
7 NONPARAMETRIC METHODS

7 Nonparametric Methods

SW Section 7.11 and 9.4-9.5

Nonparametric methods do not require the normality assumption of classical techniques. I
will describe and illustrate selected non-parametric methods, and compare them with classical
methods. Some motivation and discussion of the strengths and weaknesses of non-parametric
methods is given.

The Sign Test and CI for a Population Median

The sign test assumes that you have a random sample from a population, but makes no assumption
about the population shape. The standard t−test provides inferences on a population mean. The
sign test, in contrast, provides inferences about a population median.

If the population frequency curve is symmetric (see below), then the population median, iden-
tified by η, and the population mean µ are identical. In this case the sign procedures provide
inferences for the population mean.

The idea behind the sign test is straightforward. Suppose you have a sample of size m from
the population, and you wish to test H0 : η = η0 (a given value). Let S be the number of sampled
observations above η0. If H0 is true, you expect S to be approximately one-half the sample size,
.5m. If S is much greater than .5m, the data suggests that η > η0. If S is much less than .5m, the
data suggests that η < η0.

Mean = µMedian = η

50%

Mean and Median differ with skewed distributions

Mean = Median

Mean and Median are the same with symmetric distributions

S has a Binomial distribution when H0 is true. The Binomial distribution is used to construct
a test with size α (approximately). For a two-sided alternative HA : η 6= η0, the test rejects H0

when S is significantly different from .5m, as determined from the reference Binomial distribution.
One sided tests use the corresponding lower or upper tail of the distribution. To generate a CI for
η, you can exploit the duality between CI and tests. A 100(1 − α)% CI for η consists of all values
η0 not rejected by a two-sided size alpha test of H0 : η = η0.
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7 NONPARAMETRIC METHODS

Comments:

1. Minitab omits all observations at exactly η0, so m is the sample size after omissions. This
should not be much of a concern unless the measurements are coarsely rounded.

2. Not all test sizes and confidence levels are possible because the test statistic S is discrete
valued. Minitab gives an exact p-value for the test, and approximates the desired confidence
level using a non-linear interpolation algorithm.

3. To implement the sign procedures in Minitab follow: Stat > Nonparametrics > 1-Sample
Sign. The dialog box allows you to specify a test or a CI, but not both at the same time.
The tests can be two-sided or one-sided.

4. Only two-sided CIs are available, so you have to be clever to get a one-sided bound. For ex-
ample, to get an upper 95% bound, you take the upper limit from a 90% two-sided confidence
interval. The rational for this is that with the 90% two-sided CI, the population parameter
will fall above the upper limit 5% of the time and fall below the lower limit 5% of the time.
Thus, you are 95% confident that the population parameter falls below the upper limit of this
interval, which gives us our one-sided bound. The same logic applies if you want to generalize
the one-sided confidence bounds to arbitrary confidence levels and to lower one-sided bounds
- always double the error rate of the desired one-sided bound to get the error rate of the
required two-sided interval! For example, if you want a lower 99% bound (with a 1% error
rate), use the lower limit on the 98% two-sided CI (which has a 2% error rate).

Example: Income Data

Recall that the income distribution is extremely skewed, with two extreme outliers at 46 and
1110. The presence of the outliers has a dramatic effect on the 95% CI for the population mean
income µ, which goes from -101 to 303 (in 1000 dollar units). This t−CI is suspect because the
normality assumption is unreasonable. A CI for the population median income η is more sensible
because the median is likely to be a more reasonable measure of typical value. Using the sign
procedure, you are 95% confident that the population median income is between 2.79 and 10.95
(times 1000 dollars).

Data Display

Income
7 1110 7 5 8 12 0 5 2 2 46
7

One-Sample T: Income

Variable N Mean StDev SE Mean 95% CI
Income 12 100.917 318.008 91.801 (-101.136, 302.969)

Sign CI: Income
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Sign confidence interval for median

Confidence
Achieved Interval

N Median Confidence Lower Upper Position
Income 12 7.00 0.8540 5.00 8.00 4

0.9500 2.79 10.95 NLI
0.9614 2.00 12.00 3

**** REMARK: NLI stands for non-linear interpolation

Example: Age at First Heart Transplant

Recall that the distribution of ages is skewed to the left with a lower outlier. A question of
interest is whether the “typical age” at first transplant is 50. This can be formulated as a test about
the population median η or as a test about the population mean µ, depending on the interpretation.
The sign test for H0 : η = 50 against HA : η 6= 50 has a p-value of .549, which is not sufficient
to reject H0. A 95% CI for η is 48.42 to 56.16 years, which includes the hypothesized median age
of 50. Similar conclusions are reached with the t−CI and the test on µ, but you should have less
confidence in these results because the normality assumption is tenuous. You could check normality,
using a normal scores test.

