
8 CATEGORICAL DATA ANALYSIS

8 Categorical Data Analysis

Single Proportion Problems

SW Section 6.6

Assume that you are interested in estimating the proportion p of individuals in a population with
a certain characteristic or attribute based on a random or representative sample of size n from the
population. The sample proportion p̂ =(# with attribute in the sample)/n is the best guess for
p based on the data.

This is the simplest categorical data problem. Each response falls into one of two exclusive
and exhaustive categories, called success and failure. Individuals with the attribute of interest are
in the success category. The rest fall into the failure category. Knowledge of the population pro-
portion p of successes characterizes the distribution across both categories because the population
proportion of failures is 1− p.

As an aside, note that the probability that a randomly selected individual has the attribute of
interest is the population proportion p with the attribute, so the terms population proportion and
probability can be used interchangeably with random sampling.

A CI for p

A two-sided CI for p is a range of plausible values for the unknown population proportion p, based
on the observed data. To compute a two-sided CI for p:

1. Specify the confidence level as the percent 100(1− α)% and solve for the error rate α of the
CI.

2. Compute zcrit = z.5α (i.e. area under the standard normal curve to the left and to the right
of zcrit are 1− .5α and .5α, respectively). See the table in SW, page 643-4.

3. The 100(1− α)% CI for p has endpoints L = p̂− zcritSE and U = p̂ + zcritSE, respectively,
where the “CI standard error” is

SE =

√
p̂(1− p̂)

n
.

The CI is often written as p̂± zcritSE.

The length of the CI
U − L = 2zcritSE

depends on the accuracy of the estimate p̂, as measured by the standard error SE. For a given
p̂, this standard error decreases as the sample size n increases, yielding a narrower CI. For a fixed
sample size, this standard error is maximized at p̂ = .5, and decreases as p̂ moves towards either
0 or 1. In essence, sample proportions near 0 or 1 give narrower CIs for p. However, the normal
approximation used in the CI construction is less reliable for extreme values of p̂.

Example The 1983 Tylenol poisoning episode highlighted the desirability of using tamper-resistant
packaging. The article “Tamper Resistant Packaging: Is it Really?” (Packaging Engineering, June
1983) reported the results of a survey on consumer attitudes towards tamper-resistant packaging.
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8 CATEGORICAL DATA ANALYSIS

A sample of 270 consumers was asked the question: “Would you be willing to pay extra for tam-
per resistant packaging?” The number of yes respondents was 189. Construct a 95% CI for the
proportion p of all consumers who were willing in 1983 to pay extra for such packaging.

Here n = 270 and p̂ = 189/270 = .700. The critical value for a 95% CI for p is z.025 = 1.96.
The CI standard error is given by

SE =
√

.7 ∗ .3
270

= .028,

so zcritSE = 1.96 ∗ .028 = .055. The 95% CI for p is .700 ± .055. You are 95% confident that the
proportion of consumers willing to pay extra for better packaging is between .645 and .755. (How
much extra?).

Appropriateness of the CI

The standard CI is based on a large sample standard normal approximation to

z =
p̂− p

SE
.

A simple rule of thumb requires np̂ ≥ 5 and n(1− p̂) ≥ 5 for the method to be suitable. Given that
np̂ and n(1 − p̂) are the observed numbers of successes and failures, you should have at least 5 of
each to apply the large sample CI.

In the packaging example, np̂ = 270∗(.700) = 189 (the number who support the new packaging)
and n(1−p̂) = 270∗(.300) = 81 (the number who oppose) both exceed 5. The normal approximation
is appropriate here.

Hypothesis Tests on Proportions

The following example is typical of questions that can be answered using a hypothesis test for a
population proportion.

Example Environmental problems associated with leaded gasolines are well-known. Many mo-
torists have tampered with the emission control devices on their cars to save money by purchasing
leaded rather than unleaded gasoline. A Los Angeles Times article on March 17, 1984 reported
that 15% of all California motorists have engaged in emissions tampering. A random sample of
200 cars from L.A. county was obtained, and the emissions devices on 21 are found to be tampered
with. Does this suggest that the proportion of cars in L.A. county with tampered devices differs
from the statewide proportion?

Two-Sided Hypothesis Test for p

Suppose you are interested in whether the population proportion p is equal to a prespecified value,
say p0. This question can be formulated as a two-sided test. To carry out the test:

1. Define the null hypothesis H0 : p = p0 and alternative hypothesis HA : p 6= p0.
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2. Choose the size or significance level of the test, denoted by α.

3. Using the standard normal probability table, find the critical value zcrit such that the areas
under the normal curve to the left and right of zcrit are 1 − .5α and .5α, respectively. That
is, zcrit = z.5α.

4. Compute the test statistic (often to be labelled zobs)

zs =
p̂− p0

SE
,

where the “test standard error” is

SE =

√
p0(1− p0)

n
.

5. Reject H0 in favor of HA if |zobs| ≥ zcrit. Otherwise, do not reject H0.

The rejection rule is easily understood visually. The area under the normal curve outside ±zcrit

is the size α of the test. One-half of α is the area in each tail. You reject H0 in favor of HA if the
test statistic exceeds ±zcrit. This occurs when p̂ is significantly different from p0, as measured by
the standardized distance zobs between p̂ and p0.

−4 0 4
zCrit− zCrit

α
2

     (fixed)
α
2

Rej H0Rej H0

Z−distribution with two−sided size α = .05 critical region

−4 0 4
zCrit− zCrit

zs− zs

p − value

2

p − value

2

Total area is p−value 
 and is random, not fixed

Z−distribution with two−sided p−value

The P-Value for a Two-Sided Test

To compute the p-value (not to be confused with the value of p!) for a two-sided test:

1. Compute the test statistic zs = zobs.

2. Evaluate the area under the normal probability curve outside ±|zs|.
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Recall that the null hypothesis for a size α test is rejected if and only if the p-value is less than or
equal to α.

Example (Emissions data) Each car in the target population (L.A. county) either has been
tampered with (a success) or has not been tampered with (a failure). Let p = the proportion of
cars in L.A. county with tampered emissions control devices. You want to test H0 : p = .15 against
HA : p 6= .15 (here p0 = .15). The critical value for a two-sided test of size α = .05 is zcrit = 1.96.

The data are a sample of n = 200 cars. The sample proportion of cars that have been tampered
with is p̂ = 21/200 = .105. The test statistic is

zs =
.105− .15

.02525
= −1.78,

where the test standard error satisfies

SE =
√

.15 ∗ .85
200

= .02525.

Given that |zs| = 1.78 < 1.96, you have insufficient evidence to reject H0 at the 5% level. That
is, you have insufficient evidence to conclude that the proportion of cars in L.A. county that have
been tampered with differs from the statewide proportion.

This decision is reinforced by the p-value calculation. The p-value is the area under the standard
normal curve outside ±1.78. This is 2 ∗ .0375 = .075, which exceeds the test size of .05.

−4 0 41.78−1.78

.0375.0375

Total area is p−value 
 = .075

Emissions data p−value

REMARK: The SE used in the test and CI are different. This implies that a hypothesis test
and CI could potentially lead to different decisions. That is, a 95% CI for a population proportion
might cover p0 when the p-value for testing H0 : p = p0 is smaller than 0.05. This will happen,
typically, only in cases where the decision is “borderline.”
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Appropriateness of Test

The z-test is based on a large sample normal approximation, which works better for a given sample
size when p0 is closer to .5. The sample size needed for an accurate approximation increases
dramatically the closer p0 gets to 0 or to 1. A simple rule of thumb is that the test is appropriate
when (the expected number of successes) np0 ≥ 5 and (the expected number of failures) n(1−p0) ≥
5.

