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Almost all statistical methods make assumptions about the data collection process and the
shape of the population distribution. If you reject the null hypothesis in a test, then a reasonable
conclusion is that the null hypothesis is false, provided all the distributional assumptions made by
the test are satisfied. If the assumptions are not satisfied then that alone might be the cause of
rejecting H0. Additionally, if you fail to reject H0, that could be caused solely by failure to satisfy
assumptions also. Hence, you should always check assumptions to the best of your abilities.

Two assumptions that underly the tests and CI procedures that I have discussed are that the
data are a random sample, and that the population frequency curve is normal. For the pooled
variance two sample test the population variances are also required to be equal.

The random sample assumption can often be assessed from an understanding of the data col-
lection process. Unfortunately, there are few general tests for checking this assumption. I have
described exploratory (mostly visual) methods to assess the normality and equal variance assump-
tion. I will now discuss formal methods to assess these assumptions.

Testing Normality

A formal test of normality can be based on a normal scores plot, sometimes called a rankit
plot or a normal probability plot or a normal Q-Q plot. You plot the data against the
normal scores, or expected normal order statistics (in a standard normal) for a sample with
the given number of observations. The normality assumption is plausible if the plot is fairly linear.
I give below several plots often seen with real data, and what they indicate about the underlying
distribution.

There are multiple ways to produce normal scores plots in Minitab. The NSCOR function
available from the Calculator or from the command line produces the desired scores. The shape can
depend upon whether you plot the normal scores on the x-axis or the y-axis. SW plot the normal
scores on the x-axis (that isn’t very conventional) – Minitab wants to plot the normal scores on
the y-axis if you use built-in procedures (you can override that, but don’t). The information is the
same, it’s just the orientation of shape that differs.
Graphical displays for normal data:

Stem-and-Leaf Display: C1
Stem-and-leaf of C1 N = 150
Leaf Unit = 1.0

1 5 6
1 6
3 6 69
7 7 0011
13 7 578888
23 8 0002223334
34 8 55667788999
54 9 00111111222223334444
73 9 5556677778888999999
(25) 10 0001111122222333334444444
52 10 55555566778888899
35 11 000000111123334444
17 11 6688899999
7 12 00134
2 12 68
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For comparison, consider the plot used by SW. In this case you see very little difference except the
little flip on the end is in the opposite direction.

Either way, consider how the outlier shows up in the normal scores plot. You have an isolated point
on both ends of the plot, but only on the left side is there an outlier. How could you have identified
that the left tail looks longer than the right tail from the normal scores plot?

Examine the first plot (usual orientation). If you lay a straightedge along the bulk of the plot,
you see that the most extreme point on the left is a little above the line, and the last few points
on the right also are above the line. What does this mean? The point on the left corresponds to
a data value more extreme than expected from a normal distribution (the straight line is where
expected and actual coincide). Extreme points on the left are above the line. What about the
right? Extreme points there should be below the line – since the deviation from the line is above it
on the right, those points are less extreme than expected. For the SW orientation you have reverse
this – outliers will be below on the left and above on the right. You are much better off sticking
with one orientation, and Minitab’s default is most common.

There are two considerably better ways to get these plots. We would like the straight line we
are aiming for to actually appear on the graph (putting in a regression line is not the right way to
do it, even if it is easy). Such a display comes from the menu path Stat > Basic Statistics >
Normality Test. In the resulting dialog box you have choices of Variable (the data column), Per-
centile Lines (use None), and Test for Normality (probably use Ryan-Joiner, don’t use Kolmogorov-
Smirnov). We’ll turn to those tests in a bit. The following graph results from following that path:
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It is easier to read the graph with the line drawn for you. In this case the y-axis is labelled percent,
but note that it is not a linear scale. This is the same graph as before, but with the normal scores
identified with the percentiles to which they correspond. It is useful to do it this way.