Data Display

agetran
33 42 49 49 51 54 54 54 56 58 64

Stem-and-Leaf Display: agetran

Stem-and-leaf of agetran N = 11
Leaf Unit = 1.0

1 3 3
1 3
2 4 2
4 4 99
(4) 5 1444
3 5 68
1 6 4
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Descriptive Statistics: agetran

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
agetran 11 0 51.27 2.49 8.26 33.00 49.00 54.00 56.00 64.00

One-Sample T: agetran

Test of mu = 50 vs not = 50

Variable N Mean StDev SE Mean 95% CI T P
agetran 11 51.2727 8.2594 2.4903 (45.7240, 56.8215) 0.51 0.620

Sign Test for Median: agetran

Sign test of median = 50.00 versus not = 50.00

N Below Equal Above P Median
agetran 11 4 0 7 0.5488 54.00

Sign CI: agetran

Sign confidence interval for median

Confidence
Achieved Interval

N Median Confidence Lower Upper Position
agetran 11 54.00 0.9346 49.00 56.00 3

0.9500 48.42 56.16 NLI
0.9883 42.00 58.00 2

Wilcoxon Signed Rank Procedures

The Wilcoxon procedure assumes you have a random sample from a population with a symmetric
frequency curve. The curve need not be normal. The test and CI can be viewed as procedures for
either the population median or mean.

To illustrate the computation of the Wilcoxon statistic W , suppose you wish to test H0 : µ =
µ0 = 10 on the data below. The test statistic requires us to compute the signs of Xi − µ0 and
the ranks of |Xi − µ0|. Ties in |Xi − µ0| get the average rank and observations at µ0 (here 10)
are always discarded. The Wilcoxon statistic is the sum of the signed ranks for observations
above µ0 = 10. For us

W = 6 + 4.5 + 8 + 2 + 4.5 + 7 = 32.

Xi Xi − 10 sign |Xi − 10| rank sign*rank
20 10 + 10 6 6
18 8 + 8 4.5 4.5
23 13 + 13 8 8
5 -5 - 5 3 -3
14 4 + 4 2 2
8 -2 - 2 1 -1
18 8 + 8 4.5 4.5
22 12 + 12 7 7
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The sum of all ranks is always .5m(m + 1), where m is the sample size. If H0 is true, you
expect W to be approximately .5 ∗ .5m(m + 1) = .25m(m + 1). Why? Recall that W adds up the
ranks for observations above µ0. If H0 is true, you expect 1/2 of all observations to be above µ0,
assuming the population distribution is symmetric. The ranks of observations above µ0 should add
to approximately 1/2 times the sum of all ranks. You reject H0 in favor of HA : µ 6= µ0 if W is
much larger than, or much smaller than .25m(m+1). One sided tests can also be constructed. The
Wilcoxon CI for µ is computed in a manner analogous to that described for the sign CI.

Here, m = 8 so the sum of all ranks is .5 ∗ 8 ∗ 9 = 36 (check yourself). The expected value of
W is .5 ∗ .5 ∗ 8 ∗ 9 = 18. Is the observed value of W far from the expected value? To formally
answer this question, we need to use the Wilcoxon procedures, which are implemented in Minitab
by following the sequence: Stat > Nonparametrics > 1-Sample Wilcoxon.

Example: Play Data

The boxplot indicates that the distribution is fairly symmetric, so the Wilcoxon method is
reasonable (so is a t-CI and test). The p-value for testing H0 : µ = 10 against a two-sided
alternative is .059. This would not lead to rejecting H0 at the 5% level.

Although I asked for a 95% CI, I got a 94.1% CI. The W test statistic is discrete, so not all
confidence levels are achievable. Minitab gives the closest possible level. I underlined the estimated
median of 16.5 given by the CI procedure. This disagrees with the median you get in the data
description. The CI median is computed using Walsh averages - see the Minitab help for an
explanation.

Data Display

data
20 18 23 5 14 8 18 22

Descriptive Statistics: Income

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
Income 12 0 100.9 91.8 318.0 0.0 2.8 7.0 11.0 1110.0

One-Sample T: data

Test of mu = 10 vs not = 10

Variable N Mean StDev SE Mean 95% CI T P
data 8 16.0000 6.5247 2.3068 (10.5452, 21.4548) 2.60 0.035

Wilcoxon Signed Rank Test: data

Test of median = 10.00 versus median not = 10.00

N
for Wilcoxon Estimated

N Test Statistic P Median
data 8 8 32.0 0.059 16.50

Wilcoxon Signed Rank CI: data

Confidence
Estimated Achieved Interval

N Median Confidence Lower Upper
data 8 16.5 94.1 11.0 21.0

----
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Nonparametric Analyses of Paired Data

Nonparametric methods for single samples can be used to analyze paired data because the difference
between responses within pairs is the unit of analysis.

Example: Sleep Remedies

I will illustrate Wilcoxon methods on the paired comparison of two remedies A and B for
insomnia. The number of hours of sleep gained on each method was recorded. Unlike the parametric
paired t−test, you must create the sample of differences to do the non-parametric analysis in
Minitab.

The boxplot shows that distribution of differences is reasonably symmetric but not normal.
Recall that the Shapiro-Wilk test of normality was significant at the 5% level (p-value=.035). It
is sensible to use the Wilcoxon procedure on the differences. Let µB be the population mean sleep
gain on remedy B, and µA be the population mean sleep gain on remedy A. You are 94.7% confident
that µB −µA is between 0.8 and 2.7 hours. Putting this another way, you are 94.7% confident that
µB exceeds µA by between 0.8 and 2.7 hours. The p-value for testing H0 : µB − µA = 0 against
a two-sided alternative is .008, which strongly suggests that µB 6= µA. This agrees with the CI.
Note that the t-CI and test give qualitatively similar conclusions as the Wilcoxon methods, but the
t−test p-value is about twice as large.

