1
ADP + ADP ↔ ATP + AMP	Adenylate kinase	0
$AMP + H^+ \! \leftrightarrow \! IMP + NH_4$	AMP deaminase	+1
$ATP + H_2O \leftrightarrow ADP + Pi + H^+$	ATPase	-1
Glycogen(n) + HPi ↔ Glycogen(n-1) + G1P	Phosphorylase	0
G1P ↔ G6P	Phosphogluco mutase	0
Glucose + ATP \leftrightarrow G6P + ADP + H ⁺	Hexokinase	-1
G6P ↔ F6P	Glucose-6-phosphate isomerase	0
$F6P + ATP \leftrightarrow F1,6P + ADP + H^+$	Phosphofructokinase	-1
F1,6P ↔ DHP + G3P	Aldolase	0
DHP ↔ G3P	Phosphofructokinase	0
G3P + HPi + NAD+ ↔ 1,3BPG + NADH + H ⁺	Glyceraldehyde-3-phosphate dehydrogenase	-1
1,3BPG + ADP ↔ 3PG + ATP	Phosphoglycerate kinase	0
3PG ↔ 2PG	Phosphoglycerate mutase	0
2PG + ADP ↔ PEP	Enolase	0
PEP + ADP + H+ ↔ Pyr + ATP	Pyruvate kinase	+1
Pyr + NADH + H ⁺ ↔ La + NAD ⁺	Lactate dehydrogenase	+1

Association and Dissociation Constants

a b
Lactic Acid Acid Salt

Sodium or Potassium Lactate

OUN M

 $Association\ constant = K_a = \frac{\begin{bmatrix} HA \end{bmatrix}}{\begin{bmatrix} H^+ \end{bmatrix} \begin{bmatrix} A^- \end{bmatrix}}$

 $-\log K_a = -\log \left(\frac{[HA]}{[H^-][A^-]}\right); \text{ for lactic acid with a } Ka = 2.13796 \times 10^{-4}$ $pK_a = -\log \left(2.13796 \times 10^{-4}\right) = -\log 0.000213796 = -\left(-3.67\right) = 3.67$

$$Dissociation\ constant = K_d = \frac{\left[H^+\right]\left[A^-\right]}{\left[HA\right]}$$

 K_d (lactic acid) = $\frac{[La^-] \times [H^+]}{[LaH]}$ = 4677.3514; where \log_{10} 4677.3514 = 3.67 $\log_{10} K_d$ (lactic acid) = 3.67

when
$$[A^-] = [AH]$$
; $\log 10 \frac{[A^-]}{[AH]} = 0$
then $pH = pKa + 0$ or $pKa = pH$

$$pH = pKa + \log 10 \frac{A^-}{AH}$$
; where $pKa = pH - \log 10 \frac{A^-}{AH}$

