
9 CORRELATION AND REGRESSION

9 Correlation and Regression

SW, Chapter 12.

Suppose we select n = 10 persons from the population of college seniors who plan to take the
MCAT exam. Each takes the test, is coached, and then retakes the exam. Let Xi be the pre-
coaching score and let Yi be the post-coaching score for the ith individual, i = 1, 2, · · · , n. There
are several questions of potential interest here, for example: Are Y and X related (associated), and
how? Does coaching improve your MCAT score? Can we use the data to develop a mathematical
model (formula) for predicting post-coaching scores from the pre-coaching scores? These questions
can be addressed using correlation and regression models.

The correlation coefficient is a standard measure of association or relationship between two
features Y and X. Most scientists equate Y and X being correlated to mean that Y and X are
associated, related, or dependent upon each other. However, correlation is only a measure of the
strength of a linear relationship. For later reference, let ρ be the correlation between Y and X
in the population and let r be the sample correlation. I define r below. The population correlation
is defined analogously from population data.

Suppose each of n sampled individuals is measured on two quantitative characteristics called Y
and X. The data are pairs of observations (X1, Y1), (X2, Y2), · · · (Xn, Yn), where (Xi, Yi) is the
(X, Y ) pair for the ith individual in the sample. The sample correlation between Y and X, also
called the Pearson product moment correlation coefficient, is

r =
SXY

SXSY
=

∑
i(Xi −X)(Yi − Y )√∑

i(Xi −X)2
∑

i(Yi − Y )2
,

where

SXY =
∑n

i=1(Xi −X)(Yi − Y )
n− 1

is the sample covariance between Y and X, and SY =
√∑

i(Yi − Y )2/(n− 1) and SX =√∑
i(Xi −X)2/(n− 1) are the standard deviations for the Y and X samples. Here are eight

important properties of r:

1. −1 ≤ r ≤ 1.

2. If Yi tends to increase linearly with Xi then r > 0.

3. If Yi tends to decrease linearly with Xi then r < 0.

4. If there is a perfect linear relationship between Yi and Xi with a positive slope then r = +1.

5. If there is a perfect linear relationship between Yi and Xi with a negative slope then r = −1.

6. The closer the points (Xi, Yi) come to forming a straight line, the closer r is to ±1.

7. The magnitude of r is unchanged if either the X or Y sample is transformed linearly (i.e. feet
to inches, pounds to kilograms, Celsius to Fahrenheit).

8. The correlation does not depend on which variable is called Y and which is called X.
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9 CORRELATION AND REGRESSION

If r is near ±1, then there is a strong linear relationship between Y and X in the sample.
This suggests we might be able to accurately predict Y from X with a linear equation (i.e. linear
regression). If r is near 0, there is a weak linear relationship between Y and X, which suggests
that a linear equation provides little help for predicting Y from X. The pictures below should help
you develop a sense about the size of r.

Note that r = 0 does not imply that Y and X are not related in the sample. It only implies
they are not linearly related. For example, in the last plot r = 0 yet Yi = X2

i .
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Testing that ρ = 0

Suppose you want to test H0 : ρ = 0 against HA : ρ 6= 0, where ρ is the population correlation
between Y and X. This test is usually interpreted as a test of no association, or relationship,
between Y and X in the population. Keep in mind, however, that ρ measures the strength of a
linear relationship.

The standard test of H0 : ρ = 0 is based on the magnitude of r. If we let

ts = r

√
n− 2
1− r2

,

then the test rejects H0 in favor of HA if |ts| ≥ tcrit, where tcrit is the two-sided test critical value
from a t-distribution with df = n−2. The p-value for the test is the area under the t-curve outside
±ts (i.e. two-tailed test p-value).

This test assumes that the data are a random sample from a bivariate normal population
for (X, Y ). This assumption implies that all linear combinations of X and Y , say aX + bY , are
normal. In particular, the (marginal) population frequency curves for X and Y are normal. At a
minimum, you should make boxplots of the X and Y samples to check marginal normality. For
large-sized samples, a plot of Y against X should be roughly an elliptical cloud, with the density
of the points decreasing as the points move away from the center of the cloud.