Another plot, and probably the most useful of all, adds confidence intervals (point-wise, not
family-wise. You will learn the meaning of those terms in the ANOVA section). You don’t expect
a sample from a normally distributed population to have a normal scores plot that falls exactly on
the line, and the amount of deviation depends upon the sample size. Follow the menu path Graph
> Probability Plot, click Single, make sure Distribution is Normal (you can use this technique
to see if the data appear from lots of possible frequency distributions, not just normal), don’t put
in Historical Parameters, on Scale don’t Transpose Y and X, and on Scale you can choose Y-Scale
Type of Percent, Probability, or Score (normal score in this case) — the default is percent, and
that works fine.

You only see a couple of data values outside the limits (in the tails, where it usually happens).
You expect around 5% outside the limits, so there is no indication of non-normality here. Both
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the Ryan-Joiner and Anderson-Darling tests concur with this (we’ll discuss those shortly). They
should - I did sample from a normal population.

Let’s turn to examples of sampling from other, non-normal distributions to see how the normal
scores plot identifies important features.

Graphical displays for a light-tailed symmetric distribution:

Stem-and-Leaf Display: C1
Stem-and-leaf of C1 N = 150
Leaf Unit = 1.0

12 0 001122233334
29 0 55555556778888899
44 1 011112222222334
60 1 5666677888888899
72 2 011112233344
(10) 2 5667778999
68 3 0011111112223334
52 3 5566666777777889999
33 4 0001111222223333334
14 4 55677788889999

Graphical displays for a heavy-tailed (fairly) symmetric distribution:

Stem-and-Leaf Display: C1
Stem-and-leaf of C1 N = 150
Leaf Unit = 1.0

1 6 5
1 7
2 7 5
3 8 0
9 8 777799
14 9 00134
(71) 9 55666666777777777777888888888888899999999999999999999999999999999+
65 10 0000000000000000000000001111111111111122222222334444444
10 10 55778
5 11 0
4 11 8
3 12 03
1 12
1 13
1 13
1 14
1 14 8
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Graphical displays for a distribution that is skewed to the right:

Stem-and-Leaf Display: C1

Stem-and-leaf of C1 N = 150
Leaf Unit = 1.0

(108) 0 00000000000000000000000000000000000000000000000000000000000000000+
42 0 22222222222222222222233333333
13 0 444445
7 0 66677
2 0
2 1
2 1
2 1
2 1 7
1 1
1 2 1
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Graphical displays for a distribution that is skewed to the left:

Stem-and-Leaf Display: C1

Stem-and-leaf of C1 N = 150
Leaf Unit = 0.10

1 0 5
1 1
2 1 8
3 2 0
5 2 58
7 3 04
10 3 667
13 4 113
18 4 57777
24 5 022234
29 5 56899
46 6 00011222222333344
71 6 5555566677778888999999999
(46) 7 0000000001111111122222222233333333444444444444
33 7 555566666666677777777777777888889

Notice how striking is the lack of linearity in the normal scores plot for all the non-normal
distributions, particularly the symmetric light-tailed distribution where the boxplot looks very
good. The normal scores plot is a sensitive measure of normality. Let us summarize the patterns
we see regarding tails in the plots:

Tail
Tail Weight Left Right

Light Left side of plot points down Right side of plot points up
Heavy Left side of plot points left Right side of plot points right

Be careful – plots in the SW orientation will be reverse these patterns.

Formal Tests of Normality

A formal test of normality is based on the correlation between the data and the normal scores.
The correlation is a measure of the strength of a linear relationship, with the sign of the correlation
indicating the direction of the relationship (i.e. + for increasing relationship, and - for decreasing).
The correlation varies from -1 to +1. In a normal scores plot, you are looking for a correlation
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close to +1. Normality is rejected if the correlation is too small. Critical values for the correlation
test of normality, which is commonly called the Shapiro-Wilk test, can be found in many tests.