In the emissions example, np0 = 200 ∗ (.15) = 30 and n(1− p0) = 200 ∗ (.85) = 170 exceed 5, so
the normal approximation is appropriate.

Minitab Implementation

1. CI and tests on a single proportion are obtained in Minitab by following the path: Stat >
Basic Statistics > 1 Proportion.

2. The dialog box allows you to specify either raw data in columns (to be discussed later) or
summarized data (number of trials, or sample size, and number of successes).

3. Options: the confidence level, the null proportion, and the direction of the alternative hy-
pothesis. One-sided bounds are available. I do not how to generate a CI without a test, so I
edit out the test output when it is not of interest.

4. You need to specify the normal approximation as an option. As default, Minitab computes
an exact CI and test based on the Binomial distribution for the number of successes. The
exact methods, which were described in conjunction with the sign test, are preferred, but not
available in many packages. I will illustrate the exact methods later.

Minitab output for the emissions example is given below. The summary data, as provided in the
example description, were directly entered in the 1 Proportion dialog box. In the output, x is the
number of successes. Note that the results of the 95% CI disagrees with the test done earlier. Exact
methods will not contradict each other this way (neither do these asymptotic methods, usually).

Test and CI for One Proportion

Test of p = 0.15 vs p not = 0.15

Sample X N Sample p 95.0% CI Z-Value P-Value
1 21 200 0.105000 (0.062515, 0.147485) -1.78 0.075

One-Sided Tests and One-Sided Confidence Bounds

The mechanics of tests on proportions are similar to tests on means, except we use a different test
statistic and a different probability table for critical values. This applies to one-sided and two-sided
procedures. The example below illustrates a one-sided test and bound.

Example An article in the April 6, 1983 edition of The Los Angeles Times reported on a study
of 53 learning impaired youngsters at the Massachusetts General Hospital. The right side of the
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brain was found to be larger than the left side in 22 of the children. The proportion of the general
population with brains having larger right sides is known to be .25. Does the data provide strong
evidence for concluding, as the article claims, that the proportion of learning impaired youngsters
with brains having larger right sides exceeds the proportion in the general population?

I will answer this question by computing a p-value for a one-sided test. Let p be the population
proportion of learning disabled children with brains having larger right sides. I am interested in
testing H0 : p = .25 against HA : p > .25 (here p0 = .25).

The proportion of children sampled with brains having larger right sides is p̂ = 22/53 = .415.
The test statistic is

zs =
.415− .25

.0595
= 2.78,

where the test standard error satisfies

SE =
√

.25 ∗ .75
53

= .0595.

The p-value for an upper one-sided test is the area under the standard normal curve to the right
of 2.78, which is approximately .003; see the picture below. I would reject H0 in favor of HA using
any of the standard test levels, say .05 or .01. The newspaper’s claim is reasonable.

−4 −2 0 4zs = 2.78

.003

p−value is area in 
 right tail only

Right brain upper one−sided p−value

A sensible next step in the analysis would be to compute a lower confidence bound p̂−zcritSE
for p. For illustration, consider a 95% bound. The CI standard error is

SE =

√
p̂(1− p̂)

n
=

√
.415 ∗ .585

53
= .0677.

The critical value for a one-sided 5% test is zcrit = 1.645, so a lower 95% bound on p is .415−1.645∗
.0677 = .304. I am 95% confident that the population proportion of learning disabled children with
brains having larger right sides is at least .304. Values of p smaller than .304 are not plausible.

111
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You should verify that the sample size is sufficiently large to use the approximate methods in
this example.

Minitab output for the right-side brain data is given below. An upper one-sided test and corre-
sponding lower one-sided bound are given.

Test and CI for One Proportion

Test of p = 0.25 vs p > 0.25

95%
Lower

Sample X N Sample p Bound Z-Value P-Value
1 22 53 0.415094 0.303766 2.78 0.003

Small Sample Procedures

Large sample tests and CIs for p should be interpreted with caution in small sized samples because
the true error rate usually exceeds the assumed (nominal) value. For example, an assumed 95%
CI, with a nominal error rate of 5%, may be only an 80% CI, with a 20% error rate. The large
sample CIs are usually overly optimistic (i.e. too narrow) when the sample size is too small to use
the normal approximation.

SW use the following method developed by Alan Agresti for a 95% CI. The standard method
computes the sample proportion as p̂ = x/n where x is the number of successes in the sample and
n is the sample size. Agresti suggested using the estimated proportion p̃ = (x + 2)/(n + 4) with
the standard error

SE =

√
p̃(1− p̃)
n + 4

,

in the “usual 95% interval” formula: p̃ ± 1.96SE. This appears odd, but amounts to adding two
successes and two failures to the observed data, and then computing the standard CI.

This adjustment has little effect when n is large and p̂ is not near either 0 or 1, as in the Tylenol
example.

Example This example is based on a case heard before the U.S. Supreme Court. A racially
segregated swimming club was ordered to admit minority members. However, it is unclear whether
the club has been following the spirit of the mandate. Historically, 85% of the white applicants
were approved. Since the mandate, only 1 of 6 minority applicants has been approved. Is there
evidence of continued discrimination?

I examine this issue by constructing a CI and a test for the probability p (or population pro-
portion) that a minority applicant is approved. Before examining the question of primary interest,
let me show that the two approximate CIs are very different, due to the small sample size. One
minority applicant (x = 1) was approved out of n = 6 candidates, giving p̂ = 1/6. A 95% large
sample CI for p is (-.14, .46). Since a negative proportion is not possible, Minitab reports the CI
as (.00,.46). Agresti’s 95% CI (based on 3 successes and 7 failures) is (.02, .58). The big difference
between the two intervals coupled with the negative lower endpoint on the standard CI suggests
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that the normal approximation used with the standard method is inappropriate. This view is re-
inforced by the rule of thumb calculation for using the standard interval. Agresti’s CI is wider,
which is consistent with my comment that the standard CI is too narrow in small samples. As a
comparison, the exact 95% CI is (.004,.64), which agrees more closely with Agresti’s interval.

I should emphasize that the exact CI is best to use, but is not available in all statistical packages,
so methods based on approximations may be required, and if so, then Agresti’s method is clearly
better than the standard normal approximation in small sized samples.

Test and CI for One Proportion <<<<<------- Standard Normal Approximation

Sample X N Sample p 95.0% CI
1 1 6 0.166667 (0.000000, 0.464866)

* NOTE * The normal approximation may be inaccurate for small samples.

Test and CI for One Proportion <<<<<------- Agresti’s Method

Test of p = 0.5 vs p not = 0.5

Sample X N Sample p 95.0% CI
1 3 10 0.300000 (0.015974, 0.584026)

* NOTE * The normal approximation may be inaccurate for small samples.

Test and CI for One Proportion <<<<<-------- Exact CI

Sample X N Sample p 95.0% CI
1 1 6 0.166667 (0.004211, 0.641235)

Returning to the problem, you might check for discrimination by testing H0 : p = .85 against
HA : p < .85 using an exact test. The exact test p-value is .000 to three decimal places, and an
exact upper bound for p is .582. What does this suggest to you?

Test and CI for One Proportion

Test of p = 0.85 vs p < 0.85

95%
Upper Exact

Sample X N Sample p Bound P-Value
1 1 6 0.166667 0.581803 0.000

Analyzing Raw Data

In most studies, your data will be stored in a spreadsheet with one observation per case or individual.
For example, the data below give the individual responses to the applicants of the swim club.

Data Display

113



8 CATEGORICAL DATA ANALYSIS

outcome
approved not approved not approved not approved not approved
not approved

The data were entered as alphabetic strings, which are treated in Minitab as alphanumeric
characters. As such, only certain tools can be used to summarize and analyze the data. A frequency
distribution is a useful summary for categorical data, and is obtained in Minitab by following the
steps: Stat > Tables > Tally Individual Variables. You can specify counts and percentages
for each category.

