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3 Estimation in One Sample Problems

SW Chapter 6
I will talk in class about standard errors and the t− distribution prior to these notes.

Inference for a population mean

Suppose that you have identified a population of interest where individuals are measured on a
single quantitative characteristic, say, weight, height or IQ. You select a random or representative
sample from the population with the goal of estimating the (unknown) population mean value,
identified by µ. You cannot see much of the population, but you would like to know what is typical
in the population (µ). The only information you can see is that in the sample.

This is a standard problem in statistical inference, and the first inferential problem that we will
tackle. For notational convenience, identify the measurements on the sample as Y1, Y2, ..., Yn,
where n is the sample size. Given the data, our best guess, or estimate, of µ is the sample mean:

Ȳ =
∑

i
Yi

n = Y1+Y2+···+Yn
n .

Population
Huge set of values
Can see very little

Sample

Mean µ
Standard Deviation σ

µ and σ unknown

Y1, Y2, …, Yn

Inference

There are two main methods that are used for inferences on µ: confidence intervals (CI) and
hypothesis tests. The standard CI and test procedures are based on the sample mean and the
sample standard deviation, denoted by s.

CI for µ

A CI for µ is a range of plausible values for the unknown population mean µ, based on the observed
data, of the form Best Guess ± Reasonable Error of the Guess. To compute a CI for µ:

1. Specify the confidence coefficient, which is a number between 0 and 100%, in the form
100(1− α)%. Solve for α.

2. Compute the t−critical value: tcrit = t.5α such that the area under the t− curve (df = n− 1)
to the right of tcrit is .5α. See SW page 677 for a t-table.
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3 ESTIMATION IN ONE SAMPLE PROBLEMS

3. The desired CI has lower and upper endpoints given by L = Ȳ − tcritSEY and U = Ȳ +
tcritSEY , respectively, where SEY = s/

√
n is the standard error of the sample mean. The CI

is often written in the form Ȳ ± tcritSEY .

In practice, the confidence coefficient is large, say 95% or 99%, which correspond to α = .05
and .01, respectively. The value of α expressed as a percent is known as the error rate of the CI.

The CI is determined once the confidence coefficient is specified and the data are collected. Prior
to collecting the data, the interval is unknown and is viewed as random because it will depend on
the actual sample selected. Different samples give different CIs. The “confidence” in, say, the
95% CI (which has a 5% error rate) can be interpreted as follows. If you repeatedly sample the
population and construct 95% CIs for µ, then 95% of the intervals will contain µ, whereas 5% will
not. The interval you construct from your data will either cover µ, or it will not.

The length of the CI
U − L = 2tcritSEY

depends on the accuracy of our estimate Y of µ, as measured by SEY = s/
√

n the standard error
of Y . Less precise estimates of µ lead to wider intervals for a given level of confidence.

After going through a few calculations, I will try to justify where this procedure comes from,
and why it “works”.

Assumptions for procedures

I described the classical CI. The procedure is based on the assumptions that the data are a random
sample from the population of interest, and that the population frequency curve is normal. The
population frequency curve can be viewed as a “smoothed histogram” created from the population
data.

The normality assumption can never be completely verified without having the entire population
data. You can assess the reasonableness of this assumption using a stem-and-leaf display or a
boxplot of the sample data. The stem-and-leaf display from the data should resemble a normal
curve.

Example: Age at First Heart Transplant

Let us go through a hand-calculation of a CI, using Minitab to generate summary data. I show
you later how to generate the CI in Minitab.

The ages (in years) at first transplant for a sample of 11 heart transplant patients are as follows:
54, 42, 51, 54, 49, 56, 33, 58, 54, 64, 49. Summaries for the data are: n = 11, Y = 51.27, and
s = 8.26 so that SEY = 8.26/

√
11 = 2.4904.

A necessary first step in every problem is to define the population parameter in
question. Here, let

µ = mean age at time of first transplant for population of patients.

Let us calculate a 95% CI for µ. The degrees of freedom are df = 11 − 1 = 10. For a 95% CI
α = .05, so we need to find tcrit = t.025, which is 2.228. Now tcritSEY = 2.228 ∗ 2.4904 = 5.55. The
lower limit on the CI is L = 51.27− 5.55 = 45.72. The upper endpoint is U = 51.27+5.55 = 56.82.
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3 ESTIMATION IN ONE SAMPLE PROBLEMS

I insist that the results of every CI be summarized in words. For example, I am 95%
confident that the population mean age at first transplant is between 45.7 and 56.8 years (rounding
off to 1 decimal place).

