
10 MODEL CHECKING AND REGRESSION DIAGNOSTICS

10 Model Checking and Regression Diagnostics

The simple linear regression model is usually written as

Yi = β0 + β1Xi + εi

where the εis are independent normal random variables with mean 0 and variance σ2. The model
implies (1) The average Y -value at a given X−value is linearly related to X. (2) The variation in
responses Y at a given X value is constant. (3) The population of responses Y at a given X is
normally distributed. (4) The observed data are a random sample.

A regression analysis is never complete until these assumptions have been checked. In addition,
you need to evaluate whether individual observations, or groups of observations, are unduly influ-
encing the analysis. A first step in any analysis is to plot the data. The plot provides information
on the linearity and constant variance assumption.

•

•
•

•

••

•

•

•

•
•

•

•

••

•

•

•

••

X

Y

1 2 3 4 5

8
10

12
14

16
18

20

(a)

•
•

••

•

•
•

•

•

•
•

•

•

•

•
• •

•

•

•

X

Y

1 2 3 4 5

10
15

20
25

(b)

•
•
•

• •
•
••

•
••
•

••
•
•

•
••

•

X

Y

1 2 3 4 5

0
10

0
20

0
30

0
40

0

(c)

•••• ••••
•
•

••

•

•••

•

•

•
•

X

Y

1 2 3 4 5

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

(d)

155



10 MODEL CHECKING AND REGRESSION DIAGNOSTICS

Figure (a) is the only plot that is consistent with the assumptions. The plot shows a linear
relationship with constant variance. The other figures show one or more deviations. Figure (b)
shows a linear relationship but the variability increases as the mean level increases. In Figure (c) we
see a nonlinear relationship with constant variance, whereas (d) exhibits a nonlinear relationship
with non-constant variance.

In many examples, nonlinearity or non-constant variability can be addressed by transforming
Y or X (or both), or by fitting polynomial models. These issues will be addressed later.

Residual Analysis

A variety of methods for assessing model adequacy are based on the observed residuals,

ei = Yi − Ŷi i.e. Observed − Fitted values.

The residuals are usually plotted in various ways to assess potential inadequacies. The observed
residuals have different variances, depending on Xi, so many statisticians prefer to plot the stu-
dentized residuals (sometimes called the standardized residuals)

ri =
ei

SE(ei)
.

The studentized residuals have a constant variance of 1 (approximately). I will focus on diagnostic
methods using the studentized residuals.

A plot of the studentized residuals ri against the fitted values Ŷi often reveals inadequacies with
the model. The real power of this plot is with multiple predictor problems (multiple regression).
The information contained in this plot with simple linear regression is similar to the information
contained in the original data plot, except it is scaled better and eliminates the effect of the trend
on your perceptions of model adequacy. The residual plot should exhibit no systematic dependence
of the sign or the magnitude of the residuals on the fitted values:
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10 MODEL CHECKING AND REGRESSION DIAGNOSTICS

The following sequence of plots show how inadequacies in the data plot appear in a residual plot.
The first plot shows a roughly linear relationship between Y and X with non-constant variance. The
residual plot shows a megaphone shape rather than the ideal horizontal band. A possible remedy
is a weighted least squares analysis to handle the non-constant variance, or to transform Y to
stabilize the variance. Transforming the data may destroy the linearity.
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The plot above shows a nonlinear relationship between Y and X. The residual plot shows
a systematic dependence of the sign of the residual on the fitted value. Possible remedies were
mentioned earlier.

The plot below shows an outlier. This case has a large residual and large studentized residual.
A sensible approach here is to refit the model after holding out the case to see if any conclusions
change.
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Checking Normality

The normality assumption for the εi can be evaluated visually with a boxplot or a normal prob-
ability plot (rankit plot) of the ri, or formally with a Shapiro-Wilk test. The rankit plot often
highlights outliers, or poorly fitted cases. If an outlier is held out of the data and a new analysis is
performed, the resulting normal scores plot may be roughly linear, but often will show a short-tailed
distribution. (Why?).