Tally for Discrete Variables: outcome

outcome Count
approved 1

not approved 5
N= 6

You can compute a CI and test for a proportion using raw data (from Stat > Basic Statistic
> 1 Proportion, data in column), provided the data column includes only two distinct values. The
levels can be numerical or alphanumeric. Let us examine what happens if we do that here, though.

Test and CI for One Proportion: outcome

Test of p = 0.85 vs p < 0.85

Event = not approved <<<<<<<<<--------- NOT what we wanted

95%
Upper Exact

Variable X N Sample p Bound P-Value
outcome 5 6 0.833333 0.991488 0.623

You must be very careful because Minitab defines the higher alphanumeric value to be success
and the lower level to be failure. The above analysis actually is for 1−p the way we have structured
the problem. Thus, in the swimming club problem if you define p to be the probability a minority
applicant is approved and you wish to test H0 : p = .85 against HA : p < .85 then you need to
relabel the variable values into another column (you can use the same column, but that is not a
safe way to proceed in general).

If I create a new variable named “Approved”, then I can reverse the alphabetic order.

Data Display

Row outcome Approved
1 approved Yes
2 not approved No
3 not approved No
4 not approved No
5 not approved No
6 not approved No
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In order to create the new variable, follow the path Data > Code > Text to Text and fill in the
dialog box appropriately. Note how I needed to use quotes to handle the embedded blank in the
variable value. Since “Yes” follows “No” alphabetically, we get the correct analysis on the new
variable.

Test and CI for One Proportion: Approved

Test of p = 0.85 vs p < 0.85

Event = Yes

95%
Upper Exact

Variable X N Sample p Bound P-Value
Approved 1 6 0.166667 0.581803 0.000

In class we looked at the binomial distribution to obtain an exact Sign Test confidence interval
for the median. Examine the following to see where the exact p-value for this test comes from. If
we carried the p-value to a few more decimal places, what would we report?

Cumulative Distribution Function

Binomial with n = 6 and p = 0.85

x P( X <= x )
0 0.00001
1 0.00040
2 0.00589
3 0.04734
4 0.22352
5 0.62285
6 1.00000
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Goodness-of-Fit Tests

SW Section 10.1

Example: The following data set was used as evidence in a court case. The data represent
a sample of 1336 individuals from the jury pool of a large municipal court district for the years
1975-1977. The fairness of the representation of various age groups on juries was being contested.
The strategy for doing this was to challenge the representativeness of the pool of individuals from
which the juries are drawn. This was done by comparing the age group distribution within the jury
pool against the age distribution in the district as a whole, which was available from census figures.

Age group (yrs) Obs. Counts Obs. Prop. Census Prop.
18-19 23 .017 .061
20-24 96 .072 .150
25-29 134 .100 .135
30-39 293 .219 .217
40-49 297 .222 .153
50-64 380 .284 .182
65-99 113 .085 .102

A statistical question here is whether the jury pool population proportions are equal to the
census proportions across the age categories. This comparison can be formulated as a goodness-
of-fit test, which generalizes the large sample test on a single proportion to a categorical variable
(here age) with r > 2 levels. For r = 2 categories, the goodness-of-fit test and large sample test
on a single proportion are identical. Although this problem compares two populations, only one
sample is involved because the census data is a population summary!

In general, suppose each individual in a population is categorized into one and only one of
r levels or categories. Let p1, p2, ..., pr be the population proportions in the r categories, where
each pi ≥ 0 and p1 + p2 + · · · + pr = 1. The hypotheses of interest in a goodness-of-fit problem
are H0 : p1 = p0

1, p2 = p0
2, ..., pr = p0

r and HA : not H0, where p0
1, p0

2, ..., p
0
r are given category

proportions.
The plausibility of H0 is evaluated by comparing the hypothesized category proportions to

estimated (i.e. observed) category proportions p̂1, p̂2, ..., p̂r from a random or representative
sample of n individuals selected from the population. The discrepancy between the hypothesized
and observed proportions is measured by the Pearson chi-squared statistic:

χ2
s =

r∑
i=1

(Oi − Ei)2

Ei
,

where Oi is the observed number in the sample that fall into the ith category (Oi = np̂i), and
Ei = np0

i is the number of individuals expected to be in the ith category when H0 is true.
The Pearson statistic can also be computed as the sum of the squared residuals:

χ2
s =

r∑
i=1

Z2
i ,
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where Zi = (Oi − Ei)/
√

Ei, or in terms of the observed and hypothesized category proportions

χ2
s = n

r∑
i=1

(p̂i − p0
i )

2

p0
i

.

The Pearson statistic χ2
s is “small” when all of the observed counts (proportions) are close to

the expected counts (proportions). The Pearson χ2 is “large” when one or more observed counts
(proportions) differs noticeably from what is expected when H0 is true. Put another way, large
values of χ2

s suggest that H0 is false.
The critical value χ2

crit for the test is obtained from a chi-squared probability table with r − 1
degrees of freedom. A chi-squared table is given on page 686 of SW. The picture below shows
the form of the rejection region. For example, if r = 5 and α = .05, then you reject H0 when
χ2

s ≥ χ2
crit = 9.49. The p-value for the test is the area under the chi-squared curve with df = r− 1

to the right of the observed χ2
s value.

0 5 10 15
χCrit

2

α = .05 (fixed)

Reject H0 for χS
2 here

χ2 with 4 degrees of freedom

0 5 10 15
χCrit

2 χS
2

p − value (random)

χ2 with 4 degrees of freedom

χS
2 significant

Example: (Jury pool problem) Let p18 be the proportion in the jury pool population between
ages 18 and 19. Define p20, p25, p30, p40, p50 and p65 analogously. You are interested in testing
H0 : p18 = .061, p20 = .150, p25 = .135, p30 = .217, p40 = .153, p50 = .182 and p65 = .102 against
HA : not H0, using the sample of 1336 from the jury pool.

The observed counts, the expected counts, and the category residuals are given in the table
below. For example, E18 = 1336 ∗ (.061) = 81.5 and Z18 = (23− 81.5)/

√
81.5 = −6.48 in the 18-19

year category.
The Pearson statistic is

χ2
s = (−6.48)2 + (−7.38)2 + (−3.45)2 + .182 + 6.482 + 8.782 + (−1.99)2 = 231.26

on r − 1 = 7 − 1 = 6 degrees of freedom. Here χ2
crit = 12.59 at α = .05. The p-value for the

goodness-of-fit test is less than .001, which suggests that H0 is false.
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Age group (yrs) Obs. Counts Exp. Counts Residual
18-19 23 81.5 -6.48
20-24 96 200.4 -7.38
25-29 134 180.4 -3.45
30-39 293 289.9 0.18
40-49 297 204.4 6.48
50-64 380 243.2 8.78
65-99 113 136.3 -1.99

Adequacy of the Goodness-of-Fit Test

The chi-squared goodness-of-fit test is a large sample test. A conservative rule of thumb is that the
test is suitable when each expected count is at least five. This holds in the jury pool example.
There is no widely available alternative method for testing goodness-of-fit with smaller sample sizes.
There is evidence, however, that the chi-squared test is slightly conservative (the p-values are
too large, on average) when the expected counts are smaller. Some statisticians recommend that
the chi-squared approximation be used when the minimum expected count is at least one, provided
the expected counts are not too variable.