The Spearman Correlation Coefficient

The Pearson correlation r can be highly influenced by outliers in one or both samples. For example,
r ≈ −1 in the plot below. If you delete the one extreme case with the largest X and smallest Y
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9 CORRELATION AND REGRESSION

value then r ≈ 0. The two analyses are contradictory. The first analysis (ignoring the plot) suggests
a strong linear relationship, whereas the second suggests the lack of a linear relationship. I will not
strongly argue that you should (must?) delete the extreme case, but I am concerned about any
conclusion that depends heavily on the presence of a single observation in the data set.
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Spearman’s rank correlation coefficient rS is a sensible alternative to r when normality
is unreasonable or outliers are present. Most books give a computational formula for rS . I will
verbally describe how to compute rS . First, order the Xis and assign them ranks. Then do the
same for the Yis and replace the original data pairs by the pairs of ranked values. The Spearman
rank correlation is the Pearson correlation computed from the pairs of ranks.

The Spearman correlation rS estimates the population rank correlation coefficient, which
is a measure of the strength of linear relationship between population ranks. The Spearman cor-
relation, as with other rank based methods, is not sensitive to the presence of outliers in the data.
In the plot above, rS ≈ 0 whether the unusual point is included or excluded from the analysis. In
samples without unusual observations and a linear trend, you often find that rS ≈ r.

An important point to note is that the magnitude of the Spearman correlation does not change
if either X or Y or both are transformed (monotonically). Thus, if rS is noticeably greater than r,
a transformation of the data might provide a stronger linear relationship.

Example

Eight patients underwent a thyroid operation. Three variables were measured on each patient:
weight in kg, time of operation in minutes, and blood loss in ml. The scientists were interested in
the factors that influence blood loss. Minitab output for this data set is a separate document.

weight time blood loss
44.3 105 503
40.6 80 490
69.0 86 471
43.7 112 505
50.3 109 482
50.2 100 490
35.4 96 513
52.2 120 464
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9 CORRELATION AND REGRESSION

Comments:

1. (Pearson correlations). Blood loss tends to decrease linearly as weight increases, so r should
be negative. The output gives r = −.77. There is not much of a linear relationship between
blood loss and time, so r should be close to 0. The output gives r = −.11. Similarly, weight
and time have a weak negative correlation, r = −.07.

2. The Pearson and Spearman correlations are fairly consistent here. Only the correlation
between blood loss and weight is significant at the α = 0.05 level (the p-values are given
below the correlations).

Simple Linear Regression

In linear regression, we are interested in developing a linear equation that best summarizes the
relationship in a sample between the response variable Y and the predictor variable (or
independent variable) X. The equation is also used to predict Y from X. The variables are not
treated symmetrically in regression, but the appropriate choice for the response and predictor is
usually apparent.

Linear Equation

If there is a perfect linear relationship between Y and X then Y = β0 + β1X for some β0 and β1,
where β0 is the Y-intercept and β1 is the slope of the line. Two plots of linear relationships are
given below. The left plot has β0 = 5 and β1 = 3. The slope is positive, which indicates that Y
increases linearly when X increases. The right plot has β0 = 7 and β1 = −2. The slope is negative,
which indicates that Y decreases linearly when X increases.
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The line Y = 5 + 3X

X

Y
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1

-2

The line Y = 7 - 2X

Least Squares

Data rarely, if ever, fall on a straight line. However, a straight line will often describe the trend
for a set of data. Given a data set (Xi, Yi), i = 1, ..., n with a linear trend, what linear equation
“best” summarizes the observed relationship between Y and X? There is no universally accepted
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9 CORRELATION AND REGRESSION

definition of “best”, but many researchers accept the Least Squares line (LS line) as a reasonable
summary.

Mathematically, the LS line chooses the values of β0 and β1 that minimize

n∑
i=1

{Yi − (β0 + β1Xi)}2

over all possible choices of β0 and β1. These values can be obtained using calculus. Rather than
worry about this calculation, note that the LS line makes the sum of squared deviations between
the responses Yi and the line as small as possible, over all possible lines. The LS line typically goes
through “the heart” of the data, and is often closely approximated by an eye-ball fit to the data.
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The equation of the LS line is
ŷ = b0 + b1X

where the intercept b0 satisfies
b0 = Y − b1X

and the slope is

b1 =
∑

i(Yi − Y )(Xi −X)∑
i(Xi −X)2

= r
SY

SX
.