The effect of α on a two-sided CI

A two-sided 100(1−α)% CI for µ is given by Y ± tcritSEY . The CI is centered at Y and has length
2tcritSEY . The confidence coefficient 100(1− α)% is increased by decreasing α, which increases
tcrit. That is, increasing the confidence coefficient makes the CI wider. This is sensible: to increase
your confidence that the interval captures µ you must pinpoint µ with less precision by making the
CI wider. For example, a 95% CI is wider than a 90% CI.

SW Example 6.9 page 196: Let us compute by hand a 90% and a 95% CI

Hypothesis Testing for µ

Suppose you are interested in checking whether the population mean µ is equal to some prespecified
value, say µ0. This question can be formulated as a two-sided hypothesis test, where you are trying
to decide which of two contradictory claims or hypotheses about µ is more reasonable given the
observed data. The null hypothesis, or the hypothesis under test, is H0 : µ = µ0, whereas the
alternative hypothesis is HA : µ 6= µ0.

I will explore the ideas behind hypothesis testing later. At this point, I focus on the mechanics
behind the test. The steps in carrying out the test are:

1. Set up the null and alternative hypotheses: H0 : µ = µ0 and HA : µ 6= µ0, where µ0 is
specified by the context of the problem.

2. Choose the size or significance level of the test, denoted by α. In practice, α is set to a
small value, say, .01 or .05, but theoretically can be any value between 0 and 1.

3. Compute the critical value tcrit = t.5α from the t−distribution table with degrees of freedom
df = n− 1.

4. Compute the test statistic

ts =
Ȳ − µ0

SEY

,

where SEY = s/
√

n is the standard error.

5. Reject H0 in favor of HA (i.e. decide that H0 is false, based on the data) if |ts| > tcrit.
Otherwise, do not reject H0. An equivalent rule is to Reject H0 if ts < −tcrit or if ts > tcrit.
I sometimes call the test statistic tobs to emphasize that the computed value depends on the
observed data.

The process is represented graphically below. The area under the t−probability curve outside
±tcrit is the size of the test, α. One-half α is the area in each tail. You reject H0 in favor of HA

only if the test statistic is outside ±tcrit.

22
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    0   
tcrit− tcrit

Reject H0Reject H0

1 − α α
2

α
2

Assumptions for procedures

I described the classical t−test, which assumes that the data are a random sample from the popu-
lation and that the population frequency curve is normal. These are the same assumptions as for
the CI.

Example: Age at First Transplant (Revisited)

The ages (in years) at first transplant for a sample of 11 heart transplant patients are as follows:
54, 42, 51, 54, 49, 56, 33, 58, 54, 64, 49. Summaries for these data are: n = 11, Y = 51.27, s = 8.26
and SEY = 2.4904. Test the hypothesis that the mean age at first transplant is 50. Use α = .05.

As in the earlier analysis, define

µ = mean age at time of first transplant for population of patients.

We are interested in testing H0 : µ = 50 against HA : µ 6= 50, so µ0 = 50.
The degrees of freedom are df = 11− 1 = 10. The critical value for a 5% test is tcrit = t.025 =

2.228. (Note .5α = .5 ∗ .05 = .025). The same critical value was used with the 95% CI.
For the test,

ts =
Ȳ − µ0

SEY

=
51.27− 50

2.4904
= 0.51.

Since tcrit = 2.228, we do not reject H0 using a 5% test. Notice the placement of ts relative to tcrit

in the picture below. The results of the hypothesis test should not be surprising, since the CI tells
you that 50 is a plausible value for the population mean age at transplant. Note: All you can say
is that the data could have come from a distribution with a mean of 50 – this is not convincing
evidence that µ actually is 50.
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    0   
2.228−2.228

Reject H0Reject H0

.95
.025.025

0.51

ts in middle of distribution, so do not reject H0

P-values

The p-value, or observed significance level for the test, provides a measure of plausibility for
H0. Smaller values of the p-value imply that H0 is less plausible. To compute the p-value for a
two-sided test, you

1. Compute the test statistic ts as above.

2. Evaluate the area under the t−probability curve (with df = n− 1) outside ±|ts|.

    0   ts− ts

p−value
2

p−value
2
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The p-value is the total shaded area, or twice the area in either tail. You can only get bounds on
the p-value using SW’s t−table. A useful interpretation of the p-value is that it is the chance of
obtaining data that favor HA by this much or more if H0 actually is true. If the p-value is small
then the sample we obtained is pretty unusual to have obtained if H0 is true – but we actually got
the sample, so probably it is not very unusual, so we would conclude H0 is false (it would not be
unusual if HA is true).