Minitab Implementation

Minitab will do a chi-squared goodness-of-fit test by following the menu path Stat > Tables
> Chi-Square Goodness-of-Fit Test (One Variable). Unlike the method we used for a single
proportion of entering summarized data from a dialog box, the summarized data need to be entered
into the worksheet (having counts for categories is summarized data). Following is the Minitab
output for the jury pool problem:

Data Display

Row Age Count CensusProp
1 18-19 23 0.061
2 20-24 96 0.150
3 25-29 134 0.135
4 30-39 293 0.217
5 40-49 297 0.153
6 50-64 380 0.182
7 65-99 113 0.102

Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Count

Using category names in Age

Test Contribution
Category Observed Proportion Expected to Chi-Sq
18-19 23 0.061 81.496 41.9871
20-24 96 0.150 200.400 54.3880
25-29 134 0.135 180.360 11.9164
30-39 293 0.217 289.912 0.0329
40-49 297 0.153 204.408 41.9420
50-64 380 0.182 243.152 77.0192
65-99 113 0.102 136.272 3.9743
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N DF Chi-Sq P-Value
1336 6 231.260 0.000

The term “Contribution to Chi-Square” refers to the values of (O−E)2

E for each category. χ2
s is the

sum of those contributions.

Multiple Comparisons in a Goodness-of-Fit Problem

The goodness-of-fit test suggests that at least one of the age category proportions for the jury
pool population differs from the census figures. A reasonable next step in the analysis would be
to separately test the seven hypotheses: H0 : p18 = .061, H0 : p20 = .150, H0 : p25 = .135, H0 :
p30 = .217, H0 : p40 = .153, H0 : p50 = .182 and H0 : p65 = .102 to see which age categories led to
this conclusion.

A Bonferroni comparison with a Family Error Rate ≤ .05 will be considered for this multiple
comparisons problem. The error rates for the seven individual tests are set to α = .05/7 = .0071,
which corresponds to 99.29% two-sided CIs for the individual jury pool proportions. The area
under the standard normal curve to the right of 2.70 is .0035, about one-half the error rate for the
individual CIs, so the critical value for the CIs, or for the tests, is zcrit ≈ 2.70. The next table gives
individual 99.29% CIs based on the large sample approximation. You can get the individual CIs in
Minitab using the 1 Proportion dialog box. For example, the CI for Age Group 18-19 is obtained
by specifying 23 successes in 1336 trials.

The CIs for the 30-39 and 65-99 year categories contain the census proportions. In the other five
age categories, there are significant differences between the jury pool proportions and the census
proportions. In general, young adults appear to be underrepresented in the jury pool whereas older
age groups are overrepresented.

Age group (yrs) Lower limit Upper limit Census Prop.
18-19 .008 .027 .061
20-24 .053 .091 .150
25-29 .078 .122 .135
30-39 .189 .250 .217
40-49 .192 .253 .153
50-64 .251 .318 .182
65-99 .064 .105 .102
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The residuals also highlight significant differences because the largest residuals correspond to
the categories that contribute most to the value of χ2

s. Some researchers use the residuals for the
multiple comparisons, treating the Zis as standard normal variables. Following this approach, you
would conclude that the jury pool proportions differ from the proportions in the general population
in every age category where |Zi| ≥ 2.70 (using a Bonferroni correction!) This gives the same
conclusion as before.

The two multiple comparison methods are similar, but not identical. The residuals

Zi =
Oi − Ei√

Ei
=

p̂i − p0
i√

p0
i
n

agree with the large sample statistic for testing H0 : pi = p0
i , except that the divisor in Zi omits

a 1 − p0
i term. The Zis are not standard normal random variables as assumed, and the value of

Zi underestimates the significance of the observed differences. Multiple comparisons using the Zis
will find, on average, fewer significant differences than the preferred method based on the large
sample tests. However, the differences between the two methods are usually minor when all of the
hypothesized proportions are small.

Comparing Two Proportions: Independent Samples

The New Mexico state legislature is interested in how the proportion of registered voters that
support Indian gaming differs between New Mexico and Colorado. Assuming neither population
proportion is known, the state’s statistician might recommend that the state conduct a survey
of registered voters sampled independently from the two states, followed by a comparison of the
sample proportions in favor of Indian gaming.

Statistical methods for comparing two proportions using independent samples can be formulated
as follows. Let p1 and p2 be the proportion of populations 1 and 2, respectively, with the attribute
of interest. Let p̂1 and p̂2 be the corresponding sample proportions, based on independent random
or representative samples of size n1 and n2 from the two populations.

Large Sample CI and Tests for p1 − p2

A large sample CI for p1 − p2 is (p̂1 − p̂2)± zcritSECI(p̂1 − p̂2), where zcrit is the standard normal
critical value for the desired confidence level, and

SECI(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)
n2

is the CI standard error.
A large sample p-value for a test of the null hypothesis H0 : p1 − p2 = 0 against the two-sided

alternative HA : p1 − p2 6= 0 is evaluated using tail areas of the standard normal distribution
(identical to 1 sample evaluation) in conjunction with the test statistic

zs =
p̂1 − p̂2

SEtest(p̂1 − p̂2)
,
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where

SEtest(p̂1 − p̂2) =

√
p̄(1− p̄)

n1
+

p̄(1− p̄)
n2

=

√
p̄(1− p̄)

(
1
n1

+
1
n2

)
is the test standard error for p̂1 − p̂2. The pooled proportion

p̄ =
n1p̂1 + n2p̂2

n1 + n2

is the proportion of successes in the two samples combined. The test standard error has the same
functional form as the CI standard error, with p̄ replacing the individual sample proportions.

The pooled proportion is the best guess at the common population proportion when H0 : p1 = p2

is true. The test standard error estimates the standard deviation of p̂1 − p̂2 assuming H0 is true.

Remark: As in the one-sample proportion problem, the test and CI SE’s are different. This can
(but usually does not) lead to some contradiction between the test and CI.

Example Two hundred and seventy nine French skiers were studied during two one-week periods
in 1961. One group of 140 skiers receiving a placebo each day, and the other 139 receiving 1
gram of ascorbic acid (Vitamin C) per day. The study was double blind - neither the subjects
nor the researchers knew who received what treatment. Let p1 be the probability that a member
of the ascorbic acid group contracts a cold during the study period, and p2 be the corresponding
probability for the placebo group. Linus Pauling and I are interested in testing whether p1 = p2.
The data are summarized below as a two-by-two table of counts (a contingency table)

Outcome Ascorbic Acid Placebo
# with cold 17 31

# with no cold 122 109
Totals 139 140

The sample sizes are n1 = 139 and n2 = 140. The sample proportion of skiers developing colds
in the placebo and treatment groups are p̂2 = 31/140 = .221 and p̂1 = 17/139 = .122, respectively.
The pooled proportion is the number of skiers that developed colds divided by the number of skiers
in the study: p̄ = 48/279 = .172.

The test standard error is:

SEtest(p̂1 − p̂2) =

√
.172 ∗ (1− .172)

(
1

139
+

1
140

)
= .0452.

The test statistic is
zs =

.122− .221
.0452

= −2.19.

The p-value for a two-sided test is twice the area under the standard normal curve to the right of
2.19 (or twice the area to the left of -2.19), which is 2 ∗ (.014) = .028 At the 5% level, we reject the
hypothesis that the probability of contracting a cold is the same whether you are given a placebo
or Vitamin C.

A CI for p1 − p2 provides a measure of the size of the treatment effect. For a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
.221 ∗ (1− .221)

140
+

.122 ∗ (1− .122)
139

= 1.96 ∗ (.04472) = .088.
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The 95% CI for p1 − p2 is (.122 − .221) ± .088, or (−.187,−.011). We are 95% confident that p2

exceeds p1 by at least .011 but not by more than .187.
On the surface, we would conclude that a daily dose of Vitamin C decreases a French skier’s

chance of developing a cold by between .011 and .187 (with 95% confidence). This conclusion was
somewhat controversial. Several reviews of the study felt that the experimenter’s evaluations of
cold symptoms were unreliable. Many other studies refute the benefit of Vitamin C as a treatment
for the common cold.