If you are uncomfortable with the symmetry assumption, you could use the sign CI for the
population median difference between B and A. I will note that a 95% CI for the median difference
goes from 0.93 to 2.01 hours.

Data Display

diff
Row a b (b-a)

1 0.7 1.9 1.2
2 -1.6 0.8 2.4
3 -0.2 1.1 1.3
4 -1.2 0.1 1.3
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5 0.1 -0.1 -0.2
6 3.4 4.4 1.0
7 3.7 5.5 1.8
8 0.8 1.6 0.8
9 0.0 4.6 4.6

10 2.0 3.0 1.0

One-Sample T: diff (b-a)

Test of mu = 0 vs not = 0

Variable N Mean StDev SE Mean 95% CI T P
diff (b-a) 10 1.52000 1.27174 0.40216 (0.61025, 2.42975) 3.78 0.004

Wilcoxon Signed Rank CI: diff (b-a)

Confidence
Estimated Achieved Interval

N Median Confidence Lower Upper
diff (b-a) 10 1.30 94.7 0.80 2.70

Wilcoxon Signed Rank Test: diff (b-a)

Test of median = 0.000000 versus median not = 0.000000

N
for Wilcoxon Estimated

N Test Statistic P Median
diff (b-a) 10 10 54.0 0.008 1.300

Sign CI: diff (b-a)

Sign confidence interval for median

Confidence
Achieved Interval

N Median Confidence Lower Upper Position
diff (b-a) 10 1.250 0.8906 1.000 1.800 3

0.9500 0.932 2.005 NLI
0.9785 0.800 2.400 2
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Comments on One-Sample Nonparametric Methods

For this discussion, I will assume that the underlying population distribution is (approximately)
symmetric, which implies that population means and medians are equal (approximately). For
symmetric distributions the t, sign, and Wilcoxon procedures are all appropriate.

If the underlying population distribution is extremely skewed, you can use the sign procedure
to get a CI for the population median. Alternatively, as illustrated on HW 2, you can transform
the data to a scale where the underlying distribution is nearly normal, and then use the classical
t−methods. Moderate degrees of skewness will not likely have a big impact on the standard t−test
and CI.

The one-sample t−test and CI are optimal when the underlying population frequency curve is
normal. Essentially this means that the t−CI is, on average, narrowest among all CI procedures
with given level, or that the t-test has the highest power among all tests with a given size. The
width of a CI provides a measure of the sensitivity of the estimation method. For a given level CI,
the narrower CI better pinpoints the unknown population mean.

With heavy-tailed symmetric distributions, the t-test and CI tend to be conservative. Thus,
for example, a nominal 95% t−CI has actual coverage rates higher than 95%, and the nominal
5% t-test has an actual size smaller than 5%. The t−test and CI possess a property that is
commonly called robustness of validity. However, data from heavy-tailed distributions can
have a profound effect on the sensitivity of the t-test and CI. Outliers can dramatically inflate the
standard error of the mean, causing the CI to be needlessly wide, and tests to have diminished power
(outliers typically inflate p-values for the t−test). The sign and Wilcoxon procedures downweight
the influence of outliers by looking at sign or signed-ranks instead of the actual data values. These
two nonparametric methods are somewhat less efficient than the t-methods when the population is
normal (efficiency is about .64 and .96 for the sign and Wilcoxon methods relative to the normal
t-methods, where efficiency is the ratio of sample sizes needed for equal power), but can be infinitely
more efficient with heavier than normal tailed distributions. In essence, the t-methods do not have
a robustness of sensitivity.

Nonparametric methods have gained widespread acceptance in many scientific disciplines, but
not all. Scientists in some disciplines continue to use classical t−methods because they believe
that the methods are robust to non-normality. As noted above, this is a robustness of validity, not
sensitivity. This misconception is unfortunate, and results in the routine use of methods that are
less powerful than the non-parametric techniques. Scientists need to be flexible and adapt
their tools to the problem at hand, rather than use the same tool indiscriminately! I
have run into suspicion that use of nonparametric methods was an attempt to “cheat” in some way
– properly applied, they are excellent tools that should be used.

A minor weakness of nonparametric methods is that they do not easily generalize to complex
modelling problems. A great deal of progress has been made in this area, but most software packages
have not included the more advanced techniques.

Nonparametric statistics used to refer almost exclusively to the set of methods such as we have
been discussing that provided analogs like tests and CIs to the normal theory methods without
requiring the assumption of sampling from normal distributions. There is now a large area of
statistics also called nonparametric methods not focused on these goals at all. In our department
we have a course titled “Nonparametric Curve Estimation & Image Reconstruction”, where the
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focus is much more general than relaxing an assumption of normality. In that sense, what we are
covering in this course could be considered “classical” nonparametrics.

(Wilcoxon-) Mann-Whitney Two Sample Procedure

The WMW procedure assumes you have independent random samples from the two populations,
and assumes that the populations have the same shapes and spreads (the frequency curves for the
two populations are ”shifted” versions of each other - see below). The frequency curves are not
required to be symmetric. The WMW procedures give a CI and tests on the difference η1 − η2

between the two population medians. If the populations are symmetric, then the methods apply
to µ1 − µ2.
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The Minitab on-line help explains the exact WMW procedure actually calculated. I will discuss
a very good approximation to the exact method that is easier to understand. The WMW procedure
is based on ranks. The two samples are combined, ranked from smallest to largest (1=smallest) and
separated back into the original samples. If the two populations have equal medians, you expect
the average rank in the two samples to be roughly equal. The WMW test computes a classical two
sample t-test using the pooled variance on the ranks to assess whether the sample mean ranks are
significantly different.