You must interpret regression tests and CI with caution with non-normal data. Statisticians
developed robust regression methods for non-normal data but they are not widely available in
standard software packages. Minitab has a robust line fitting procedure for simple linear regression,
but its features are rather limited.

Checking Independence

Diagnosing dependence among observations requires an understanding of the data collection pro-
cess. There are a variety of graphical and inferential tools for checking independence for data
collected over time (called a time series). The easiest check is to plot the ri against time index and
look for any suggestive patterns.

Outliers

Outliers are observations that are poorly fitted by the regression model. The response for an outlier
is far from the fitted line, so outliers have large positive or negative values of the studentized residual
ri. Usually, |ri| > 2 is considered large. Outliers are often highlighted in residual plots.

What do you do with outliers? Outliers may be due to incorrect recordings of the data or
failure of the measuring device, or indications or a change in the mean or variance structure for
one or more cases. Incorrect recordings should be fixed if possible, but otherwise deleted from the
analysis.

Routine deletion of outliers from the analysis is not recommended. This practice can have a
dramatic effect on the fit of the model and the perceived precision of parameter estimates and
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10 MODEL CHECKING AND REGRESSION DIAGNOSTICS

predictions. Analysts who routinely omit outliers without cause tend to overstate the significance
of their findings and get a false sense of precision in their estimates and predictions. To assess
effects of outliers, a data analyst should repeat the analysis holding out the outliers to see whether
any substantive conclusions are changed. Very often the only real effect of an outlier is to inflate
MSE and hence make p-values a little larger and CIs a little wider than necessary, but without
substantively changing conclusions. They can completely mask underlying patterns, however.

Influential Observations

Certain data points can play an important role in determining the position of the LS line. These
data points may or may not be outliers. For example, the observation with Y > 45 in the first plot
is an outlier relative to the LS fit. The extreme observation in the second plot has a very small ri.
Both points are highly influential observations - the LS line changes dramatically when these
observations are held out. The influential observation in the second plot is not an outlier because
its presence in the analysis determines that the LS line will essentially pass through it! In these
plots the solid line is the LS line from the full data set, whereas the dashed line is the LS line after
omitting the unusual point.
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Dennis Cook developed a measure of the impact that individual cases have on the placement
of the LS line. His measure, called Cook’s distance or Cook’s D, provides a summary of how
far the LS line changes when each individual point is held out (one at a time) from the analysis.
The case with the largest D has the greatest impact on the placement of the LS line. However, the
actual influence of this case may be small. In the plots above, the observations I focussed on have
the largest Cook’s Ds.

A simple, but not unique, expression for Cook’s distance for the jth case is

Dj ∝
∑

i

(Ŷi − Ŷi[−j])
2,

where Ŷi[−j] is the fitted value for the ith case when the LS line is computed from all the data
except case j. Here ∝ means that Dj is a multiple of

∑
i(Ŷi − Ŷi[−j])2 where the multiplier does
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10 MODEL CHECKING AND REGRESSION DIAGNOSTICS

not depend on the case. This expression implies that Dj is also an overall measure of how much
the fitted values change when case j is deleted.

Given a regression problem, you should locate the points with the largest Djs and see whether
holding these cases out has a decisive influence on the fit of the model or the conclusions of the
analysis. You can examine the relative magnitudes of the Djs across cases without paying much
attention to the actual value of Dj , but there are guidelines (see below) on how large Dj needs to
be before you worry about it.

It is difficult to define a good strategy for dealing with outliers and influential observations.
Experience is the best guide. I will show you a few examples that highlight some standard phe-
nomena. One difficulty you will find is that certain observations may be outliers because other
observations are influential, or vice-versa. If an influential observation is held out, an outlier may
remain an outlier, may become influential, or both, or neither. Observations of moderate influence
may become more, or less influential, when the most influential observation is held out.

Thus, any sequential refitting of models holding out of observations should not be based on the
original (full-data) summaries, but rather on the summaries that result as individual observations
are omitted. I tend to focus more on influential observations than outliers.