Most, if not all, statistical packages, including Minitab, summarize hypothesis tests with a p-
value, rather than a decision (i.e reject or not reject at a given α level). You can make a decision
to reject or not reject H0 for a size α test based on the p-value as follows - reject H0 if the p-value
is less than or equal to α. This decision is identical to that obtained following the formal rejection
procedure given earlier. The reason for this is that the p-value can be interpreted as the smallest
value you can set the size of the test and still reject H0 given the observed data.

There are a lot of terms to keep straight here. α and tcrit are constants we choose (actually, one
determines the other so we really only choose one, usually α) to set how rigorous evidence against
H0 needs to be. ts and the p-value (again, one determines the other) are random variables because
they are calculated from the random sample. They are the evidence against H0.

Example: Age at First Transplant

The picture below is used to calculate the p-value. Using SW’s table, all we know is that the
p-value is greater than .40. (Why?) The exact p-value for the test (generated with Minitab) is
0.62. For a 5% test, the p-value indicates that you would not reject H0 (because .62 > .05).

    0   
.51−.51

Total shaded area is the p−value, .62

Minitab output for the heart transplant problem is given below. Let us look at the output and find
all of the summaries we computed. Also, look at the graphical summaries to assess whether the
t−test and CI are reasonable here.

COMMENTS:

1. The data were entered into the worksheet as a single column (C1) that was labelled agetran.
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2. To display the data follow the sequence Data > Display Data, and fill in the dialog box.

3. To get the stem and leaf display, follow the sequence Graph > Stem and Leaf ..., then fill in
the dialog box.

4. To get a one-sample t-test and CI follow the sequence: STAT > BASIC STATISTICS >
1-sample t... . In the dialog box, select the column to analyze (C1). For the test, you need to
check the box for Perform Hypothesis Test and specify the null mean (i.e. µ0) and the type
of test (by clicking on OPTIONS): not equal gives a two-sided test (default), less than gives
a lower one-sided test, and greater than gives an upper one-sided test. The results of the test
are reported as a p-value. We have only discussed two-sided tests up to now. Click on the
Graphs button and select Boxplot of data.

5. I would also follow Stat > Basic Statistics > Display Descriptive Statistics to get a few more
summary statistics. The default from the test is a bit limited.

6. If you ask for a test, you will get a corresponding CI. The CI level is set by clicking on Option
in the dialog box. If you want a CI but not a test, do not check Perform Hypothesis Test in
the main dialog box. A 95% CI is the default.

7. The boxplot will include a CI for the mean.

8. The plots generated with Stat > Basic Statistics > Graphical Summary include a CI for the
population mean.

Data Display

agetran
33 42 49 49 51 54 54 54 56 58 64

Stem-and-Leaf Display: agetran

Stem-and-leaf of agetran N = 11
Leaf Unit = 1.0

1 3 3
1 3
2 4 2
4 4 99
(4) 5 1444
3 5 68
1 6 4

One-Sample T: agetran

Test of mu = 50 vs not = 50

Variable N Mean StDev SE Mean 95% CI T P
agetran 11 51.2727 8.2594 2.4903 (45.7240, 56.8215) 0.51 0.620

Descriptive Statistics: agetran

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
agetran 11 0 51.27 2.49 8.26 33.00 49.00 54.00 56.00 64.00
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Example: Meteorites

One theory of the formation of the solar system states that all solar system meteorites have
the same evolutionary history and thus have the same cooling rates. By a delicate analysis based
on measurements of phosphide crystal widths and phosphide-nickel content, the cooling rates, in
degrees Celsius per million years, were determined for samples taken from meteorites named in the
accompanying table after the places they were found.

Suppose that a hypothesis of solar evolution predicted a mean cooling rate of µ = .54 degrees
per million year for the Tocopilla meteorite. Do the observed cooling rates support this hypothesis?
Test at the 5% level. The boxplot and stem and leaf display (given below) show good symmetry.
The assumption of a normal distribution of observations basic to the t−test appears to be realistic.

