Transformations in Regression

Simple linear regression is appropriate when the scatterplot of Y against X show a linear
trend. In many problems, non-linear relationships are evident in data plots. Linear regression
techniques can still be used to model the dependence between Y and X, provided the data
can be transformed to a scale where the relationship is roughly linear. In the ideal world,
theory will suggest an appropriate transformation. In the absence of theory one usually
resorts to empirical model building. Polynomial models, to be discussed later, are another
method for handling nonlinear relationships.

I will suggest transformations that you can try if the trend in your scatterplot has one

of the following functional forms. The responses are assumed to be non-negative in all cases.
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The functional relationship between Y and X in (a) is given by Y = B, X", that is Y is
related to a power of X, where the power is typically unknown. For the top plot, 5; > 0
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whereas 3; < 0 for the plot on the bottom. For either situation, the logarithm of Y is linearly
related to the logarithm of X (regardless of the base):

log(Y) = log(5o) + Filog(X).

You should consider a simple linear regression of Y’ = log(Y") on X’ = log(X).
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The functional relationship between Y and X in (b) is given by Y = fyexp(5; X), that is YV’
is an exponential function of X. For the plot on top, 81 > 0 whereas 3; < 0 for the plot on

the bottom. In each situation, the natural logarithm of Y is linearly related to X:

log, (Y) = log,(Bo) + 51 X.

You should consider a simple linear regression of Y’ = log,(Y) on X. Actually, the base of

the logarithm is not important here either.
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The functional relationship between Y and X in (c) is given by Y = fy + f; log(X), that is
Y is an logarithmic function of X. For the top plot, 5; > 0 whereas 5; < 0 for the bottom
plot. In each situation, consider a simple linear regression of ¥ on X’ = log(X).

The functional relationship between Y and X in (d) is

1
Y:50+51y-

Hence, consider a simple linear regression of ¥ on X’ = 1/X. Note that each plot in (d) has

a horizontal asymptote of (.
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In most problems, the trend or signal will be buried in a considerable amount of
noise, or variability, so the best transformation may not be apparent. If two or more
transformations are suggested try all of them and see which is best - look at diagnostics
from the various fits rather than (meaningless) summaries such as R?. In situations where a
logarithmic transformation is suggested, you might try a square root transformation as well.

The need to transform is sometimes more apparent in a plot of the studentized residuals
against the predicted values from a linear fit of the original data because you tend not to

perceive subtle deviations from linearity.
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Computing Predictions

Transforming the response to a new scale causes no difficulties if you wish to make predictions
on the original scale. For example, suppose you fit a linear regression of log,(Y) on X. The
fitted values satisfy

—

IOg (Y) = b() + le

The predicted response Y, for an individual with X = X, is obtained by first getting the
predicted value for log,(Y}):

—

log,(Y) = by + 01 X,

Our best guess for Y), is obtained by exponentiating our prediction for log,(Y,):

~ —

¥, = exp(log, (1)) = exp(to + b X,).

The same idea can be used to get prediction intervals for Y, from a prediction interval for
log, (Yp).
Other transformations on Y are handled analogously. For example, how do you predict

Y using a simple linear regression with 1/Y as the selected response?

Example of Transformations: Wind Speed Data

A research engineer is investigating the use of a windmill to generate electricity. She has
collected data on the DC output from the windmill and the corresponding wind velocity. She
wants to develop a model that explains the dependence of the DC output on wind velocity.

I will give you snipets of an analysis. The data are given below, followed by a plot.

SPEED DC
5.00 1.582
6.00 1.822
3.40 1.057
2.70 0.500

10.00 2.236
9.70 2.386
9.55 2.294
3.05 0.558
8.15 2.166
6.20 1.866
2.90 0.653
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6.35 1.930
4.60 1.562
5.80 1.737
7.40 2.088
3.60 1.137
7.85 2.179
8.80 2.112
7.00 1.800
5.45 1.501
9.10 2.303
10.20 2.310
4.10 1.194
3.95 1.144
2.45 0.123
3 +
XXX X
XXX X X
2 + X
X X
D X
C XX X
XXX
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X
o7
——t——————— Fm——————— Fm——————— Fm——————— +-
2.5 5.0 7.5 10.0 12.5
SPEED

The data plot shows a strong linear trend, but the relationship is nonlinear. If I ignore

the nonlinearity and fit a simple linear regression model, I get
Predicted DC Output = .1809 + .2411 Wind Speed.