Example A case-control study was designed to examine risk factors for cervical dysplasia (Becker
et al. 1994). All the women in the study were patients at UNM clinics. The 175 cases were women,
aged 18-40, who had cervical dysplasia. The 308 controls were women aged 18-40 who did not have
cervical dysplasia. Each women was classified as positive or negative, depending on the presence
of HPV (human papilloma virus).

The data are summarized below.

HPV Outcome Cases Controls
Positive 164 130
Negative 11 178

Sample size 175 308

Let p1 be the probability that a case is HPV positive and let p2 be the probability that a control
is HPV positive. The sample sizes are n1 = 175 and n2 = 308. The sample proportions of positive
cases and controls are p̂1 = 164/175 = .937 and p̂2 = 130/308 = .422.

For a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
.937 ∗ (1− .937)

175
+

.422 ∗ (1− .422)
308

= 1.96 ∗ (.03336) = .0659.

A 95% CI for p1− p2 is (.937− .422)± .066, or .515± .066, or (.449, .581). I am 95% confident that
p1 exceeds p2 by at least .45 but not by more than .58.

Not surprisingly, a two-sided test at the 5% level would reject H0 : p1 = p2. In this problem
one might wish to do a one-sided test, instead of a two-sided test. Let us carry out this test, as a
refresher on how to conduct one-sided tests.

Appropriateness of Large Sample Test and CI

The standard two sample CI and test used above are appropriate when each sample is large. A rule
of thumb suggests a minimum of at least five successes (i.e. observations with the characteristic of
interest) and failures (i.e. observations without the characteristic of interest) in each sample before
using these methods. This condition is satisfied in our two examples.

Minitab Implementation

For the Vitamin C example, in order to get Minitab to do all the calculations as presented, it is
easiest to follow the menu path Stat > Basic Statistics > 2 Proportions and enter summary
data as follows (you need to check the box for pooled estimate of p for test).
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Test and CI for Two Proportions

Sample X N Sample p
1 17 139 0.122302
2 31 140 0.221429

Difference = p (1) - p (2)
Estimate for difference: -0.0991264
95% CI for difference: (-0.186859, -0.0113937)
Test for difference = 0 (vs not = 0): Z = -2.19 P-Value = 0.028

For the cervical dysplasia example, Minitab results are as follows:

Test and CI for Two Proportions

Sample X N Sample p
1 164 175 0.937143
2 130 308 0.422078

Difference = p (1) - p (2)
Estimate for difference: 0.515065
95% CI for difference: (0.449221, 0.580909)
Test for difference = 0 (vs not = 0): Z = 11.15 P-Value = 0.000

The above analyses are not the most common way to see data like this presented. The ability
to get a confidence interval is particularly nice, and I do recommend including such an analysis.
Usually, though, we present such data as a two-by-two contingency table. We need this structure
in the rest of this section, so let us do that for these two examples.

The basic structure of data entry (it must be in the worksheet) is similar to our earlier use of
stacked data. This is how SAS, Stata, and most other packages want it as well. For the Vitamin C
example, the data are entered as follows (there are other options in Minitab - I will discuss those
later):

Data Display

Row Cold Group Count
1 1Yes 1Vit C 17
2 1Yes 2Placebo 31
3 2No 1Vit C 122
4 2No 2Placebo 109
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The values for Cold could be entered as just Yes and No, but then Minitab alphabetizes in the
presentation. What I have done is one way to get Minitab to present the table in the order we want
it. Now we follow the menu path Stat > Tables > Cross Tabulation and Chi-Square and fill
in the following box appropriately:

The various Display options and Other Stats are reflected in the following output. I structured
this to present what I usually get out of SAS by default.

Tabulated statistics: Cold, Group

Using frequencies in Count

Rows: Cold Columns: Group

1Vit C 2Placebo All

1Yes 17 31 48
35.42 64.58 100.00
12.23 22.14 17.20
6.09 11.11 17.20
23.9 24.1 48.0

1.9990 1.9847 *

2No 122 109 231
52.81 47.19 100.00
87.77 77.86 82.80
43.73 39.07 82.80
115.1 115.9 231.0

0.4154 0.4124 *

All 139 140 279
49.82 50.18 100.00
100.00 100.00 100.00
49.82 50.18 100.00
139.0 140.0 279.0

* * *

Cell Contents: Count
% of Row
% of Column
% of Total
Expected count
Contribution to Chi-square
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Pearson Chi-Square = 4.811, DF = 1, P-Value = 0.028
Likelihood Ratio Chi-Square = 4.872, DF = 1, P-Value = 0.027

Fisher’s exact test: P-Value = 0.0384925

The Pearson χ2
s = 4.811 is just the square of Zs = −2.19, so for this case it’s really an identical

test (only for the two-sided hypothesis, though). The Likelihood Ratio Chi-Square is another
large-sample test. Fisher’s Exact test is another test that does not need large samples - I use
it in practice very frequently. Minitab only performs this test for two-by-two tables — for more
complicated tables, this is can be a very hard test to compute. SAS and Stata will at least try to
compute it for arbitrary tables, though they do not always succeed. Let us examine the output to
see what all these terms mean.

For the cervical dysplasia data, the results are:

Data Display

Row HPV Group Count
1 1Pos Case 164
2 1Pos Control 130
3 2Neg Case 11
4 2Neg Control 178

Tabulated statistics: HPV, Group

Using frequencies in Count

Rows: HPV Columns: Group

Case Control All

1Pos 164 130 294
55.78 44.22 100.00
93.71 42.21 60.87
33.95 26.92 60.87
106.5 187.5 294.0
31.01 17.62 *

2Neg 11 178 189
5.82 94.18 100.00
6.29 57.79 39.13
2.28 36.85 39.13
68.5 120.5 189.0
48.25 27.41 *

All 175 308 483
36.23 63.77 100.00
100.00 100.00 100.00
36.23 63.77 100.00
175.0 308.0 483.0

* * *

Cell Contents: Count
% of Row
% of Column
% of Total
Expected count
Contribution to Chi-square
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Pearson Chi-Square = 124.294, DF = 1, P-Value = 0.000
Likelihood Ratio Chi-Square = 144.938, DF = 1, P-Value = 0.000

Fisher’s exact test: P-Value = 0.0000000

Effect Measures in Two-by-Two Tables

Consider a study of a particular disease, where each individual is either exposed or not-exposed to
a risk factor. Let p1 be the proportion diseased among the individuals in the exposed population,
and p2 be the proportion diseased among the non-exposed population. This population information
can be summarized as a two-by-two table of population proportions:

Outcome Exposed population Non-Exposed population
Diseased p1 p2

Non-Diseased 1− p1 1− p2

A standard measure of the difference between the exposed and non-exposed populations is the
absolute difference: p1 − p2. We have discussed statistical methods for assessing this difference.

In many epidemiological and biostatistical settings, other measures of the difference between
populations are considered. For example, the relative risk

RR =
p1

p2

is commonly reported when the individual risks p1 and p2 are small. The odds ratio

OR =
p1/(1− p1)
p2/(1− p2)

is another standard measure. Here p1/(1− p1) is the odds of being diseased in the exposed group,
whereas p2/(1− p2) is the odds of being diseased in the non-exposed group.

We will discuss these measures more completely next semester. At this time I will note that
each of these measures can be easily estimated from data, using the sample proportions as estimates
of the unknown population proportions. For example, in the vitamin C study:

Outcome Ascorbic Acid Placebo
# with cold 17 31

# with no cold 122 109
Totals 139 140

the proportion with colds in the placebo group is p̂2 = 31/140 = .221. The proportion with colds
in the vitamin C group is p̂1 = 17/139 = .122.