Meteorite Cooling rates
Walker County 0.69 0.23 0.10 0.03 0.56 0.10 0.01 0.02 0.04 0.22

Uwet 0.21 0.25 0.16 0.23 0.47 1.20 0.29 1.10 0.16
Tocopilla 5.60 2.70 6.20 2.90 1.50 4.00 4.30 3.00 3.60 2.40 6.70 3.80

Let

µ = mean cooling rate over all pieces of the Tocopilla meteorite.

To answer the question of interest, we consider the test of H0 : µ = .54 against HA : µ 6= .54. I will
explain later why these are the natural hypotheses here. Let us go carry out the test, compute the
p-value, and calculate a 95% CI for µ. The sample summaries are n = 12, Y = 3.892, s = 1.583.
The standard error is SEY = s/

√
n = 0.457.
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Minitab output for this problem is given below. For a 5% test (i.e. α = .05), you would reject H0

in favor of HA because the p− value ≤ .05. The data strongly suggest that µ 6= .54. The 95% CI
says that you are 95% confident that the population mean cooling rate for the Tocopilla meteorite
is between 2.89 and 4.90 degrees per million years. Note that the CI gives us a means to assess
how different µ is from the hypothesized value of .54.

COMMENTS:

1. The data were entered as a single column in the worksheet, and labelled Toco.

2. Remember that you need to specify the null value for the mean (i.e. .54) in the 1-sample t
dialog box!

3. I generated a boxplot within the 1-sample t dialog box. A 95% CI for the mean cooling rate
is superimposed on the plots.

Data Display

Toco
5.6 2.7 6.2 2.9 1.5 4.0 4.3 3.0 3.6 2.4 6.7 3.8

Stem-and-Leaf Display: Toco

Stem-and-leaf of Toco N = 12
Leaf Unit = 0.10

1 1 5
2 2 4
4 2 79
5 3 0
(2) 3 68
5 4 03
3 4
3 5
3 5 6
2 6 2
1 6 7

One-Sample T: Toco

Test of mu = 0.54 vs not = 0.54

Variable N Mean StDev SE Mean 95% CI T P
Toco 12 3.89167 1.58255 0.45684 (2.88616, 4.89717) 7.34 0.000

Descriptive Statistics: Toco

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
Toco 12 0 3.892 0.457 1.583 1.500 2.750 3.700 5.275 6.700
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The mechanics of setting up hypothesis tests

SW Section 7.10
When setting up a test you should imagine you are the researcher conducting the experiment. In

many studies, the researcher wishes to establish that there has been a change from the status quo,
or that they have developed a method that produces a change (possibly in a specified direction)
in the typical response. The researcher sets H0 to be the status quo and HA to be the research
hypothesis - the claim the researcher wishes to make. In some studies you define the hypotheses
so that HA is the take action hypothesis - rejecting H0 in favor of HA leads one to take a radical
action.

Some perspective on testing is gained by understanding the mechanics behind the tests. A
hypothesis test is a decision process in the face of uncertainty. You are given data and asked which
of two contradictory claims about a population parameter, say µ, is more reasonable. Two decisions
are possible, but whether you make the correct decision depends on the true state of nature which
is unknown to you.

Decision If H0 true If HA true
Reject H0 in favor of HA Type I error correct decision
Do not Reject [accept] H0 correct decision Type II error

For a given problem, only one of these errors is possible. For example, if H0 is true you can
make a Type I error but not a Type II error. Any reasonable decision rule based on the data that
tells us when to reject H0 and when to not reject H0 will have a certain probability of making a
Type I error if H0 is true, and a corresponding probability of making a Type II error if H0 is false
and HA is true. For a given decision rule, define
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α = Prob( Reject H0 given H0 is true ) = Prob( Type I error )

and

β = Prob( Do not reject H0 when HA true ) = Prob( Type II error ).

The mathematics behind hypothesis tests allows you to prespecify or control α. For a given α,
the tests we use (typically) have the smallest possible value of β. Given the researcher can control
α, you set up the hypotheses so that committing a Type I error is more serious than committing a
Type II error. The magnitude of α, also called the size or level of the test, should depend on the
seriousness of a Type I error in the given problem. The more serious the consequences of a Type I
error, the smaller α should be. In practice α is often set to .10, .05, or .01, with α = .05 being the
scientific standard. By setting α to be a small value, you reject H0 in favor of HA only if the data
convincingly indicate that H0 is false.