Although the R? from this fit is high, R? = .875, I am unhappy with the fit of the model. The
plot of the residuals against fitted values clearly points out the inadequacy. The plot shows
that the linear regression systematically underestimates the DC output for wind speeds in
the middle, and overestimates the DC output for low and high wind speeds. This model is

not acceptable for making predictions - one can and should do better!
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Predicted DC output from linear regression

The original data plot indicates that DC output approaches an upper limit of about 2.5
amps as the wind speed increases. Given this fact, and the trend in the plot, I decided to use
the inverse of wind speed as a predictor of DC output. Another reasonable first step would
be a logarithmic transformation of wind speed but this function steadily increases without
approaching a finite limit.

A plot of DC output against one over the wind speed (computed in the MINITAB
calculator) is given below. The plot is fairly linear, suggesting that a simple linear regression
fit on this scale is appropriate. Note that DC output is a decreasing function of one over the
wind speed.

The LS regression line is

Predi DC output = 2.9789 — 6.9345 ———.
redicted outpu Wind speed
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A plot of the studentized residuals against the fitted values showed no apparent abnormali-
ties. A more thorough influence analysis led us to conclude that the transformation worked

well here.
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Brain Weights and Body Weights of Mammals

This is another old homework assignment that was too important to be excluded from class
discussion.

The data below are the average brain weight (g) and body weights (kg) for 54 species
of mammals. The brain weights for eight other species were omitted (given as *, the miss-
ing value code in MINITAB). These data were read into MINITAB from an EXCEL
spreadsheet.

You are interested in developing a model for predicting brain weight from body weight.
Based on a plot of the data, determine whether a transformation is needed to linearize the
relationship between brain weight and body weight. Given the scale you select, perform a
simple linear regression analysis of the data. Be sure to check for influential observations,

outliers, and any deviations from assumptions. Do your best to correct any deficiencies with
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the model. Provide some justification for deleting any species from the analysis. Given the
selected model, provide predictions and 95% prediction intervals for the brain weights of the

8 species with “missing” brain weights.

Data Display

Row ID Species Body Wt Brain Wt
1 1 Artic fox 3.38 44 .50
2 2 0wl monkey 0.48 15.50
3 3 Mountain beaver 1.35 8.10
4 4 Cow 465.00 *
5 5 Gray wolf 36.33 119.50
6 6 Goat 27 .66 115.00
7 7 Roe deer. 14.83 98.20
8 8 Guinea pig 1.04 *
9 9 Vervet 4.19 58.00

10 10 Chinchilla 0.42 6.40
11 11 Ground squirrel 0.10 4.00
12 12 Arctic ground squirrel 0.92 5.70
13 13 Africa giant poached rat 1.00 6.60
14 14 TLesser short-tailed shre .005 0.14
15 15 Star—nosed mole . 0.06 1.00
16 16 Nine-banded armadillo 3.50 10.80
17 17 Tree hyrax 2.00 12.30
18 18 N. American opussum 1.70 6.30
19 19 Asian elephant 2547.00 4603.00
20 20 Big brown bat 0.02 0.30
21 21 Donkey 187.10 419.00
22 22 Horse 521.00 655.00
23 23 European hedgehog 0.79 3.50
24 24 Patas monkey 10.00 *
25 25 Cat 3.30 25.60
26 26 Galago 0.20 5.00
27 27 Genet 1.41 17.50
28 28 Giraffe 529.00 680.00
29 29 Gorilla 207.00 406.00
30 30 Gray seal 85.00 325.00
31 31 Rock hyrax 0.75 12.30
32 32 Human 62.00 1320.00
33 33 African elephant 6654 .00 5712.00
34 34 Water opussum 3.50 3.90
35 35 Rhesus monkey 6.80 179.00
36 36 Kangaroo 35.00 *
37 37 Yellow-bellied marmot 4.05 17.00
38 38 Golden hamster 0.12 1.00
39 39 Mouse 0.02 *
40 40 Little brown bat 0.01 0.25
41 41 Slow loris 1.40 12.50
42 42 (Okapi 250.01 *
43 43 Rabbit 2.50 12.10
44 44 Sheep 55.50 175.00
45 45 Jaguar 100.00 *
46 46 Chimpanzee 52.16 440.00
47 47 Baboon 10.55 179.50
48 48 Desert hedgehog 0.55 2.40
49 49 Giant armadillo 60.00 81.00
50 50 Rock hyrax 3.60 21.00
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51 51 Raccoon 4.29 39.20
52 52 at 0.28 1.90
53 53 Eastern American mole 0.07 1.20
54 54 Mole rat 0.12 3.00
55 55 Musk shrew 0.05 0.33
56 56 Pig 192.00 180.00
57 57 Echidna 3.00 25.00
58 58 Brazilian tapir 160.00 169.00
59 59 Tenrec 0.90 2.60
60 60 Phalanger 1.62 11.40
61 61 Tree shrew 0.10 *
62 62 Red fox 4.24 50.40