As before, r is the Pearson correlation between Y and X, whereas SY and SX are the sample
standard deviations for the Y and X samples, respectively. The sign of the slope and the sign
of the correlation are identical (i.e. + correlation implies + slope).

Special symbols b0 and b1 identify the LS intercept and slope to distinguish the LS line from
the generic line Y = β0 + β1X. You should think of Ŷ as the fitted value at X, or the value of
the LS line at X.
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9 CORRELATION AND REGRESSION

Minitab Implementation

The separate document shows Minitab output from a least squares fit.

For the thyroid operation data with Y = Blood loss in ml and X = Weight in kg, the LS line
is Ŷ = 552.44 − 1.30X, or Predicted Blood Loss = 552.44 − 1.30 Weight. For an 86kg individual,
the Predicted Blood Loss = 552.44− 1.30 ∗ 86 = 440.64ml.

The LS regression coefficients for this model are interpreted as follows. The intercept b0 is the
predicted blood loss for a 0 kg individual. The intercept has no meaning here. The slope b1 is the
predicted increase in blood loss for each additional kg of weight. The slope is -1.30, so the predicted
decrease in blood loss is 1.30 ml for each increase of 1 kg in weight.

Any fitted linear relationship holds only approximately and does not necessarily extend outside
the range of the data. In particular, nonsensical predicted blood losses of less than zero are obtained
at very large weights outside the range of data.

ANOVA Table for Regression

The LS line minimizes
n∑

i=1

{Yi − (β0 + β1Xi)}2

over all choices for β0 and β1. Inserting the LS estimates b0 and b1 into this expression gives

Residual Sums of Squares =
n∑

i=1

{Yi − (b0 + b1Xi)}2.

Several bits of notation are needed. Let

Ŷi = b0 + b1Xi

be the predicted or fitted Y−value for an X−value of Xi and let ei = Yi − Ŷi. The fitted value Ŷi

is the value of the LS line at Xi whereas the residual ei is the distance that the observed response
Yi is from the LS line. Given this notation,

Residual Sums of Squares = Res SS =
n∑

i=1

(Yi − ŷi)2 =
n∑

i=1

e2
i .

Here is a picture to clarify matters:
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9 CORRELATION AND REGRESSION
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The Residual SS, or sum of squared residuals, is small if each Ŷi is close to Yi (i.e. the line
closely fits the data). It can be shown that

Total SS in Y =
n∑

i=1

(Yi − Y )2 ≥ Res SS ≥ 0.

Also define

Regression SS = Reg SS = Total SS − Res SS = b1

n∑
i=1

(Yi − Y )(Xi −X).

The Total SS measures the variability in the Y−sample. Note that

0 ≤ Regression SS ≤ Total SS.

The percentage of the variability in the Y− sample that is explained by the linear rela-
tionship between Y and X is

R2 = coefficient of determination =
Reg SS
Total SS

.

Given the definitions of the Sums of Squares, we can show 0 ≤ R2 ≤ 1 and

R2 = square of Pearson correlation coefficient = r2.

To understand the interpretation of R2, at least in two extreme cases, note that

Reg SS = Total SS ⇔ Res SS = 0
⇔ all the data points fall on a straight line
⇔ all the variability in Y is explained by the linear relationship with X

(which has variation)
⇔ R2 = 1. (see the picture below)
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9 CORRELATION AND REGRESSION
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Furthermore,

Reg SS = 0 ⇔ Total SS = Res SS
⇔ b1 = 0
⇔ LS line is Ŷ = Y

⇔ none of the variability in Y is explained by a linear relationship
⇔ R2 = 0.