In the plots below, which cases do you think are most influential, and which are outliers. What
happens in each analysis if I delete the most influential case? Are any of the remaining cases
influential or poorly fitted?
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Many researchers are hesitant to delete points from an analysis. I think this view is myopic, and
in certain instances, such as the Gesell example to be discussed, can not be empirically supported.
Being rigid about this can lead to some silly analyses of data, but one needs a very good reason
and full disclosure if any points are deleted.
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10 MODEL CHECKING AND REGRESSION DIAGNOSTICS

Diagnostic Measures available in Minitab

Stat > Regression > Regression > Storage allows you to save several diagnostic measures de-
signed to measure the effect of the ith observation on the regression equation. These are

1. Residuals. Minitab’s description is

Residuals

The difference between the observed values and predicted or fitted values. The resid-
ual is the part of the observation that is not explained by the fitted model. You can
analyze residuals to determine the adequacy of the model.

These are just the raw residuals we defined initially. A large residual identifies an observation
poorly fit by the model.

2. Standard residuals. Minitab’s description is

Standardized residuals

Also known as the Studentized residual or internally Studentized residual. The
standardized residual is the residual, ei, divided by an estimate of its standard de-
viation. This form of the residual takes into account that the residuals may have
different variances, which can make it easier to detect outliers. Standardized resid-
uals greater than 2 and less than -2 are usually considered large and Minitab labels
these observations with an R in the table of unusual observations or fits and resid-
uals.

It is possible to have quite different standard errors for residuals, and this puts everything on
the same scale.

3. Deleted t residuals. Minitab’s description is

Studentized deleted residuals

Also called externally Studentized residual. Studentized deleted residuals are useful
for identifying outliers because the ith residual is calculated when the fitted regres-
sion is based on all of the cases except the ith one. The residual is then divided by
its estimated standard deviation. Since the Studentized deleted residual for the ith

observation estimates all quantities with this observation deleted from the data set,
the ith observation cannot influence these estimates. Therefore, unusual Y values
clearly stand out. Studentized deleted residuals with large absolute values are con-
sidered large.

If the regression model is appropriate, with no outlying observations, each Stu-
dentized deleted residual follows the t distribution with n−1−p degrees of freedom.
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10 MODEL CHECKING AND REGRESSION DIAGNOSTICS

The problem with residuals is that a highly influential value can force the residual to have a
very small value. This measure tries to correct for that by looking at how well the model fits
this observation without using this observation to construct the fit. It is quite possible for
the deleted residual to be huge when the raw residual is tiny.

4. Hi (leverages). Minitab’s description is

Leverages

Identify observations with unusual or outlying x-values. Observations with large
leverage may exert considerable influence on the fitted value and the model. Lever-
age values fall between 0 and 1. Experts consider a leverage value greater than 2p/n
or 3p/n, where p is the number of predictors or factors plus the constant and n is
the number of observations, large and suggest you examine the corresponding obser-
vation. Minitab identifies observations with leverage over 3p/n or .99, whichever
is smaller, with an X in the table of unusual observations.

High leverage values are basically outliers among the x values. Y does not enter in this
calculation. These are values with the potential of greatly distorting the fitted model. They
may or may not actually have distorted it.

5. Cook’s distance. Minitab’s description is

Cook’s distance (D)

An overall measure of the combined impact of each observation on the fitted values.
Observations with large D values may be outliers. Because D is calculated using
leverage values and standardized residuals, it considers whether an observation is
unusual with respect to both x- and y-values.

To interpret D, compare it to the F-distribution with (p, n-p) degrees of freedom to
determine the corresponding percentile. If the percentile value is less than 10% or
20%, the observation has little influence on the fitted values. If the percentile value
is greater than 50%, the observation has a major influence on the fitted values and
should be examined.

Many statisticians make it a lot simpler than this sounds and use 1 as a cutoff value for
large Cook’s D. That’s not much different than the Minitab recommendation. This is a
very nice hybrid measure incorporating both x- and y- values. High leverage values indicate
observations that have the potential of causing trouble, but those with high Cook’s D values
actually do disproportionately affect the overall fit. Using the cutoff of 1 can simplify an
analysis, since frequently one or two values will have noticeably larger D values than other
observations without actually having much effect, but it can be important to explore any
observations that stand out.