The WMW test and CI are implemented in Minitab by following these steps:
Stat > Nonparametrics > Mann-Whitney. The data must be UNSTACKED. The test and CI are
generated simultaneously. A two-sided CI is given, even if a one-sided test is requested.

Example: Comparison of Cooling Rates of Walker and Uwet Meteorites.

The Uwet and Walker Co. data were read into two columns of the Minitab worksheet. A
primary interest is comparing the population “typical” cooling rate measurements.

91



7 NONPARAMETRIC METHODS

Data Display

Row Uwet Walker cool meteorite ranks
1 0.21 0.69 0.21 Uwet 9.0
2 0.25 0.23 0.25 Uwet 13.0
3 0.16 0.10 0.16 Uwet 7.5
4 0.23 0.03 0.23 Uwet 11.5
5 0.47 0.56 0.47 Uwet 15.0
6 1.20 0.10 1.20 Uwet 19.0
7 0.29 0.01 0.29 Uwet 14.0
8 1.10 0.02 1.10 Uwet 18.0
9 0.16 0.04 0.16 Uwet 7.5

10 0.22 0.69 Walker 17.0
11 0.23 Walker 11.5
12 0.10 Walker 5.5
13 0.03 Walker 3.0
14 0.56 Walker 16.0
15 0.10 Walker 5.5
16 0.01 Walker 1.0
17 0.02 Walker 2.0
18 0.04 Walker 4.0
19 0.22 Walker 10.0

Descriptive Statistics: cool

Variable meteorite N N* Mean SE Mean StDev Minimum Q1 Median
cool Uwet 9 0 0.452 0.136 0.407 0.160 0.185 0.250

Walker 10 0 0.2000 0.0756 0.2390 0.0100 0.0275 0.1000

Variable meteorite Q3 Maximum
cool Uwet 0.785 1.200

Walker 0.3125 0.6900

The boxplots, stem and leaf, and normal scores plots show that the distributions are rather
skewed to the right. Both the AD and RJ tests of normality indicate that a normality assumption
is unreasonable for each population.

I carried out the standard two-sample procedures to see what happens. The pooled variance and
Satterthwaithe results are comparable, which is expected because the sample standard deviations
and sample sizes are roughly equal. Both tests indicate that the mean cooling rates for Uwet and
Walker Co. meteorites are not significantly different at the 10% level. You are 95% confident that
the mean cooling rate for Uwet is at most .1 less, and no more than .6 greater than that for Walker.
(in degrees per million years).

Two-Sample T-Test and CI: cool, meteorite
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Two-sample T for cool

meteorite N Mean StDev SE Mean
Uwet 9 0.452 0.407 0.14
Walker 10 0.200 0.239 0.076

Difference = mu (Uwet) - mu (Walker)
Estimate for difference: 0.252222
95% CI for difference: (-0.066627, 0.571071)
T-Test of difference = 0 (vs not =): T-Value = 1.67 P-Value = 0.113 DF = 17
Both use Pooled StDev = 0.3289

Two-Sample T-Test and CI: cool, meteorite

Two-sample T for cool

meteorite N Mean StDev SE Mean
Uwet 9 0.452 0.407 0.14
Walker 10 0.200 0.239 0.076

Difference = mu (Uwet) - mu (Walker)
Estimate for difference: 0.252222
95% CI for difference: (-0.086133, 0.590578)
T-Test of difference = 0 (vs not =): T-Value = 1.62 P-Value = 0.130 DF = 12

Given the marked skewness, a nonparametric procedure is more appropriate. The Wilcoxon-
Mann-Whitney comparison of population medians is reasonable. Why? The WMW test of equal
population medians is significant (barely) at the 5% level. You are 95% confident that median
cooling rate for Uwet exceeds that for Walker by between 0+ and .45 degrees per million years.

The difference between the WMW and t-test p-values and CI lengths (i.e. the WMW CI is
narrower and the p-value smaller) reflects the effect of the outliers on the sensitivity of the standard
tests and CI.

In the worksheet, I computed the ranks by first stacking the data, then following Data > Rank.
I conducted a two-sample t-test on ranks to show you that the p-value is close to the WMW p-value,
as expected.

Descriptive Statistics: ranks <- describe ranks, to think about WMW results

Variable meteorite N N* Mean SE Mean StDev Minimum Q1 Median
ranks Uwet 9 0 12.72 1.41 4.24 7.50 8.25 13.00

Walker 10 0 7.55 1.82 5.75 1.00 2.75 5.50

Variable meteorite Q3 Maximum
ranks Uwet 16.50 19.00

Walker 12.63 17.00

Two-Sample T-Test and CI: ranks, meteorite

Two-sample T for ranks

meteorite N Mean StDev SE Mean
Uwet 9 12.72 4.24 1.4
Walker 10 7.55 5.75 1.8

Difference = mu (Uwet) - mu (Walker)
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Estimate for difference: 5.17222
95% CI for difference: (0.23049, 10.11395) <<<<<---- NOT Interpretable
T-Test of difference = 0 (vs not =): T-Value = 2.21 P-Value = 0.041 DF = 17
Both use Pooled StDev = 5.0978