Minitab performs three tests of normality: the Ryan-Joiner test, which is closely related to the
Shapiro-Wilk test, the Kolmogorov-Smirnov test, which is commonly used in many scientific
disciplines but essentially useless, and the Anderson-Darling test (related to the Kolmogorov-
Smirnov, but useful).

To implement tests of normality follow the menu path Stat > Basic Statistics > Normality
Test. A high quality normal probability plot will be generated, along with the chosen test statis-
tic and p-value. We already did this on p. 57. Further, the Anderson-Darling test is printed
automatically with the probability plots we have been producing from the Graph menu.

Tests for normality may have low power in small to moderate sized samples. I always give a
visual assessment of normality in addition to a formal test.

Example: Paired Differences on Sleep Remedies

The following boxplot and normal scores plots suggest that the underlying distribution of differences
(for the paired sleep data taken from the previous chapter) is reasonably symmetric, but heavy
tailed. The p-value for the RJ test of normality is .035, and for the AD test is .029, both of which
call into question a normality assumption. A non-parametric test comparing the sleep remedies
(one that does not assume normality) is probably more appropriate here. We will return to these
data later.

Note: You really only need to present one of the normal scores plots. In order to get both tests
you need to produce two plots, but in a paper just present one plot and report the other test’s
p-value.
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Example: Androstenedione Levels

This is an independent two-sample problem, so you must look at normal scores plots for males and
females. The data are easier to use UNSTACKED to do the normal scores test on the males and
females separately. Boxplots and normal probability plots follow.
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The AD test p-value (shown) and the RJ test p-value for testing normality exceeds .10 in each
sample. Thus, given the sample sizes (14 for men, 18 for women), we have insufficient evidence (at
α = .05) to reject normality in either population.

The women’s boxplot contains two mild outliers, which is highly unusual when sampling from
a normal distribution. The tests are possibly not powerful enough to pick up this type of deviation
from normality in such a small sample. In practice, this may not be a big concern. The two mild
outliers probably have a small effect on inferences in the sense that non-parametric methods would
probably lead to similar conclusions here.

Extreme outliers and skewness have the biggest effects on standard methods based on normality.
The Shapiro-Wilk test is better at picking up these problems than the Kolmogorov-Smirnov (K-S)
test. The K-S test tends to highlight deviations from normality in the center of the distribution.
These types of deviations are rarely important because they do not have a noticeable effect on the
operating characteristics of the standard methods. Minitab of course is using the RJ and AD tests,
respectively, which are modifications to handle some of these objections.

Most statisticians use graphical methods (boxplot, normal scores plot) to assess normality, and
do not carry out formal tests.

Testing Equal Population Variances

In the independent two sample t-test, some researchers test H0 : σ2
1 = σ2

2 as a means to decide
between using the pooled variance procedure or Satterthwaite’s methods. They suggest the pooled
t-test and CI if H0 is not rejected, and Satterthwaite’s methods otherwise.
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There are a number of well-known tests for equal population variances, of which Bartlett’s test
and Levene’s test are probably the best known. Both are available in Minitab. Bartlett’s test
assumes normality. Levene’s test is popular in many scientific areas because it does not require
normality. In practice, unequal variances and non-normality often go hand-in-hand, so you should
check normality prior to using Bartlett’s test. I will describe Bartlett’s test more carefully in our
discussion of one-way ANOVA. To implement these tests, follow these steps: Stat > ANOVA > Test
for Equal Variances. The data must be STACKED.

Example: Androstenedione Levels

The sample standard deviations and samples sizes are: s1 = 42.8 and n1 = 14 for men and
s2 = 17.2 and n2 = 18 for women. The sample standard deviations appear to be very different, so
I would not be surprised if the test of equal population variances is highly significant. The Minitab
output below confirms this: the p-values for Bartlett’s F-test and Levene’s Test are both much
smaller than .05. An implication is that the standard pooled CI and test on the population means
is inappropriate.
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