6. DFITS. Minitab’s description is
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10 MODEL CHECKING AND REGRESSION DIAGNOSTICS

DFITS Also DFFITS.

A measure of the influence of each observation on the fitted value. Represents
roughly the number of standard deviations that the fitted value changes when each
case is removed from the data set. Observations with DFITS values greater than
2
√

p/n are considered large and should be examined, where p is the number of pre-
dictors (including the constant) and n is the number of observations.

These various measures often flag the same observations as unusual, but they certainly can flag
different observations. At the very least I examine standardized residuals and Cooks’s D values.
They are invaluable diagnostic measures, but nothing is perfect. Observations can be unusual in
groups – a pair of unusual high leverage values close to each other will not necessarily be flagged
by Cook’s D since removing just one may not affect the fit very much. Any analysis takes some
careful thought.

These measures and techniques really are designed for multiple regression problems where sev-
eral predictor variables are used. We are using them in simple linear regression to learn what they
do and see what they have to say about data, but in truth it is fairly simple with one variable to
see what may be an outlier in the x direction, to see if the data are poorly fit, etc. With more
variables all that becomes quite difficult and these diagnostics are essential parts of those analyses.

Minitab Regression Analysis

There are a lot options allowed in Minitab. I will make a few suggestions here on how to start an
analysis. What you find once you get started determines what more you might wish to explore.

1. Plot the data. With lots of variables the matrix plot is valuable as a quick screen. If you
want to see better resolution on an individual scatter plot, do the individual scatter plot.

2. Do any obvious transformations of the data. We will discuss this in a lot more detail later.
Re-plot.

3. Fit the least squares equation. Here is where you face all the options. At the least ask
for the following.

(a) Graphs: Check Standardized Residuals (or the Deleted Residuals). Standardized
are more conventional and show you what actually happened, Deleted are probably the
better diagnostic tool for identifying problem cases.

Residual Plots: Asking for Four in one seems convenient to me. This gives you the
essential plot (residuals vs. fitted values) plus a quick check on normality and possible
violations of independence. If you see something that needs closer investigation, you
may need to use the scatterplot menu to plot after the fit is done.

(b) Options: Make sure Fit intercept is checked (otherwise no β0 term is estimated and
the results can be odd. This is fit by default, but check. This is where you enter weights
– to be discussed shortly. In your first pass through the data you probably will not have
any weights.
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(c) Results: The third option is the default and seems right. With larger data sets the last
option prints too much (everything can be stored in the worksheet anyway). The nice
feature in the third option is automatic flagging of unusual observations.

(d) Storage: This is where you tell Minitab what to place in the worksheet so you can
examine it in more detail. I usually ask at least for Standardized residuals, Hi
(leverages), and Cook’s distance. These get named SRES, HI, and COOK in the
worksheet.

4. Examine the residual plots and results. Check for the patterns discussed earlier.

(a) Do you see curvature? If the sign of the residuals has a distinct pattern vs. the fitted
values, the linear fit is not adequate and you need some remedy such as transformations.

(b) Does it appear σY |X depends upon X (we are assuming it does not)? A megaphone
pattern in residuals vs. fits is the classic (not the only) pattern to look for. Weighted
least squares or transformations may be called for.

(c) Do you see obvious outliers? Make sure you do not have a misrecorded data value. It
might be worth refitting the equation without the outlier to see if it affects conclusions
substantially.

(d) Is the normality assumption reasonable? This can be very closely related to the preceding
points.

(e) Is there a striking pattern in residuals vs. order of the data? This can be an indication
that the independence assumption is not valid.

5. Check the Cook’s D values. Minitab has already flagged for you any cases with high
leverage or standardized residuals. D is very useful to check separately. A nice check for
high D values is a plot vs. order of the data using a Graph > Time Series Plot. Instead
of Connect line under Data View > Data Display, I prefer Project lines. It can be
useful to ask for a reference line at Y = 1 under Time/Scale > Reference lines > Show
reference lines for Y positions. The same plot for residuals and leverage values can be
useful (changing reference lines) as well.