The estimated absolute difference in risk is p̂1 − p̂2 = .122− .221 = −.099. The estimated risk
ratio and odds ratio are

R̂R =
.122
.221

= .55
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and
ÔR =

.122/(1− .122)

.221/(1− .221)
= .49,

respectively.

Analysis of Paired Samples: Dependent Proportions

SW Section 10.8
Paired and more general block analyses are appropriate with longitudinal data collected over

time and in medical studies where several treatments are given to the same patient over time. A key
feature of these designs that invalidates the two-sample method discussed earlier is that repeated
observations within a unit or individual are likely to be correlated, and not independent.

For example, in a random sample of n = 1600 voter-age Americans, 944 said that they approved
of the President’s performance. One month later, only 880 of the original 1600 sampled approved.
The following two-by-two table gives the numbers of individuals with each of the four possible
sequences of responses over time. Thus, 150 voter-age Americans approved of the President’s
performance when initially asked but then disapproved one month later. The row and column
totals are the numbers of approvals and disapprovals for the two surveys.

(Obs Counts) Second survey
First Survey Approve Disapprove Total

Approve 794 150 944
Disapprove 86 570 656

Total 880 720 1600

Let pAA, pAD, pDA, pDD be the population proportion of voter-age Americans that fall into
the four categories, where the subscripts preserve the time ordering and indicate Approval or
Disapproval. For example, pAD is the population proportion that approved of the President’s
performance initially and disapproved one month later. The population proportion that initially
approved is pA+ = pAA + pAD. The population proportion that approved at the time of the second
survey is p+A = pAA + pDA. The “+” sign used as a subscript means that the replaced subscript
has been summed over.

Similarly, let p̂AA, p̂AD, p̂DA, p̂DD be the sample proportion of voter-age Americans that
fall into the four categories, and let p̂A+ = p̂AA + p̂AD and p̂+A = p̂AA + p̂DA be the sample
proportion that approves the first month and the sample proportion that approves the second
month, respectively. The table below summarizes the observed proportions. For example, p̂AA =
794/1600 = .496 and p̂A+ = 944/1600 = .496 + .094 = .590. The sample proportion of voting-age
Americans that approve of the President’s performance decreased from one month to the next.

(Obs Proportions) Second survey
First Survey Approve Disapprove Total

Approve .496 .094 .590
Disapprove .054 .356 .410

Total .550 .450 1.000
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The difference in the population proportions from one month to the next can be assessed by
a large sample CI for pA+ − p+A, given by (p̂A+ − p̂+A) ± zcritSECI(p̂A+ − p̂+A), where the CI
standard error satisfies

SECI(p̂A+ − p̂+A) =

√
p̂A+(1− p̂A+) + p̂+A(1− p̂+A)− 2(p̂AAp̂DD − p̂ADp̂DA)

n

One-sided bounds are constructed in the usual way.
The -2 term in the standard error accounts for the dependence between the samples at the two

time points. If independent samples of size n had been selected for the two surveys, then this term
would be omitted from the standard error, giving the usual two-sample CI.

For a 95% CI in the Presidential survey,

zcritSECI(p̂A+ − p̂+A) = 1.96

√
.590 ∗ .410 + .550 ∗ .450− 2(.496 ∗ .356− .094 ∗ .054)

1600
= 1.96 ∗ (.0095) = .0186.

A 95% CI for pA+ − p+A is (.590 − .550) ± .019, or (.021, .059). You are 95% confident that the
population proportion of voter-age Americans that approved of the President’s performance the
first month was between .021 and .059 larger than the proportion that approved one month later.
This gives evidence of a decrease in the President’s approval rating.

A test of H0 : pA+ = p+A can be based on the CI for pA+ − p+A, or on a standard normal
approximation to the test statistic

zs =
p̂A+ − p̂+A

SEtest(p̂A+ − p̂+A)
,

where the test standard error is given by

SEtest(p̂A+ − p̂+A) =

√
p̂A+p̂+A − 2p̂AA

n
.

The test statistic is often written in the simplified form

zs =
nAD − nDA√
nAD + nDA

,

where the nijs are the observed cell counts. An equivalent form of this test, based on comparing the
square of zs to a chi-squared distribution with 1 degree of freedom, is the well-known McNemar’s
test for marginal homogeneity (or symmetry) in the two-by-two table.

For example, in the Presidential survey

zs =
150− 86√
150 + 86

= 4.17.

The p-value for a two-sided test is, as usual, the area under the standard normal curve outside
±4.17. The p-value is less than .001, suggesting that H0 is false.

Minitab does not have a built-in routine for paired analyses of categorical data. Small sample
CI and tests for pA+ − p+A are available; see SW Section 10.8.
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Testing for Homogeneity of Proportions

SW Section 10.5

Example The following two-way table of counts summarizes the location of death and age at
death from a study of 2989 cancer deaths (Public Health Reports, 1983):

(Obs Counts) Location of death
Age Home Acute Care Chronic care Row Total

15-54 94 418 23 535
55-64 116 524 34 674
65-74 156 581 109 846
75+ 138 558 238 934

Col Total 504 2081 404 2989

The researchers want to compare the age distributions across locations. A one-way ANOVA
would be ideal if the actual ages were given. Because the ages are grouped, the data should be
treated as categorical. Given the differences in numbers that died at the three types of facilities, a
comparison of proportions or percentages in the age groups is appropriate. A comparison of counts
is not.

The table below summarizes the proportion in the four age groups by location. For example,
in the acute care facility 418/2081 = .201 and 558/2081 = .268. The pooled proportions are the
Row Totals divided by the total sample size of 2989. The pooled summary gives the proportions
in the four age categories, ignoring location of death.

The age distributions for home and for the acute care facilities are similar, but are very different
from the age distribution at chronic care facilities.

To formally compare the observed proportions, one might view the data as representative sample
of ages at death from the three locations. Assuming independent samples from the three locations
(populations), a chi-squared statistic is used to test whether the population proportions of ages at
death are identical (homogeneous) across locations. The chi-squared test for homogeneity of
population proportions can be defined in terms of proportions, but is traditionally defined in terms
of counts.

(Proportions) Location of death
Age Home Acute Care Chronic care Pooled

15-54 .187 .201 .057 .179
55-64 .230 .252 .084 .226
65-74 .310 .279 .270 .283
75+ .273 .268 .589 .312
Total 1.000 1.000 1.000 1.000

In general, assume that the data are independent samples from c populations (strata, groups,
sub-populations), and that each individual is placed into one of r levels of a categorical variable.
The raw data will be summarized as a r × c contingency table of counts, where the columns
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correspond to the samples, and the rows are the levels of the categorical variable. In the age
distribution problem, r = 4 and c = 3. (SW uses k to identify the number of columns.)

To implement the test:

1. Compute the (estimated) expected count for each cell in the table as follows:

E =
Row Total ∗ Column Total

Total Sample Size
.

2. Compute the Pearson test statistic

χ2
s =

∑
all cells

(O − E)2

E
,

where O is the observed count.

3. For a size α test, reject the hypothesis of homogeneity if χ2
s ≥ χ2

crit, where χ2
crit is the upper

α critical value from the chi-squared distribution with df = (r − 1)(c− 1).

The p-value for the chi-squared test of homogeneity is equal to the area under the chi-squared curve
to the right of χ2

s; see p.117.
For a two-by-two table of counts, the chi-squared test of homogeneity of proportions

is identical to the two-sample proportion test we discussed earlier.
The (estimated) expected counts for the (15-54, Home) cell and for the (75+, Acute Care) cell

in the age distribution data are E = 535 ∗ 504/2989 = 90.21 and E = 934 ∗ 2081/2989 = 650.27,
respectively. The other expected counts were computed similarly, and are summarized below. The
row and column sums on the tables of observed and expected counts always agree.