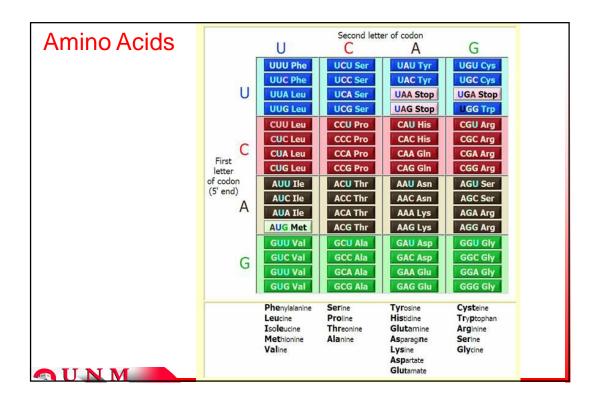
O IIN M

$$H_2CO_3 \iff H^+ + HCO_3^-; K_1 = \frac{[H^+][HCO_3^-]}{H_2CO_3}$$

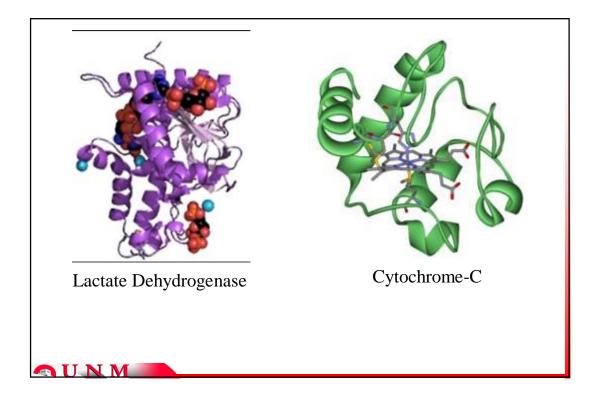
$$CO_2(d) + H_2O \Leftrightarrow H_2CO_3$$
; $K_2 = \frac{\left[H_2CO_3\right]}{\left[CO_2(d)\right] + \left[H_2O\right]}$

The dissociation constants for almost al metabolites in biological systems have been researched and compiled in a data base – NIST database.

See NIST data base See Excel spreadsheet


Analytical Chemistry
$$K_{H} = \frac{[HL^{1-n}]}{[H^{+}][L^{n-}]} \qquad K_{AH} = \frac{[AHL^{1+a-n}]}{[A^{a+}][H^{+}][L^{n-}]} \qquad K_{AAH} = \frac{[A_{2}HL^{1+a-n}]}{[A^{a+}]^{2}[H^{+}][L^{n-}]}$$

$$L_{tot} = [L^{n-}] + K_{H} [H^{+}][L^{n-}] + K_{Hn} [H^{+}]^{n} [L^{n-}] + K_{A} [A^{a+}][L^{n-}] + K_{AH} [A^{a+}][H^{+}][L^{n-}] + \dots$$


$$\alpha_{-n} = \frac{[L^{n-}]}{L_{tot}} = \frac{1}{1 + K_{H} [H^{+}] + \dots + K_{Hn} [H^{+}]^{n} + K_{A} [A^{a+}] + K_{AH} [A^{a+}][H^{+}] + \dots}$$

$$[L^{n-}] = \alpha_{n-} L_{tot}$$

$$K_{A} [A^{a+}][L^{n-}] = [AL^{a-n}]$$

$$\begin{array}{c} \text{COO}^-\\ \text{H}_3 \dot{\text{N}} - \dot{\text{C}} - \text{H}\\ \text{CH}_3\\ \text{Alanine} \end{array} \begin{array}{c} \text{COO}^-\\ \text{H}_3 \dot{\text{N}} - \dot{\text{C}} - \text{H}\\ \text{R} = \text{side chain} \end{array} \begin{array}{c} \text{COO}^-\\ \text{H}_3 \dot{\text{N}} - \dot{\text{C}} - \text{H}\\ \text{R} = \text{side chain} \end{array} \begin{array}{c} \text{COO}^-\\ \text{H}_3 \dot{\text{N}} - \dot{\text{C}} - \text{H}\\ \text{R} = \text{side chain} \end{array} \begin{array}{c} \text{COO}^-\\ \text{H}_3 \dot{\text{N}} - \dot{\text{C}} - \text{H}\\ \text{H}_3 \dot{\text{C}} - \text{H}\\ \text{COO}^-\\ \text{H}_3 \dot{\text{N}} - \dot{\text{C}} - \text{H}\\ \text{CH}_2\\ \text{COO}^-\\ \text{COO}^-\\ \text{Asparlate} \end{array} \begin{array}{c} \text{COO}^-\\ \text{H}_3 \dot{\text{N}} - \dot{\text{C}} - \text{H}\\ \text{CH}_2\\ \text{CH}_2\\ \text{CH}_2\\ \text{CH}_2\\ \text{CH}_2\\ \text{CH}_2\\ \text{COO}^-\\ \text{COO}$$