Mann-Whitney Test and CI: Uwet, Walker

N Median
Uwet 9 0.2500
Walker 10 0.1000

Point estimate for ETA1-ETA2 is 0.1750
95.5 Percent CI for ETA1-ETA2 is (-0.0002,0.4501) <<<<<--- Can’t get exact 95% CI
W = 114.5
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0500
The test is significant at 0.0497 (adjusted for ties)

Example: Newcombe’s Data

Experiments of historical importance were performed beginning in the eighteenth century to
determine such physical constants as the mean density of the earth, the distance from the earth to
the sun, and the velocity of light. An interesting series of experiments to determine the velocity
of light was begun in 1875. The first method used, and reused with refinements several times
thereafter, was the rotating mirror method. In this method a beam of light is reflected off a
rapidly rotating mirror to a fixed mirror at a carefully measured distance from the source. The
returning light is re-reflected from the rotating mirror at a different angle, because the mirror has
turned slightly during the passage of the corresponding light pulses. From the speed of rotation
of the mirror and from careful measurements of the angular difference between the outward-bound
and returning light beams, the passage time of light can be calculated for the given distance.
After averaging several calculations and applying various corrections, the experimenter can combine
mean passage time and distance for a determination of the velocity of light. Simon Newcombe, a
distinguished American scientist, used this method during the year 1882 to generate the passage
time measurements given below, in microseconds. The travel path for this experiment was 3721
meters in length, extending from Ft. Meyer, on the west bank of the Potomac River in Washington,
D.C. to a fixed mirror at the base of the Washington Monument.

The problem is to determine a 95% CI for the “true” passage time, which is taken to be the
mean of the population of measurements that were or could have been taken by this experiment.

Data Display

Passage
24.828 24.827 24.824 24.831 24.836 24.837 24.836 24.827
24.826 24.839 24.829 24.826 24.816 24.821 24.819 24.828
24.825 24.826 24.827 24.833 24.828 24.827 24.833 24.840
24.825 24.824 24.825 24.828 24.830 24.828 24.826 24.824
24.828 24.824 24.798 24.830 24.820 24.821 24.826 24.822
24.827 24.832 24.825 24.829 24.834 24.829 24.823 24.836
24.828 24.830 24.836 24.831 24.832 24.832 24.816 24.756
24.822 24.829 24.832 24.829 24.832 24.823 24.827 24.824
24.825 24.823
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The data set is skewed to the left, due to the presence of two extreme outliers that could
potentially be misrecorded observations. Without additional information I would be hesitant to
apply normal theory methods (the t-test), even though the sample size is “large”. Basically, folklore
says you can apply standard normal theory methods in large samples. This is true, but how large
the sample must be depends on how skewed, or heavy tailed, the underlying population distribution
is. Furthermore, the t-test still suffers from a lack of robustness of sensitivity, even in large samples.
A formal normal scores test (not provided) would reject, at the 0.01 level, the normality assumption
needed for the standard methods.

The table below gives 95% t, sign and Wilcoxon CIs. I am more comfortable with the sign
CI for the population median than the Wilcoxon method, which assumes symmetry. The question
asks for CI for a population mean, but this is probably because the book I got this problem from
was illustrating methods for means!

Method Limits
t 24.8236 - 24.8289

sign 24.8260 - 24.8284
Wilcoxon 24.8260 - 24.8285

Note the big difference between the nonparametric and the t-CI. The nonparametric CIs are about
1/2 as wide as the t-CI. This reflects the impact that outliers have on the standard deviation, which
directly influences the CI width.

Computation note: Minitab is pretty poor at formatting output for data like this with the
nonparametric procedures. When it printed the lower and upper bounds for the sign and Wilcoxon
CIs, it reported both upper and lower bounds of 24.83 – a fairly useless report. The problem is
the number of digits recorded in the original data. To get the values above I subtracted 24.7 from
the original values, calculated CIs, and added 24.7 back to the CI limits. SAS tends to print a
ridiculous number of digits; Minitab usually makes prettier output, but they should be more careful
here.
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Alternative Analyses for ANOVA and Planned Comparisons

The classical ANOVA assumes that the populations have normal frequency curves and the popu-
lations have equal variances (or spreads). You learned formal tests for these assumptions earlier.
When the assumptions do not hold, you can try one of the following two approaches. Before de-
scribing alternative methods, I will note that deviations from normality in one or more samples
might be expected in a comparison involving many samples. You should downplay small deviations
from normality in problems involving many samples.

Kruskal-Wallis ANOVA

The Kruskal-Wallis (KW) test is a non-parametric method for testing the hypothesis of equal
population medians against the alternative that not all population medians are equal. The pro-
cedure assumes you have independent random samples from populations with frequency curves
having identical shapes and spreads.

The KW ANOVA is essentially the standard ANOVA based on ranked data. That is, we
combine the samples, rank the observations from smallest to largest, and then return the ranks to
the original samples and do the standard ANOVA using the ranks.

The KW ANOVA is a multiple sample analog of the Wilcoxon-Mann-Whitney two sample
procedure. Hence, multiple comparisons for a KW analysis, be they FSD or Bonferroni comparisons,
are based on the two sample WMW procedure.