Let us piece together these ideas for the meteorite problem. Evolutionary history predicts
µ = .54. A scientist examining the validity of the theory is trying to decide whether µ = .54 or
µ 6= .54. Good scientific practice dictates that rejecting another’s claim when it is true is more
serious than not being able to reject it when it is false. This is consistent with defining H0 : µ = .54
(the status quo) and HA : µ 6= .54. To convince yourself, note that the implications of a Type I
error would be to claim the evolutionary theory is false when it is true, whereas a Type II error
would correspond to not being able to refute the evolutionary theory when it is false. With this
setup, the scientist will refute the theory only if the data overwhelmingly suggest that it is false.

The effect of α on the rejection region of a two-sided test

For a size α test, you reject H0 : µ = µ0 if

ts =
Y − µ0

SEY

satisfies |ts| > tcrit.

    0   

3.106

2.201

    0   

3.106

2.201

3.106

−2.201

    0   

3.106

2.201

−3.106

−2.201

Rejection Regions for .05 and .01 level tests
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The critical value is computed so that the area under the t−probability curve (with df = n−1)
outside ±tcrit is α, with .5α in each tail. Reducing α makes tcrit larger. That is, reducing the
size of the test makes rejecting H0 harder because the rejection region is smaller. A pictorial
representation is given above for the Tocopilla data, where µ0 = 0.54, n = 12 and df = 11. Note
that tcrit = 2.201 and 3.106 for α = 0.05 and 0.01, respectively.

The mathematics behind the test presumes that H0 is true. Given the data, you use

ts =
Ȳ − µ0

SEY

to measure how far Y is from µ0, relative to the spread in the data given by SEY . For ts to be in
the rejection region, Y must be significantly above or below µ0, relative to the spread in the data.
To see this, note that rejection rule can be expressed as: Reject H0 if

Y < µ0 − tcritSEY or Y > µ0 + tcritSEY .

The rejection rule is sensible because Y is our best guess for µ. You would reject H0 : µ = µ0

only if Y is so far from µ0 that you would question the reasonableness of assuming µ = µ0. How
far Y must be from µ0 before you reject H0 depends on α (i.e. how willing you are to reject H0

if it is true), and on the value of SEY . For a given sample, reducing α forces Y to be further
from µ0 before you reject H0. For a given value of α and s, increasing n allows smaller differences
between Y and µ0 to be statistically significant (i.e. lead to rejecting H0). In problems where
small differences between Y and µ0 lead to rejecting H0, you need to consider whether the observed
differences are important.

In essence, the t− distribution provides an objective way to calibrate whether the observed Y is
typical of what sample means look like when sampling from a normal population where H0 is true.
If all other assumptions are satisfied, and Y is inordinately far from µ0, then our only recourse is
to conclude that H0 must be incorrect.

Two-sided tests, CI and p-values

An important relationship among two-sided tests of H0 : µ = µ0, CI, and p-values is that

size α test rejects H0 ⇔ 100(1− α)% CI does not contain µ0 ⇔ p-value ≤ α.

size α test does not reject H0 ⇔ 100(1− α)% CI contains µ0 ⇔ p-value > α.

For example, an α = .05 test rejects H0 ⇔ 95% CI does not contain µ0 ⇔ p-value ≤ .05. The
picture below illustrates the connection between p-values and rejection regions.
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    0   
tcrit− tcrit

If ts is here then p−value > α

If ts is here then p−value < α

Either a CI or a test can be used to decide the plausibility of the claim that µ = µ0. Typically,
you use the test to answer the question is there a difference? If so, you use the CI to assess how
much of a difference exists. I believe that scientists place too much emphasis on hypothesis
testing.

Statistical versus practical significance

Suppose in the Tocopilla meteorite example, you rejected H0 : µ = .54 at the 5% level and found
a 95% two-sided CI for µ to be .55 to .58. Although you have sufficient evidence to conclude that
the population mean cooling rate µ differs from that suggested by evolutionary theory, the range
of plausible values for µ is small and contains only values close to .54. Although you have shown
statistical significance here, you need to ask yourself whether the actual difference between µ and
.54 is large enough to be important. The answer to such questions is always problem specific.