•

•

•
•

•

•

•

•
•

•

•
•

•

•

•

•
•

••
•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

••

•

•
•

•

•

•

•

• •
••

•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

• •

•

•

•

•

•

•
•

•

•

•

• •

•

•

•

•

•

•

•

••

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•
•

•
•

•
•

• •

•

•

•

•

•
•

•

•

•

•

•

•
•

•

•
•

•

•

•

•

•

•

• •

•

•

•

•

••

•

•

•

•

•

• •

•

•

•
•

•
•

•

•

•

•

• ••

••

•
•

•
•

•
•

•

••

•

•

•

•

•

•
•

•

••

•
•

X

Y

-3 -2 -1 0 1 2

0
1

2
3

4
5

Each Sum of Squares has a corresponding df (degrees of freedom). The Sums of Squares and
df are arranged in an analysis of variance (ANOVA) table:
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9 CORRELATION AND REGRESSION

Source df SS MS
Regression 1
Residual n− 2

Total n− 1

The Total df is n − 1. The Residual df is n minus the number of parameters (2) estimated
by the LS line. The Regression df is the number of predictor variables (1) in the model. A Mean
Square is always equal to the Sum of Squares divided by the df . SW use the following notation for
the Residual MS: s2

Y |X = Resid(SS)/(n− 2).

Brief Discussion of Minitab Output for Blood Loss Problem

1. Identify fitted line: Blood Loss = 552.44 - 1.30 Weight (i.e. b0 = 552.44 and b1 = −1.30).
2. Locate Analysis of Variance Table. More on this later.
3. Locate Parameter Estimates Table. More on this later.
4. Note that R2 = .5967 = (−.77247)2 = r2.

The regression model

The following statistical model is assumed as a means to provide error estimates for the LS line,
regression coefficients, and predictions. Assume that the data (Xi, Yi), i = 1, ..., n are a sample of
(X, Y ) values from the population of interest, and

1. The mean in the population of all responses Y at a given X value (called µY |X by SW)
falls on a straight line, β0 + β1X, called the population regression line.

2. The variation among responses Y at a given X value is the same for each X, and is denoted
by σ2

Y |X .

3. The population of responses Y at a given X is normally distributed.

4. The pairs (Xi, Yi) are a random sample from the population. Alternatively, we can think
that the Xis were fixed by the experimenter, and that the Yi are random responses at the
selected predictor values.

The model is usually written in the form

Yi = β0 + β1Xi + εi

(i.e. Response = Mean Response + Residual), where the εis are, by virtue of assumptions 2, 3 and
4, independent normal random variables with mean 0 and variance σ2

Y |X . The following picture
might help see this. Note that the population regression line is unknown, and is estimated from
the data using the LS line.

147



9 CORRELATION AND REGRESSION
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Back to the Data

There are three unknown population parameters in the model: β0, β1 and σ2
Y |X . Given the data,

the LS line
Ŷ = b0 + b1X

estimates the population regression line β0+β1X. The LS line is our best guess about the unknown
population regression line. Here b0 estimates the intercept β0 of the population regression line and
b1 estimates the slope β1 of the population regression line.

The ith observed residual ei = Yi− Ŷi, where Ŷi = b0 +b1Xi is the ith fitted value, estimates
the unobservable residual εi. ( εi is unobservable because β0 and β1 are unknown.) See the
picture on page 10 to refresh your memory on the notation. The Residual MS from the ANOVA
table is used to estimate σ2

Y |X :

s2
Y |X = Res MS =

Res SS
Res df

=
∑

i(Yi − Ŷi)2

n− 2
.

CI and tests for β1

A CI for β1 is given b1 ± tcritSEb1 , where the standard error of b1 under the model is

SEb1 =
sY |X√∑

i(Xi −X)2
,

and where tcrit is the appropriate critical value for the desired CI level from a t−distribution with
df =Res df .

To test H0 : β1 = β1,0 (a given value) against HA : β1 6= β1,0, reject H0 if |ts| ≥ tcrit, where

ts =
b1 − β1,0

SEb1

,

and tcrit is the t−critical value for a two-sided test, with the desired size and df =Res df . Alterna-
tively, you can evaluate a p-value in the usual manner to make a decision about H0.
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9 CORRELATION AND REGRESSION

The parameter estimates table in Minitab gives the standard error, t−statistic, and p-value for
testing H0 : β1 = 0. Analogous summaries are given for the intercept, but these are typically of
less interest.