Transforming Data

The distributions in many data sets are skewed to the right with outliers. If the sample spreads, say
s and IQR, increase with an increasing mean or median, you can often transform data to a scale
where the normality and the constant spread assumption are more nearly satisfied. The transformed
data are analyzed using the standard ANOVA. The two most commonly used transforms for this
problem are the square root and natural logarithm, provided the data are non-negative. I will give
you some idea why this might work in class.

If the original distributions are nearly symmetric, but heavy tailed, non-linear transformations
will tend to destroy the symmetry. Many statisticians recommend methods based on trimmed
means for such data. These methods are not commonly used by other researchers.

Example: Hydrocarbon (HC) Emissions Data

These data are the HC emissions at idling speed, in ppm, for automobiles of different years of
manufacture. The data are a random sample of all automobiles tested at an Albuquerque shopping
center. (It looks like we need to find some newer cars!)

The standard ANOVA shows significant differences among the mean HC emissions. However,
the standard ANOVA is inappropriate because the distributions are extremely skewed to the right
due to presence of outliers in each sample.

Data Display
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Row Pre-63 63-7 68-9 70-1 72-4
1 2351 620 1088 141 140
2 1293 940 388 359 160
3 541 350 111 247 20
4 1058 700 558 940 20
5 411 1150 294 882 223
6 570 2000 211 494 60
7 800 823 460 306 20
8 630 1058 470 200 95
9 905 423 353 100 360

10 347 900 71 300 70
11 405 241 223 220
12 780 2999 190 400
13 270 199 140 217
14 188 880 58
15 353 200 235
16 117 223 1880
17 188 200
18 435 175
19 940 85
20 241

Descriptive Statistics: Pre-63, 63-7, 68-9, 70-1, 72-4

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
Pre-63 10 0 891 187 592 347 509 715 1117 2351
63-7 13 0 801 126 455 270 414 780 999 2000
68-9 16 0 506 177 708 71 191 324 468 2999
70-1 20 0 381.5 64.4 287.9 100.0 192.5 244.0 479.3 940.0
72-4 19 0 244.1 94.2 410.8 20.0 60.0 160.0 223.0 1880.0

One-way ANOVA: Pre-63, 63-7, 68-9, 70-1, 72-4

Source DF SS MS F P
Factor 4 4226834 1056709 4.34 0.003
Error 73 17759968 243287
Total 77 21986802

S = 493.2 R-Sq = 19.22% R-Sq(adj) = 14.80%
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Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev ---------+---------+---------+---------+
Pre-63 10 890.6 591.6 (----------*---------)
63-7 13 801.5 454.9 (--------*--------)
68-9 16 506.3 707.8 (-------*-------)
70-1 20 381.5 287.9 (-------*------)
72-4 19 244.1 410.8 (------*-------)

---------+---------+---------+---------+
300 600 900 1200

Pooled StDev = 493.2

The boxplots show that the typical HC emissions appear to increase as the age of car increases
(the simplest description). Although the spread in the samples, as measured by the IQR, also
increases as age increases, I am more comfortable with the KW ANOVA, in part because the KW
analysis is not too sensitive to differences in spreads among samples. This point is elaborated upon
later. As described earlier, the KW ANOVA is essentially an ANOVA based on the ranks. I give
below the ANOVA based on ranks and the output from the KW procedure. They give similar p-
values, and lead to the conclusion that there are significant differences among the population median
HC emissions. A simple description is that the population median emission tends to increase with
the age of the car. You should follow up this analysis with Mann-Whitney multiple comparisons.

The KW ANOVA is conducted in Minitab by following these steps: Stat > Nonparametrics
> Kruskal-Wallis. The data must be STACKED, and you need to specify the response variable,
and the factor that defines the groups.

One-way ANOVA: hce_rank versus Year

Source DF SS MS F P
Year 4 16329 4082 12.85 0.000
Error 73 23200 318
Total 77 39529

Kruskal-Wallis Test: HCE versus Year

Kruskal-Wallis Test on HCE

Year N Median Ave Rank Z
63-7 13 780.0 58.6 3.33
68-9 16 323.5 37.4 -0.41
70-1 20 244.0 36.6 -0.67
72-4 19 160.0 20.3 -4.25
Pre-63 10 715.0 60.4 3.12
Overall 78 39.5

H = 31.80 DF = 4 P = 0.000
H = 31.81 DF = 4 P = 0.000 (adjusted for ties)

It is common to transform the data to a log scale when the spread increases as the median or
mean increases. The data have already been STACKED, so it is straightforward to transform the
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HCE levels to the log scale using the Minitab calculator. Side-by-side boxplots of the transformed
data are given on the same page as the boxplots of the untransformed data.

After transformation, the samples have roughly the same spread (IQR and s) and shape. The
transformation does not completely eliminate the outliers. However, I am more comfortable with a
standard ANOVA on this scale than with the original data. A difficulty here is that the ANOVA is
comparing population mean log HC emission. Summaries for the ANOVA on the log hydrocarbon
emissions levels are given below.