Design issues and power

An experiment may not be sensitive enough to pick up true differences. For example, in the
Tocopilla meteorite example, suppose the true mean cooling rate is µ = 1.00. To have a 50%
chance of rejecting H0 : µ = .54, you would need about n = 30 observations. If the true mean
is µ = .75, you would need about 140 observations to have a 50% chance of rejecting H0. In
general, the smaller the difference between the true and hypothesized mean (relative to the spread
in the population), the more data that is needed to reject H0. If you have prior information on
the expected difference between the true and hypothesized mean, you can design an experiment
appropriately by choosing the sample size required to likely reject H0.

The power of a test is the probability of rejecting H0 when it is false. Equivalently,

power = 1 - Prob( not rejecting H0 when it is false ) = 1- Prob( Type II error ).
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For a given sample size, the tests I have discussed have maximum power (or smallest probability
of a Type II error) among all tests with fixed size α. However, the actual power may be small, so
sample size calculations, as briefly highlighted above, are important prior to collecting data. See
your local statistician.

One-sided tests on µ

There are many studies where a one-sided test is appropriate. The two common scenarios are the
lower one-sided test H0 : µ = µ0 (or µ ≥ µ0) versus HA : µ < µ0 and the upper one-sided
test H0 : µ = µ0 (or µ ≤ µ0) versus HA : µ > µ0. Regardless of the alternative hypothesis, the
tests are based on the t-statistic:

ts =
Y − µ0

SEY

.

For the upper one-sided test

1. Compute the critical value tcrit such that the area under the t-curve to the right of tcrit is
the desired size α, that is tcrit = tα.

2. Reject H0 if and only if ts ≥ tcrit.

3. The p-value for the test is the area under the t−curve to the right of the test statistic ts.

The upper one-sided test uses the upper tail of the t− distribution for a rejection region.
The p-value calculation reflects the form of the rejection region. You will reject H0 only for large
positive values of ts which require Y to be significantly greater than µ0. Does this make sense?

For the lower one-sided test

1. Compute the critical value tcrit such that the area under the t-curve to the right of tcrit is
the desired size α, that is tcrit = tα.

2. Reject H0 if and only if ts ≤ −tcrit.

3. The p-value for the test is the area under the t−curve to the left of the test statistic ts.

The lower one-sided test uses the lower tail of the t− distribution for a rejection region.
The calculation of the rejection region in terms of −tcrit is awkward but is necessary for hand
calculations because SW only give upper tail percentiles. Note that here you will reject H0 only
for large negative values of ts which require Y to be significantly less than µ0.

As with two-sided tests, the p-value can be used to decide between rejecting or not rejecting
H0 for a test with a given size α. A picture of the rejection region and the p-value evaluation for
one-sided tests is given on the next page.
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    0   
tcrit

α

Upper One−Sided Rejection Region

    0   
ts

p−value

Upper One−Sided p−value

    0   
− tcrit

α

Lower One−Sided Rejection Region

    0   
ts

p−value

Lower One−Sided p−value

Example: Weights of canned tomatoes

A consumer group suspects that the average weight of canned tomatoes being produced by a
large cannery is less than the advertised weight of 20 ounces. To check their conjecture, the group
purchases 14 cans of the canner’s tomatoes from various grocery stores. The weights of the contents
of the cans to the nearest half ounce were as follows: 20.5, 18.5, 20.0, 19.5, 19.5, 21.0, 17.5, 22.5,
20.0, 19.5, 18.5, 20.0, 18.0, 20.5. Do the data confirm the group’s suspicions? Test at the 5% level.

Let µ = the population mean weight for advertised 20 ounce cans of tomatoes produced by the
cannery. The company claims that µ = 20, but the consumer group believes that µ < 20. Hence
the consumer group wishes to test H0 : µ = 20 (or µ ≥ 20) against HA : µ < 20. The consumer
group will reject H0 only if the data overwhelmingly suggest that H0 is false.
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You should assess the normality assumption prior to performing the t−test. The stem and
leaf display and the boxplot suggest that the distribution might be slightly skewed to the left.
However, the skewness is not severe and no outliers are present, so the normality assumption is not
unreasonable.