6. If you found problem observations, omit them from the analysis and see if any conclusions
change substantially. There are two good ways to do this.

(a) Subset the worksheet using Data > Subset Worksheet and indicate which rows to in-
clude or exclude. This creates a new worksheet. In earlier versions of Minitab and in
some other packages I found this awkward since worksheets could proliferate and speci-
fying rows could be cumbersome. With the ability to brush plots and subset, this may
be the best method.

(b) Use weighted least squares with weights of 0 for the excluded observations, weights of 1
for those included. I used to prefer this method to the preceding one; I still find it as
easy but it is less modern (so it works in other packages that do not support brushing).
The weight variable gets entered under Options.

You may need to repeat all these steps many times for a complete analysis.
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Residual and Diagnostic Analysis of the Blood Loss Data

We looked at much of this before, but let us go through the above steps systematically. Recall the
data set (we want to predict blood loss from weight):

Data Display

Row Weight Time BloodLoss
1 44.3 105 503
2 40.6 80 490
3 69.0 86 471
4 43.7 112 505
5 50.3 109 482
6 50.2 100 490
7 35.4 96 513
8 52.2 120 464

1. Plot blood loss vs. weight.

Clearly the heaviest individual is an unusual value that warrants a closer look. Passing the
mouse over that point in Minitab reveals it is the 3rd observation. I might be inclined to try
a transformation here to make that point a little less influential.

2. We will look at transformations later.

3. Results are in many pieces. The summary of the least squares fit put in the Session Window
is

Regression Analysis: BloodLoss versus Weight

The regression equation is
BloodLoss = 552 - 1.30 Weight

Predictor Coef SE Coef T P
Constant 552.44 21.44 25.77 0.000
Weight -1.3003 0.4364 -2.98 0.025

S = 11.6623 R-Sq = 59.7% R-Sq(adj) = 52.9%
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10 MODEL CHECKING AND REGRESSION DIAGNOSTICS

Analysis of Variance

Source DF SS MS F P
Regression 1 1207.5 1207.5 8.88 0.025
Residual Error 6 816.0 136.0
Total 7 2023.5

The residual plots:

Note the new entries in the worksheet.

Data Display

Row Weight BloodLoss SRES1 HI1 COOK1
1 44.3 503 0.75757 0.146436 0.04923
2 40.6 490 -0.92858 0.206150 0.11196
3 69.0 471 1.36675 0.730118 2.52679
4 43.7 505 0.87441 0.153515 0.06933
5 50.3 482 -0.46321 0.131102 0.01619
6 50.2 490 0.26065 0.130532 0.00510
7 35.4 513 0.70348 0.354881 0.13612
8 52.2 464 -1.90958 0.147266 0.31487

4. What do we see so far? Blood Loss appears significantly negatively associated with weight,
and except for one very isolated residual (for obs. 3), nothing looks terribly out of whack in
the residual plots.

5. Look at Cook’s D. We could have anticipated this, but the 3rd observation is affecting the
fit by a lot more than any other values. The D-value is much larger than 1. Note that the
residual is not large for this value.
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6. Let us refit the equation without observation 3 to see if anything changes drastically. I will
use the weighted least squares approach discussed earlier on this example. Define a variable
wt that is 1 for all observations except obs. 3, and make it 0 for that one.

Data Display

wt
1 1 0 1 1 1 1 1

What changes by deleting case 3? The fitted line gets steeper (slope changes from -1.30 to
-2.19), adjusted R2 gets larger (up to 58% from 53%), and S changes from 11.7 to 10.6.
Because the Weight values are much less spread out, SE(β̂1) becomes quite a bit larger (to
.714, up from .436) and we lose a degree of freedom for MS Error (which will penalize us
on tests and CIs). Just about any quantitative statement we would want to make using CIs
would be about the same either way since CIs will overlap a great deal, and our qualitative
interpretations are unchanged (Blood Loss drops with Weight). Unless something shows up
in the plots, I don’t see any very important changes here.