One-way ANOVA: hce_rank versus Year

Source DF SS MS F P
Year 4 16329 4082 12.85 0.000
Error 73 23200 318
Total 77 39529

S = 17.83 R-Sq = 41.31% R-Sq(adj) = 38.09%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev --+---------+---------+---------+-------
63-7 13 58.58 12.67 (------*------)
68-9 16 37.44 21.16 (-----*-----)
70-1 20 36.58 18.82 (----*-----)
72-4 19 20.29 19.08 (-----*----)
Pre-63 10 60.35 11.89 (------*-------)

--+---------+---------+---------+-------
15 30 45 60

Pooled StDev = 17.83

The boxplot of the log-transformed data reinforces the reasonableness of the original KW anal-
ysis. Why? The log-transformed distributions have fairly similar shapes and spreads, so a KW
analysis on these data is sensible. The ranks for the original and log-transformed data are identi-
cal, so the KW analyses on the log-transformed data and the original data must lead to the same
conclusions. This suggests that the KW ANOVA is not overly sensitive to differences in spreads
among the samples.
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There are two reasonable analyses here: the standard ANOVA using log HC emissions, and the
KW analysis of the original data. The first analysis gives a comparison of mean log-HC emissions.
The second involves a comparison of median HC emissions. A statistician would present both
analyses to the scientist who collected the data to make a decision on which was more meaningful
(independently of the results!). Multiple comparisons would be performed relative to the selected
analysis.

Example: Hodgkin’s Disease Study

Plasma bradykininogen levels were measured in normal subjects, in patients with active Hodgkin’s
disease, and in patients with inactive Hodgkin’s disease. The globulin bradykininogen is the pre-
cursor substance for bradykinin, which is thought to be a chemical mediator of inflammation. The
data (in micrograms of bradykininogen per milliliter of plasma) are displayed below. The three
samples are denoted by nc for normal controls, ahd for active Hodgkin’s disease patients, and ihd
for inactive Hodgkin’s disease patients.

The medical investigators wanted to know if the three samples differed in their bradykininogen
levels. Carry out the statistical analysis you consider to be most appropriate, and state your
conclusions to this question.

Data Display

Data Display

Row nc ahd ihd
1 5.37 3.96 5.37
2 5.80 3.04 10.60
3 4.70 5.28 5.02
4 5.70 3.40 14.30
5 3.40 4.10 9.90
6 8.60 3.61 4.27
7 7.48 6.16 5.75
8 5.77 3.22 5.03
9 7.15 7.48 5.74
10 6.49 3.87 7.85
11 4.09 4.27 6.82
12 5.94 4.05 7.90
13 6.38 2.40 8.36
14 9.24 5.81 5.72
15 5.66 4.29 6.00
16 4.53 2.77 4.75
17 6.51 4.40 5.83
18 7.00 7.30
19 6.20 7.52
20 7.04 5.32
21 4.82 6.05
22 6.73 5.68
23 5.26 7.57
24 5.68
25 8.91
26 5.39
27 4.40
28 7.13

Descriptive Statistics: nc, ahd, ihd

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
nc 23 0 6.081 0.284 1.362 3.400 5.260 5.940 7.000 9.240
ahd 17 0 4.242 0.316 1.303 2.400 3.310 4.050 4.840 7.480
ihd 28 0 6.791 0.411 2.176 4.270 5.375 5.915 7.780 14.300
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Although the spread (IQR, s) in the ihd sample is somewhat greater than the spread in the other
samples, the presence of skewness and outliers in the boxplots is a greater concern regarding the
use of the classical ANOVA. The shapes and spreads in the three samples are roughly identical, so
a Kruskal-Wallis nonparametric ANOVA appears ideal. As a sidelight, I transformed plasma levels
to a log scale to reduce the skewness and eliminate the outliers. The boxplots of the transformed
data show reasonable symmetry across groups, but outliers are still present. I will stick with the
Kruskal-Wallis ANOVA (although it would not be much of a problem to use the classical ANOVA
on transformed data).

Let ηnc = population median plasma level for normal controls, ηahd = population median
plasma level for active Hodgkin’s disease patients, and ηihd = population median plasma level for
inactive Hodgkin’s disease patients. The KW test of H0 : ηnc = ηahd = ηihd is highly significant
(p−value = .000), suggesting differences among the population median plasma levels. The Kruskal-
Wallis ANOVA summary is given below.

Kruskal-Wallis Test: b_level versus Group

Kruskal-Wallis Test on b_level

Group N Median Ave Rank Z
nc 23 5.940 38.3 1.14
ahd 17 4.050 15.9 -4.47
ihd 28 5.915 42.6 2.83
Overall 68 34.5

H = 20.56 DF = 2 P = 0.000
H = 20.57 DF = 2 P = 0.000 (adjusted for ties)

I followed up the KW ANOVA with Bonferroni comparisons of the samples, using the Mann-
Whitney two sample procedure. There are three comparisons, so an overall FER of .05 is achieved
by doing the individual tests at the .05/3=.0167 level. Alternatively, you can use 98.33% CI for
differences in population medians.