(Exp Counts) Location of death
Age Home Acute Care Chronic care Row Total

15-54 90.21 372.48 72.31 535
55-64 113.65 469.25 91.10 674
65-74 142.65 589 114.35 846
75- 157.49 650.27 126.24 934

Col Total 504 2081 404 2989

Why is a comparison of the observed and expected counts relevant for testing homogeneity? To
answer this question, first note that the expected cell count can be expressed

E = Col Total ∗ Pooled proportion for category.

For example, E = 504∗ (.179) = 90.21 in the (15-54, Home) cell. A comparison of the observed and
expected counts is a comparison of the observed category proportions in a location with the pooled
proportions, taking the size of each sample into consideration. Thinking of the pooled proportion as
a weighted average of the sample proportions for a category, the Pearson χ2

s statistic is an aggregate
measure of variation in the observed proportions across samples. If the category proportions are
similar across samples then the category and pooled proportions are similar, resulting in a “small”
value of χ2

s. Large values of χ2
s occur when there is substantial variation in the observed proportions

across samples, in one or more categories. In this regard, the Pearson statistic is similar to the
F−statistic in a one-way ANOVA.
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Minitab Implementation

There are three standard ways to enter data for a chi-squared analysis. To illustrate, suppose we
have the following summary table from a survey of 7 students, each classified by SEX and STATUS
(undergrad, grad).

Status Male Female
undergrad 2 1

grad 1 3

The three ways to enter these data into the Minitab worksheet and conduct the chi-squared test
are:

1. Individual data: Two columns are used to identify the row and column levels for each
individual in the data set. A chi-squared test, with summary information (column, row and
cell percentages, marginal percentages, cell residuals), is obtained via: Stat > Tables >
Cross Tabulation and Chi-Square. You need to specify the two columns that contain the
classification variables (here SEX and STATUS).

Sex Status
Obs
1 m u
2 m u
3 f u
4 m g
5 f g
6 f g
7 f g

2. Frequencies: Two columns are used to identify the levels for the rows and columns of the
table. A third column gives the number of individuals in the sample for each combination
of the row and columns. Then follow the procedure for the individual data, but specify the
column that contains the frequencies in the dialog box (here FREQ).

Sex Status Freq
Obs
1 m u 2
2 f u 1
3 m g 1
4 f g 3

3. Contingency Table: The data are entered as a table of counts. The rows in the spreadsheet
need not be labelled. In the table below, the rows correspond to undergrad and grads, respec-
tively. A chi-squared test, with MINIMAL summary information is obtained by following:
STAT > TABLES > CHI-SQUARE TEST. You must specify the columns that contain the counts
(here MALE and FEMALE).

Obs Male Female

1 2 1
2 1 3
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Location of Death Analysis

The location of data were entered into Minitab as a contingency table. I included an AGE column
in the worksheet, but the chi-squared analysis is on the counts in the HOME, ACUTE CARE, and
CHRONIC CARE columns.

In addition to the Pearson statistic, the output gives the expected counts (compare to table in
notes) and the cell chi-squared values, which are the squared residuals, and can be interpreted as
the contribution of the individual cells to the χ2

s statistic (i.e (O −E)2/E). The cell contributions
provide insight into the categories that led to significant differences in locations. Recall our earlier
discussion about the differences across locations, and then cross-reference this with the cell chi-
squared values.

The output gives the Pearson statistic as 197.624 on 6 = (4-1)(3-1) df. The p-value is 0 to
three places. The data strongly suggest that there are differences in the age distributions among
locations.

Row AGE HOME ACUTE CARE CHRONIC CARE

1 15-54 94 418 23
2 55-64 116 524 34
3 65-74 156 581 109
4 75+ 138 558 238

Chi-Square Test: HOME, ACUTE CARE, CHRONIC CARE

Expected counts are printed below observed counts

HOME ACUTE CA CHRONIC Total
1 94 418 23 535

90.21 372.48 72.31

2 116 524 34 674
113.65 469.25 91.10

3 156 581 109 846
142.65 589.00 114.35

4 138 558 238 934
157.49 650.27 126.24

Total 504 2081 404 2989

Chi-Sq = 0.159 + 5.564 + 33.627 +
0.049 + 6.388 + 35.789 +
1.249 + 0.109 + 0.250 +
2.412 + 13.092 + 98.937 = 197.624

DF = 6, P-Value = 0.000

Testing for Homogeneity in Cross-Sectional and Stratified Studies

Two-way tables of counts are often collected using either stratified sampling or cross-sectional
sampling.

In a stratified design, distinct groups, strata, or sub-populations are identified. Independent
samples are selected from each group, and the sampled individuals are classified into categories.
The Indian gaming example is an illustration of a stratified design. Stratified designs provide
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estimates for the strata (population) proportion in each of the categories. A test for homogeneity
of proportions is used to compare the strata.

In a cross-sectional design, individuals are randomly selected from a population and classified
by the levels of two categorical variables. With cross-sectional samples you can test homogeneity
of proportions by comparing either the row proportions or by comparing the column proportions.

Example The following data (The Journal of Advertising, 1983, p. 34-42) are from a cross-sectional
study that involved soliciting opinions on anti-smoking advertisements. Each subject was asked
whether they smoked and their reaction (on a five-point ordinal scale) to the ad. The data are
summarized as a two-way table of counts, given below:

Str. Dislike Dislike Neutral Like Str. Like Row Tot
Smoker 8 14 35 21 19 97

Non-smoker 31 42 78 61 69 281
Col Total 39 56 113 82 88 378

The row proportions (i.e. fix a row and compute the proportions for the column categories) are

(Row Prop) Str. Dislike Dislike Neutral Like Str. Like Row Tot
Smoker .082 .144 .361 .216 .196 1.000

Non-smoker .110 .149 .278 .217 .245 1.000

For example, the entry for the (Smoker, Str. Dislike ) cell is: 8/97 = .082.

Similarly, the column proportions are

(Col Prop) Str. Dislike Dislike Neutral Like Str. Like
Smoker .205 .250 .310 .256 .216

Non-smoker .795 .750 .690 .744 .784
Total 1.000 1.000 1.000 1.000 1.000

Although it may be more natural to compare the smoker and non-smoker row proportions, the
column proportions can be compared across ad responses. There is no advantage to comparing
“rows” instead of “columns” in a formal test of homogeneity of proportions with cross-sectional
data. The Pearson chi-squared test treats the rows and columns interchangeably, so you get the
same result regardless of how you view the comparison. However, one of the two comparisons may
be more natural to interpret.

Note that checking for homogeneity of proportions is meaningful in stratified stud-
ies only when the comparison is across strata! Further, if the strata correspond to columns of
the table, then the column proportions or percentages are meaningful whereas the row proportions
are not.

Question: How do these ideas apply to the age distribution problem?
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Testing for Independence in a Two-Way Contingency Table

The row and column classifications for a population where each individual is cross-classified by
two categorical variables are said to be independent if each population cell proportion in the
two-way table is the product of the proportion in a given row and the proportion in a given column.
One can show that independence is equivalent to homogeneity of proportions. In particular, the
two-way table of population cell proportions satisfies independence if and only if the population
column proportions are homogeneous. If the population column proportions are homogeneous then
so are the population row proportions.

This suggests that a test for independence or no association between two variables based on a
cross-sectional study can be implemented using the chi-squared test for homogeneity of proportions.
This suggestion is correct. If independence is not plausible, I interpret the dependence as a deviation
from homogeneity, using the classification for which the interpretation is most natural.

Example
Minitab output for testing independence between smoking status and reaction is given below. I

entered the data as frequencies because I get more detailed summary information then when the
data are entered as a contingency table. For example, Minitab gives the observed and expected
cell counts, the cell residuals, and the percentage of all observations in the table, row, and column,
respectively, found in a given cell. The row and column percentages agree with the summaries
given earlier. Note that Minitab orders the rows and columns alphanumerically, which does not
preserve the natural column ordering. How could this be fixed?