Testing β1 = 0

Assuming the mean relationship is linear, consider testing H0 : β1 = 0 against HA : β1 6= 0. This
test can be conducted using a t-statistic, as outlined above, or with an ANOVA F−test, as outlined
below.

For the analysis of variance (ANOVA) F -test, compute

Fs =
Reg MS
Res MS

and reject H0 when Fs exceeds the critical value (for the desired size test) from an F−table with
numerator df = 1 and denominator df = n − 2; see SW, page 654. The hypothesis of zero slope
(or no relationship) is rejected when Fs is large, which happens when a significant portion of the
variation in Y is explained by the linear relationship with X. Minitab gives the F−statistic and
p-value with the ANOVA table output.

The p-values from the t−test and the F−test are always equal. Furthermore this p-value is
equal to the p-value for testing no correlation between Y and X, using the t−test described earlier.
Is this important, obvious, or disconcerting?

A CI for the population regression line

I can not overemphasize the power of the regression model. The model allows you to estimate the
mean response at any X value in the range for which the model is reasonable, even if little or no
data is observed at that location.

We estimate the mean population response among individuals with X = Xp

µp = β0 + β1Xp,

with the fitted value, or the value of the least squares line at Xp:

Ŷp = b0 + b1Xp.

Xp is not necessarily one of the observed Xis in the data. To get a CI for µp, use Ŷp ± tcritSE(Ŷp),
where the standard error of Ŷp is

SE(Ŷp) = sY |X

√
1
n

+
(Xp −X)2∑
i(Xi −X)2

.

The t−critical value is identical to that used in the subsection on CI for β1.

CI for predictions

Suppose a future individual (i.e. someone not used to compute the LS line) has X = Xp. The best
prediction for the response Y of this individual is the value of the least squares line at Xp:

Ŷp = b0 + b1Xp.
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9 CORRELATION AND REGRESSION

To get a CI (prediction interval) for an individual response, use Ŷp ± tcritSEpred(Ŷp), where

SEpred(Ŷp) = sY |X

√
1 +

1
n

+
(Xp −X)2∑
i(Xi −X)2

,

and tcrit is identical to the critical value used for a CI on β1.
For example, in the blood loss problem you may want to estimates the blood loss for an 50kg

individual, and to get a CI for this prediction. This problem is different from computing a CI for
the mean blood loss of all 50kg individuals!

Comments

1. The prediction interval is wider than the CI for the mean response. This is reasonable
because you are less confident in predicting an individual response than the mean response
for all individuals.

2. The CI for the mean response and the prediction interval for an individual response become
wider as Xp moves away from X. That is, you get a more sensitive CI and prediction interval
for Xps near the center of the data.

3. In Stat > Regression > Fitted Line Plot Minitab will plot a band of 95% confidence
intervals and a band of 95% prediction intervals on the data plot, along with the fitted LS
line.

A further look at the blood loss data (Minitab Output)

• The LS line is: Predicted Blood Loss = 552.442 - 1.30 Weight.

• The R2 is .597 (i.e. 59.7%).

• The F−statistic for testing H0 : β1 = 0 is Fobs = 8.88 with a p − value = .025. The Error
MS is s2

Y |X = 136.0; see ANOVA table.

• The Parameter Estimates table gives b0 and b1, their standard errors, and t−statistics and
p-values for testing H0 : β0 = 0 and H0 : β1 = 0. The t−test and F− test p-values for testing
that the slope is zero are identical. We could calculate a 95% CI for β0 and β1. If we did
so (using the t critical value) we find we are 95% confident that the slope of the population
regression line is between -2.37 and -.23.

• Suppose we are interested in estimating the average blood loss among all 50kg individuals.
The estimated mean blood loss is 552.442 − 1.30033 ∗ 50 = 487.43. Reading off the plot, we
are 95% confident that the mean blood loss of all 50kg individuals is between (approximately)
477 and 498 ml. A 95% prediction interval for the blood loss of a single 50 kg person is less
precise (about 457 to 518 ml).