Regression Analysis: BloodLoss versus Weight

Weighted analysis using weights in wt

The regression equation is
BloodLoss = 592 - 2.19 Weight

7 cases used, 1 cases contain missing values
or had zero weight

Predictor Coef SE Coef T P
Constant 591.67 32.57 18.17 0.000
Weight -2.1935 0.7144 -3.07 0.028

S = 10.6017 R-Sq = 65.3% R-Sq(adj) = 58.4%

Analysis of Variance
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Source DF SS MS F P
Regression 1 1059.7 1059.7 9.43 0.028
Residual Error 5 562.0 112.4
Total 6 1621.7

Note that the new diagnostic measures are added to the data set,

Data Display

Row Weight Time BloodLoss wt SRES1 HI1 COOK1 SRES2 HI2 COOK2
1 44.3 105 503 1 0.75757 0.146436 0.04923 0.86838 0.146893 0.064921
2 40.6 80 490 1 -0.92858 0.206150 0.11196 -1.36530 0.240725 0.295492
3 69.0 86 471 0 1.36675 0.730118 2.52679 * 0.000000 *
4 43.7 112 505 1 0.87441 0.153515 0.06933 0.94197 0.153665 0.080551
5 50.3 109 482 1 -0.46321 0.131102 0.01619 0.07277 0.258970 0.000925
6 50.2 100 490 1 0.26065 0.130532 0.00510 0.92250 0.254423 0.145200
7 35.4 96 513 1 0.70348 0.354881 0.13612 -0.14874 0.582715 0.015447
8 52.2 120 464 1 -1.90958 0.147266 0.31487 -1.55578 0.362609 0.688491

Nothing very striking shows up in the residual plots, and no Cook’s D values are very large
among the remaining observations.

How much difference is there in a practical sense? Examine the 95% prediction interval for a
new observation at Weight = 50kg. Previously we saw that interval based on all 8 observations
was from 457.1 to 517.8 ml of Blood Loss. Based on just the 7 observations the prediction interval
is 451.6 to 512.4 ml. There really is no practical difference here.

Gesell data

These data are from a UCLA study of cyanotic heart disease in children. The predictor is the age
of the child in months at first word and the response variable is the Gesell adaptive score, for each
of 21 children.

Data Display

Row ID AGE SCORE
1 1 15 95
2 2 26 71
3 3 10 83
4 4 9 91
5 5 15 102
6 6 20 87
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7 7 18 93
8 8 11 100
9 9 8 104
10 10 20 94
11 11 7 113
12 12 9 96
13 13 10 83
14 14 11 84
15 15 11 102
16 16 10 100
17 17 12 105
18 18 42 57
19 19 17 121
20 20 11 86
21 21 10 100

Let us go through the same steps as before.

1. Plot Score versus Age. Comment on the relationship between Score and Age.

2. There are no obvious transformations to try here.

3. Fit a simple linear regression model. Provide an equation for the LS line. Does age at first
word appear to be an “important predictor” of Gesell adaptive score? (i.e. is the estimated
slope significantly different from zero?)

Regression Analysis: SCORE versus AGE

The regression equation is
SCORE = 110 - 1.13 AGE

Predictor Coef SE Coef T P
Constant 109.874 5.068 21.68 0.000
AGE -1.1270 0.3102 -3.63 0.002

S = 11.0229 R-Sq = 41.0% R-Sq(adj) = 37.9%

Analysis of Variance
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Source DF SS MS F P
Regression 1 1604.1 1604.1 13.20 0.002
Residual Error 19 2308.6 121.5
Total 20 3912.7

Unusual Observations

Obs AGE SCORE Fit SE Fit Residual St Resid
18 42.0 57.00 62.54 8.90 -5.54 -0.85 X
19 17.0 121.00 90.72 2.54 30.28 2.82R

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.

4. Do these plots suggest any inadequacies with the model?

5. Observations 18 and 19 stand out with relatively high Cook’s D. The cutoff line is only a rough
guideline. Those two were flagged with high influence and standardized residual, respectively,
also.
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Be sure to examine the scatter plot carefully to see why 18 and 19 stand out.