The chi-squared test of independence is not significant (p-value = .559). The observed associa-
tion between smoking status and the ad reaction is not significant. This suggests, for example, that
the smoker’s reactions to the ad were not statistically significantly different from the non-smoker’s
reactions, which is consistent with the smokers and non-smokers attitudes being fairly similar.

Row Smoke Stat Reaction Freq

1 Smoker Str Dislike 8
2 Non Str Dislike 31
3 Smoker Dislike 14
4 Non Dislike 42
5 Smoker Neutral 35
6 Non Neutral 78
7 Smoker Like 21
8 Non Like 61
9 Smoker Str Like 19

10 Non Str Like 69

Rows: Smoke St Columns: Reaction

Dislike Like Neutral Str Disl Str Like All

Non 42 61 78 31 69 281
14.95 21.71 27.76 11.03 24.56 100.00
75.00 74.39 69.03 79.49 78.41 74.34
11.11 16.14 20.63 8.20 18.25 74.34

41.63 60.96 84.00 28.99 65.42 281.00
0.06 0.01 -0.65 0.37 0.44 --

134



8 CATEGORICAL DATA ANALYSIS

Smoker 14 21 35 8 19 97
14.43 21.65 36.08 8.25 19.59 100.00
25.00 25.61 30.97 20.51 21.59 25.66
3.70 5.56 9.26 2.12 5.03 25.66

14.37 21.04 29.00 10.01 22.58 97.00
-0.10 -0.01 1.11 -0.63 -0.75 --

All 56 82 113 39 88 378
14.81 21.69 29.89 10.32 23.28 100.00
100.00 100.00 100.00 100.00 100.00 100.00
14.81 21.69 29.89 10.32 23.28 100.00

56.00 82.00 113.00 39.00 88.00 378.00
-- -- -- -- -- --

Chi-Square = 2.991, DF = 4, P-Value = 0.559

Cell Contents --
Count
% of Row
% of Col
% of Tbl
Exp Freq
St Resid

Further Analyses in Two-Way Tables

The χ2
s statistic is a summary measure of independence or homogeneity. A careful look at the

data usually reveals the nature of the association or heterogeneity when the test is significant.
There are numerous meaningful ways to explore two-way tables to identify sources of association
or heterogeneity. For example, in the comparison of age distributions across locations, you might
consider the 4 × 2 tables comparing all possible pairs of locations. Another possibility would be
to compare the proportion in the 75+ age category across locations. For the second comparison
you need a 2 × 3 table of counts, where the two rows correspond to the individuals less than 75
years old and those 75+ years old, respectively. (i.e. collapse the first three rows of the original
4×2 table). The possibilities are almost limitless in large tables. Of course, theoretically generated
comparisons are preferred to data dredging.

Example: Testing for Homogeneity

A randomized double-blind experiment compared the effectiveness of several drugs in reducing
postoperative nausea. All patients were anesthetized with nitrous oxide and ether. The following
table shows the incidence of nausea during the first four postoperative hours of four drugs and a
placebo. Compare the drugs to each other and to the placebo.
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Drug # with Nausea # without Nausea Sample Size
Placebo 96 70 166

Chlorpromazine 52 100 152
Dimenhydrinate 52 33 85

Pentobarbitol (100mg) 35 32 67
Pentobarbitol (150mg) 37 48 85

Let pPL be the probability of developing nausea given a placebo, and define pCH , pDI , pPE100,
and pPE150 analogously. A simple initial analysis would be to test homogeneity of proportions:
H0 : pPL = pCH = pDI = pPE100 = pPE150 against HA : not H0.

The data were entered as frequencies. The Minitab output shows that the proportion of patients
exhibiting nausea (see the column percents - the cell and row percentages are not interpretable,
so they are omitted) is noticeably different across drugs. In particular, Chlorpromazine is the most
effective treatment with p̂CH = .34 and Dimenhydrinate is the least effective with p̂DI = .61.

The p-value for the chi-squared test is .000 to three places, which leads to rejecting H0 at the
.05 or .01 levels. The data strongly suggest there are differences in the effectiveness of the various
treatments for postoperative nausea.

Data Display

Row drug reaction freq

1 placebo Nausea 96
2 placebo noNausea 70
3 chlorpr Nausea 52
4 chlorpr noNausea 100
5 dimenhy Nausea 52
6 dimenhy noNausea 33
7 pent100 Nausea 35
8 pent100 noNausea 32
9 pent150 Nausea 37

10 pent150 noNausea 48

Tabulated Statistics: reaction, drug

Rows: reaction Columns: drug

chlorpr dimenhy pent100 pent150 placebo All

Nausea 52 52 35 37 96 272
34.21 61.18 52.24 43.53 57.83 49.01

noNausea 100 33 32 48 70 283
65.79 38.82 47.76 56.47 42.17 50.99

All 152 85 67 85 166 555
100.00 100.00 100.00 100.00 100.00 100.00

Chi-Square = 24.827, DF = 4, P-Value = 0.000
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Cell Contents --
Count
% of Col

A sensible follow-up analysis is to identify which treatments were responsible for the significant
differences. For example, the placebo and chlorpromazine can be compared using a test of pPL =
pCH or with a CI for pPL − pCH .

In certain experiments, specific comparisons are of interest, for example a comparison of the
drugs with the placebo. Alternatively, all possible comparisons might be deemed relevant. The
second case is suggested here based on the problem description. I will use a Bonferroni adjustment
to account for the multiple comparisons. The Bonferroni adjustment accounts for data dredging,
but at a cost of less sensitive comparisons.

There are 10 possible comparisons here. The Bonferroni analysis with an overall Family Error
Rate of 0.05 (or less) tests the 10 individual hypotheses at the .05/10=.005 level. Alternatively, I
can generate 99.5% CIs (which have .005 error rate) for the differences in two probabilities.

The following table gives 99.5% CIs for the differences between the ten pairs of probabilities.
The only two CIs that do not cover zero correspond to pPL − pCH and pCH − pDI . I am 99.5%
confident that pCH is between .084 and .389 less than pPL, and you are 99.5% confident that pCH

is between .086 and .453 less than pDI . The other differences are not significant.

Interval Lower Limit Upper Limit
pPL − pCH .084 .389
pPL − pDI -.217 .150

pPL − pPE100 -.146 .258
pPL − pPE150 -.042 .328
pCH − pDI -.453 -.086

pCH − pPE100 -.383 .022
pCH − pPE150 -.279 .093
pDI − pPE100 -.137 .316
pDI − pPE150 -.035 .388

pPE100 − pPE150 -.141 .315

Using ANOVA-type groupings, and arranging the treatments from most to least effective (low
proportions to high), we get:

CH (.34) PE150 (.44) PE100 (.52) PL (.58) DI (.61)

-----------------------------------

----------------------------------------------

REMARK: How would you do these multiple comparisons in Minitab?
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Adequacy of the Chi-Square Approximation

The chi-squared tests for homogeneity and independence are large sample tests. As with the
goodness-of-fit test, a simple rule of thumb is that the approximation is adequate when the ex-
pected cell counts are 5 or more. This rule is conservative, and some statisticians argue that the
approximation is valid for expected counts as small as one.

In practice, the chi-squared approximation to χ2
s tends to be a bit conservative, meaning that

statistically significant results would likely retain significance has a more accurate approximation
been used. There are some subtle points about this issue that I will note in class.

Minitab prints out a warning message whenever a noticeable percentage of cells have expected
counts less than 5. Ideally, one would use Fisher’s exact test for tables with small counts, but as
noted earlier, this test is not available in Minitab except for 2 X 2 tables.
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