Remember that the WMW two-sample comparisons requires UNSTACKED data, whereas the
KW required STACKED data!
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Mann-Whitney Test and CI: nc, ahd

N Median
nc 23 5.940
ahd 17 4.050

Point estimate for ETA1-ETA2 is 1.910
98.4 Percent CI for ETA1-ETA2 is (0.860,2.900)
W = 605.0
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0003
The test is significant at 0.0003 (adjusted for ties)

Mann-Whitney Test and CI: nc, ihd

N Median
nc 23 5.940
ihd 28 5.915

Point estimate for ETA1-ETA2 is -0.345
98.3 Percent CI for ETA1-ETA2 is (-1.559,0.680)
W = 552.5
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.3943
The test is significant at 0.3943 (adjusted for ties)

Mann-Whitney Test and CI: ahd, ihd

N Median
ahd 17 4.050
ihd 28 5.915

Point estimate for ETA1-ETA2 is -2.145
98.4 Percent CI for ETA1-ETA2 is (-3.500,-1.320)
W = 209.0
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0000
The test is significant at 0.0000 (adjusted for ties)

The only comparison with a p-value greater than .0167 involved the nc and ihd samples. The
comparison leads to two groups, and is consistent with what we see in the boxplots.

ahd nc ihd
--- --------

You have sufficient evidence to conclude that the plasma bradykininogen levels for active Hodgkin’s
disease patients is lower than the population median levels for normal controls, and for patients with
inactive Hodgkin’s disease. You do not have sufficient evidence to conclude that the population
median levels for normal controls and for patients with inactive Hodgkin’s disease are different.
The CIs give an indication of size of differences in the population medians.
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Planned Comparisons

Bonferroni multiple comparisons are generally preferred to Fisher’s least significant difference ap-
proach. Fisher’s method does not control the family error rate and produces too many spurious
significant differences (claims of significant differences that are due solely to chance variation and
not to actual differences in population means). However, Bonferroni’s method is usually very con-
servative when a large number of comparisons is performed - large differences in sample means
are needed to claim significance. A way to reduce this conservatism is to avoid doing all possible
comparisons. Instead, one should, when possible, decide a priori (before looking at the data) which
comparisons are of primary interest, and then perform only those comparisons.

For example, suppose a medical study compares five new treatments with a control (a six group
problem). The medical investigator may not be interested in all 15 possible comparisons, but only
in which of the five treatments differ on average from the control. Rather than performing the
15 comparisons, each at the say .05/15 = .0033 level, she could examine the five comparisons of
interest at the .05/5 = .01 level. By deciding beforehand which comparisons are of interest, she can
justify using a .01 level for the comparisons, instead of the more conservative .0033 level needed
when doing all possible comparisons.

To illustrate this idea, consider the KW analysis of HC emissions. We saw that there are
significant differences among the population median HC emissions. Given that the samples have a
natural ordering

Sample Year of manufacture
1 Pre 1963
2 63 - 67
3 68 - 69
4 70 - 71
5 72 - 74

you may primarily be interested in whether the population medians for cars manufactured in
consecutive samples are identical. That is, you may be primarily interested in the following 4
comparisons:

Pre 1963 vs 63 - 67
63 - 67 vs 68 - 69
68 - 69 vs 70 - 71
70 - 71 vs 72 - 74

A Bonferroni analysis would carry out each comparison at the .05/4 = .0125 level versus the .05/10
= .005 level when all comparisons are done.

The following output was obtained from Minitab for doing these four comparisons, based on
Wilcoxon-Mann-Whitney two sample tests (why?). Two year-groups are claimed to be different
if the p-value is .0125 or below, or equivalently, if a 98.75% CI for the difference in population
medians does not contain zero.

Mann-Whitney Confidence Interval and Test

Pre-63 N = 10 Median = 715.0
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63-7 N = 13 Median = 780.0

Point estimate for ETA1-ETA2 is 15.0
98.8 Percent CI for ETA1-ETA2 is (-427.9,529.9)
W = 123.5

Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.8524
The test is significant at 0.8524 (adjusted for ties)

Mann-Whitney Confidence Interval and Test

63-7 N = 13 Median = 780.0
68-9 N = 16 Median = 323.5

Point estimate for ETA1-ETA2 is 399.0
98.8 Percent CI for ETA1-ETA2 is (52.0,708.8)
W = 256.0

Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0080
The test is significant at 0.0080 (adjusted for ties)

Mann-Whitney Confidence Interval and Test

68-9 N = 16 Median = 323.5
70-1 N = 20 Median = 244.0

Point estimate for ETA1-ETA2 is 11.0
98.8 Percent CI for ETA1-ETA2 is (-171.0,206.0)

W = 300.0
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.9113
The test is significant at 0.9112 (adjusted for ties)

Mann-Whitney Confidence Interval and Test

70-1 N = 20 Median = 244.0
72-4 N = 19 Median = 160.0

Point estimate for ETA1-ETA2 is 130.0
98.8 Percent CI for ETA1-ETA2 is (6.1,285.9)

W = 497.5
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0064
The test is significant at 0.0064 (adjusted for ties)

There are significant differences between the 1963-67 and 1968-69 samples, and between the
1970-71 and 1972-74 samples. You are 98.75% confident that the population median HC emissions
for 1963-67 year cars is between 52 and 708.8 ppm greater than the population median for 1968-69
cars. Similarly, you are 98.75% confident that the population median HC emissions for 1970-71
year cars is between 6.1 and 285.9 ppm greater than the population median for 1972-74 cars.

It is not uncommon for researchers to combine data from groups not found to be significantly
different. This is not, in general, a good practice. Just because you do not have sufficient evidence
to show differences does not imply that you should treat the groups as if they are the same!
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A Final ANOVA Comment

If the data distributions do not substantially deviate from normality, but the spreads are different
across samples, you might consider the standard ANOVA followed with multiple comparisons using
two-sample tests based on Satterthwaite’s approximation.
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