6. Consider doing two additional analyses: Analyze the data after omitting case 18 only and
analyze the data after omitting case 19 only. Refit the regression model for each of these
two scenarios. Provide a summary table such as the following, giving the relevant summary
statistics for the three analyses. Discuss the impact that observations 18 and 19 have indi-
vidually on the fit of the model. I will demonstrate doing this in class by brushing the scatter
plot to subset the data.

When observation 18 is omitted, the estimated slope is not significantly different from zero
( p-value = .1489 ), indicating that age is not an important predictor of Gesell score. This
suggests that the significance of age as a predictor in the original analysis was due solely to
the presence of observation 18. Note the dramatic decrease in R2 after deleting observation
18.

The fit of the model appears to improve when observation 19 is omitted. For example,
R2 increases noticeably and the p-value for testing the significance of the slope decreases
dramatically (in a relative sense). These tendencies would be expected based on the original
plot. However, this improvement is misleading. Once observation 19 is omitted, observation
18 is much more influential. Again the significance of the slope is due to the presence of
observation 18.

Feature Full data Omit 18 Omit 19
b0 109.87 105.63 109.30
b1 -1.13 -0.78 -1.19

SE(b0) 5.07 7.16 3.97
SE(b1) 0.31 0.52 0.24

R2 0.41 0.11 0.57
p-val for H0 : β1 = 0 0.002 0.149 0.000

Can you think of any reasons to justify doing the analysis without observation 18?
If you include observation 18 in the analysis, you are assuming that the mean Gesell score is

linearly related to age over the entire range of observed ages. Observation 18 is far from the other
observations on age (age for observation 18 is 42; the second highest age is 26; the lowest age is
7). There are no children with ages between 27 and 41, so we have no information on whether
the relationship is roughly linear over a significant portion of the range of ages. I am comfortable
deleting observation 18 from the analysis because it’s inclusion forces me to make an assumption
that I can not check using these data. I am only willing to make predictions of Gesell score for
children with ages roughly between 7 and 26. However, once this point is omitted, age does not
appear to be an important predictor.

A more complete analysis would delete observation 18 and 19 together. What would you expect
to see if you did this?
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Weighted Least Squares

Earlier I indicated that nonconstant error variance can be addressed (sometimes) with weighted
least squares. Recall the LS (OLS or ordinary LS) line chooses the values of β0 and β1 that minimize

n∑
i=1

{Yi − (β0 + β1Xi)}2

over all possible choices of β0 and β1. The weighted LS (WLS) line chooses the values of β0 and
β1 that minimize

n∑
i=1

wi{Yi − (β0 + β1Xi)}2

over all possible choices of β0 and β1. If σY |X depends up X, then the correct choice of weights is
inversely proportional to variance, wi ∝ σ2

Y |X .
Consider the following plot of y vs. x and standardized OLS residuals vs x. It is very clear that

variability increases with x.

In order to use WLS to solve this problem, we need some form for σ2
Y |X . Finding that form is

a real problem with WLS. It can be useful to plot the absolute value of the standardized residual
vs. x to see if the top boundary seems to follow a general pattern.
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It is plausible the upper boundary is linear, so let us try wi = 1
x2 . Standardized residuals from this

WLS fit look very good. Note that raw (nonstandardized) residuals will still have the same pattern
– it is essential to use standardized residuals here.

Compare also the OLS fitted equation

The regression equation is y = 2.5 + 5.01 x

Predictor Coef SE Coef T P
Constant 2.55 18.37 0.14 0.890
x 5.0057 0.3134 15.97 0.000

S = 63.9662 R-Sq = 84.2% R-Sq(adj) = 83.8%

to the WLS fitted equation.

Weighted analysis using weights in C7

The regression equation is y = 5.52 + 4.94 x

Predictor Coef SE Coef T P
Constant 5.523 1.928 2.86 0.006
x 4.9362 0.1738 28.40 0.000

S = 1.06494 R-Sq = 94.4% R-Sq(adj) = 94.3%

Clearly the weighted fit looks better, although note that everything is based on the weighted SS.
In practice it can be pretty difficult to determine the correct set of weights, but WLS works much
better than OLS if appropriate. I actually simulated this data set using β0 = β1 = 5. Which fit
actually did better?
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