As a summary we might say that weight is important for explaining the variation in blood loss.
In particular, the estimated slope of the least squares line (Predicted Blood loss = 552.442 - 1.30
Weight) is significantly different from zero (p-value = .0247), with weight explaining approximately
60% (59.7%) of the variation in blood loss for this sample of 8 thyroid operation patients.
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9 CORRELATION AND REGRESSION

Checking the regression model

A regression analysis is never complete until the assumptions of the model have been checked.
In addition, you need to evaluate whether individual observations, or groups of observations, are
unduly influencing the analysis. A first step in any analysis is to plot the data. The plot provides
information on the linearity and constant variance assumption. For example, the data plot below
shows a linear relationship with roughly constant variance.

In addition to plotting the data, a variety of methods for assessing model adequacy are based
on plots of the residuals, ei = Yi − Ŷi (i.e. Observed − Fitted values). For example, an option
in Minitab is to plot the ei against the fitted values Ŷi, as given below. This residual plot should
exhibit no systematic dependence of the sign or the magnitude of the residuals on the fitted values.
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The real power of this plot is with multiple predictor problems (multiple regression). For
simple linear regression, the information in this plot is similar to the information in the original
data plot, except that the residual plot eliminates the effect of the trend on your perceptions of
model adequacy.

The following plots show how inadequacies in the data plot appear in a residual plot. The
first plot shows a roughly linear relationship between Y and X with non-constant variance. The
residual plot shows a megaphone shape rather than the ideal horizontal band. A possible remedy
is a weighted least squares analysis to handle the non-constant variance, or to transform Y to
stabilize the variance. Transforming the data may destroy the linearity.

The second plot shows a nonlinear relationship between Y and X. The residual plot shows
a systematic dependence of the sign of the residual on the fitted value. A possible remedy is to
transform the data.

The last plot shows an outlier. This point has a large residual. A sensible approach is to refit
the model after deleting the case and see if any conclusions change.
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9 CORRELATION AND REGRESSION

Checking normality

The normality assumption can be evaluated with a boxplot or a normal quantile plot of the residuals.
A formal test of normality using the residuals can be computed as discussed earlier this semester.

Checking independence

Diagnosing dependence among observations usually requires some understanding of the mechanism
that generated the data. There are a variety of graphical and inferential tools for checking inde-
pendence for data collected over time (called a time series). The easiest thing to do is plot the ri

against time index and look for any suggestive patterns.

Outliers

Outliers are observations that are poorly fitted by the regression model. The response for an outlier
is far from the fitted line, so outliers have large positive or negative values of the residual ei.

What do you do with outliers? Outliers may be due to incorrect recordings of the data or
failure of the measuring device, or indications or a change in the mean or variance structure for
one or more cases. Incorrect recordings should be fixed if possible, but otherwise deleted from the
analysis.

Routine deletion of outliers from the analysis is not recommended. This practice can have a
dramatic effect on the fit of the model and the perceived precision of parameter estimates and
predictions. Analysts who routinely omit outliers without cause tend to overstate the significance
of their findings and get a false sense of precision in their estimates and predictions. At the very
least, a data analyst should repeat the analysis with and without the outliers to see whether any
substantive conclusions are changed.

Influential observations

Certain data points can play a very important role in determining the position of the LS line. These
data points may or may not be outliers. For example, the observation with Y > 45 in the first
plot below is an outlier relative to the LS fit. The extreme observation in the second plot has a
very small ei. Both points are highly influential observations - the LS line changes dramatically
when these observations are deleted. The influential observation in the second plot is not an outlier
because its presence in the analysis determines that the LS line will essentially pass through it! In
these plots the solid line is the LS line from the full data set, whereas the dashed line is the LS line
after omitting the unusual point.
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There are well defined measures of the influence that individual cases have on the LS line, and
they are available in Minitab. On the separate output I calculated Cook’s D (labelled COOK1) –
large values indicate influential values. Which observations are most influential according to this
measure? For simple linear regression most influential cases can be easily spotted by carefully
looking at the data plot. If you identify cases that you suspect might be influential, you should
hold them out (individually) and see if any important conclusions change. If so, you need to think
hard about whether the cases should be included or excluded from the analysis.
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