Minitab output for the problem is given below. Let us do a hand calculation using the summa-
rized data. The sample size, mean, and standard deviation are 14, 19.679, and 1.295, respectively.
The standard error is SEY = s/

√
n = .346. We see that the sample mean is less than 20. But is it

sufficiently less than 20 for us to be willing to publicly refute the canner’s claim? Let us carry out
the test, first using the rejection region approach, and then by evaluating a p-value.

The test statistic is

ts =
Y − µ0

SEY

=
19.679− 20

.346
= −.93

The critical value for a 5% one-sided test is t.05 = 1.771, so we reject H0 if ts < −1.771 (you can
get that value from Minitab or from the table). The test statistic is not in the rejection region.
Using the t-table, the p-value is between .15 and .20. I will draw a picture to illustrate the critical
region and p-value calculation. The exact p-value from Minitab is .185, which exceeds .05.

Both approaches lead to the conclusion that we do not have sufficient evidence to reject H0.
That is, we do not have sufficient evidence to question the accuracy of the canner’s claim. If you did
reject H0, is there something about how the data were recorded that might make you uncomfortable
about your conclusions?

COMMENTS:

1. The data are entered into the first column of the worksheet, which was labelled cans.

2. You need to remember to specify the lower one-sided test as an option in the 1 sample t-test
dialog box.

Descriptive Statistics: Cans

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3
Cans 14 0 19.679 0.346 1.295 17.500 18.500 19.750 20.500

Variable Maximum
Cans 22.500

Stem-and-Leaf Display: Cans

Stem-and-leaf of Cans N = 14
Leaf Unit = 0.10

1 17 5
2 18 0
4 18 55
4 19
7 19 555
7 20 000
4 20 55
2 21 0
1 21
1 22
1 22 5
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3 ESTIMATION IN ONE SAMPLE PROBLEMS

One-Sample T: Cans

Test of mu = 20 vs < 20

95%
Upper

Variable N Mean StDev SE Mean Bound T P
Cans 14 19.6786 1.2951 0.3461 20.2915 -0.93 0.185

How should you couple a one-sided test with a CI procedure? For a lower one-sided test,
you are interested only in an upper bound on µ. Similarly, with an upper one-sided test you
are interested in a lower bound on µ. Computing these type of bounds maintains the consistency
between tests and CI procedures. The general formulas for lower and upper 100(1−α)% confidence
bounds on µ are given by

Y − tcritSEY and Y + tcritSEY

respectively, where tcrit = tα.
In the cannery problem, to get an upper 95% bound on µ, the critical value is the same as we

used for the one-sided 5% test: t.05 = 1.771. The upper bound on µ is

Y + t.05SEY = 19.679 + 1.771 ∗ .346 = 19.679 + .613 = 20.292.

Thus, you are 95% confident that the population mean weight of the canner’s 20oz cans of tomatoes
is less than or equal to 20.29. As expected, this interval covers 20.

If you are doing a one-sided test in Minitab, it will generate the correct one-sided bound. That
is, a lower one-sided test will generate an upper bound, whereas an upper one-sided test generates
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a lower bound. If you only wish to compute a one-sided bound without doing a test, you need to
specify the direction of the alternative which gives the type of bound you need. An upper bound
was generated by Minitab as part of the test we performed earlier. The result agrees with the hand
calculation.

Quite a few packages, including only slightly older versions of Minitab, do not directly compute
one-sided bounds so you have to fudge a bit. In the cannery problem, to get an upper 95% bound
on µ, you take the upper limit from a 90% two-sided confidence limit on µ. The rational for this
is that with the 90% two-sided CI, µ will fall above the upper limit 5% of the time and fall below
the lower limit 5% of the time. Thus, you are 95% confident that µ falls below the upper limit of
this interval, which gives us our one-sided bound. Here, you are 95% confident that the population
mean weight of the canner’s 20oz cans of tomatoes is less than or equal to 20.29, which agrees with
our hand calculation.

One-Sample T: Cans

Variable N Mean StDev SE Mean 90% CI
Cans 14 19.6786 1.2951 0.3461 (19.0656, 20.2915)

The same logic applies if you want to generalize the one-sided confidence bounds to arbitrary
confidence levels and to lower one-sided bounds - always double the error rate of the desired one-
sided bound to get the error rate of the required two-sided interval! For example, if you want a
lower 99% bound on µ (with a 1% error rate), use the lower limit on the 98% two-sided CI for µ
(which has a 2% error rate).
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