A plot of the brain weights against the body weights is non-informative because many

species have very small brain weights and body weights compared to the elephants.
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I get the following plot if I momentarily hold out the species with body weights exceeding
300kg or brain weights exceeding 200g. This is easily done MINITAB by selecting the min-
imum and maximum values to be included in the plots. The plot shows that the brain weight
of mammals typically increases with the body weight, but the relationship is nonlinear. The
trend suggests transforming both variables to a logarithmic scale to linearize the relationship
between brain weight and body weight. It does not matter which base logarithm you choose.

The relationship is no more linear with one base than another. I will use natural logarithms.
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I transformed the brain weights and body weights using the MINITAB calculator, and
then replotted the data.
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The plot of log, (brain weight) against log, (body weight) is fairly linear. At this point consider
fitting the model:

log, (brain weight) = (y + 51 log,(body weight) + e.
Summary information from fitting this model is given below.

Regression Analysis

The regression equation is: log brain = 2.14 + 0.765 log body

54 cases used 8 cases contain missing values

Predictor Coef StDev T P

Constant 2.1448 0.1042 20.59 0.000

log body 0.76498 0.03181 24 .05 0.000

S =0.7088 R-Sq = 91.8% R-Sq(adj) = 91.6%

Analysis of Variance

Source DF SS MS F P

Regression 1 290.58 290.58 578.38 0.000

Residual Error 52 26.13 0.50

Total 53 316.71

Unusual Observations

Obs log body 1log brai Fit  StDev Fit Residual St Resid
32 4.13 7.1854 5.3020 0.1332 1.8834 2.71R
33 8.80 8.6503 8.8789 0.2593 -0.2286 -0.35 X
34 1.25 1.3610 3.1032 0.0965 -1.7422 -2.48R
35 1.92 5.1874 3.6112 0.0989 1.5762 2.25R

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

The fitted relationship between log, (brain weight) and log, (body weight):
Predicted log, (brain weight) = 2.14 + .76 log, (body weight),

explains about 92% of the variation in log,(brain weight). The t—test for Hy : f; = 0
is highly significant (p — value = .0001). This summary information combined with the
data plot indicates that there is a strong linear relationship between log,(brain weight)
and log,(body weight), with the average log,(brain weight) increasing as log,(body weight)

1ncreases.
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These conclusions are tentative, subject to a careful residual analysis. The residual

summaries highlight three species with large D; or r; (where is case 337):

Case Species T D;
32 Man 2.705 .134
34  Water opossum -2.481 .058
35 Rhesus monkey 2.246 .050

These three species are easily spotted in the residual plot and the normal scores plot on the
next page. Neither plot suggests any serious inadequacies with the model.

I decided to hold out the most influential species in the analysis, Man, and check the
effects on the fitted model. Summary information for the fit with Man omitted is given

below.

Regression Analysis

The regression equation is: log brain = 2.12 + 0.754 log body

53 cases used 8 cases contain missing values

Predictor Coef StDev T P

Constant 2.12273 0.09781 21.70 0.000

log body 0.75361 0.03003 25.09 0.000

S =0.6634 R-Sq = 92.5% R-Sq(adj) = 92.4Y%

Analysis of Variance

Source DF SS MS F P

Regression 1 277 .18 277 .18 629.72 0.000

Residual Error 51 22.45 0.44

Total 52 299.63

Unusual Observations

Obs log body log brai Fit  StDev Fit Residual St Resid
32 8.80 8.6503 8.7568 0.2463 -0.1064 -0.17 X
33 1.25 1.3610 3.0668 0.0912 -1.7059 -2.60R
34 1.92 5.1874 3.5673 0.0938 1.6200 2.47R

R denotes an observation with a large standardized residual
X denotes an observation whose X value gives it large influence.

Deleting Man does not change our conclusion that there is a strong linear relationship
between log, (brain weight) and log,(body weight). The following table shows that the dele-
tion of Man has little effect on the summary information. In particular, the LS lines are

similar and give relatively similar predicted brain weights.
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Feature Full data Omit Man

bo 2.14 2.12
by 76 75
SE(by) 032 030
R? 918 925

p-val for 0.0001 0.0001
slope test

Although including Man in the analysis hardly changes the fit of the model, there are
some good reasons for deleting Man from the analysis. First, Man is a very atypical
mammal with considerably greater brain weight than any other species with a similar body
weight. This is why Man appears to be an outlier in the original analysis. Second, I would
be uncomfortable using either model to predict Man’s brain weight, for reasons just given.

Thus, I will choose
Predicted log, (brain weight) = 2.12273 + .753612 log, (body weight)

as the best model for summarizing the relationship for species other than Man. A residual
analysis for this model shows no serious deficiencies. To predict brain weights, use the inverse

transformation
Predicted brain weight = exp{Predicted log, (brain weight)}
or

Predicted brain weight = exp{2.12273 + .753612 log,(body weight)}
= exp(2.12273) * body weight 7°3%12

= 17.73 « body weight "

to two decimal places.

Remark: If you used base 10 logarithms then

Predicted brain weight = 10Fredicted10g;o(brain weight)

I
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and the final prediction equation will be identical to that given above.

For the species with missing brain weights, I can get predicted brain weights and 95%

prediction limits by following these steps:

1. Fit the model on the log-log scale, and save the fitted values and 95% prediction limits
for the log brain weights of all species in the data. MINITAB will generate these

summaries for all cases, including the 8 that were not used to fit the model!

2. Use the calculator to exponentiate the column of fitted values and the 95% prediction

limits.
3. Print out these summaries for the selected cases.

Here is the result of that process when the model is fitted to the 53 species excluding man.

ID log(body wt) pred log brainwt pred brain wt
95% prediction limits
4 6.14204 6.75145 855.29 215.76 3390.50
8 0.03922 2.15229 8.60 2.24 33.07
24 2.30259 3.85799 47.37 12.33 182.02
35 3.55535 4.80209 121.76 31.50 470.65
38 -3.77226 -0.72009 0.49 0.12 1.93
41 5.52150 6.28380 535.82 136.20 2107.91
44 4.60517 5.59324 268.61 68.93 1046.73
60 -2.26336 0.41703 1.517 0.3893 5.91

For comparison, consider the predictions and prediction limits using the log-log model
based on the ENTIRE data set. In the output I also included the actual brain weights for

these species.

true
ID log(body wt) brwt pred log brainwt pred brain wt

95% prediction limits
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4 6.14204 423
8 0.03922 5.5
24 2.30259 115
36 3.55535 56
39 -3.77226 .4
42 5.52150 490
45 4.60517 157
61 -2.26336 2.5

Given these summaries, which model appears to provide better predictions for the eight

species?

.84334
.17483
.90625
.86459
. 74086
.36864
.66767
.41341
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937.62
8.80
49.71
129.62
0.48
583.27
289.36
1.512

215.76
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I have illustrated a cross-validation method to assess the accuracy of predictions from

a selected model. With a large data set, it is desirable to break the data into two parts

(often halves). One part is used to build the model. Given the selected model, you compare

the actual responses for observations in the second part with the predicted responses based

on the model fit to the first part. This provides a means to assess how accurately the model

will predict future responses.

Class discussion?

An Important Final Point:

The initial focus of a regression analysis should be modelling the trend correctly. If the

trend is not modeled appropriately then the regression summaries (i.e. ANOVA table, p-

values, CI, predictions, etc.) and assessments of poorly fitted and influential cases are not

very informative.
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