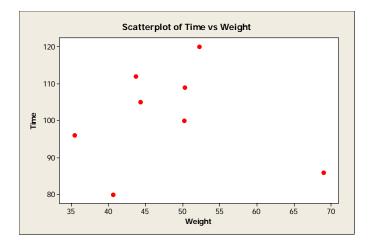
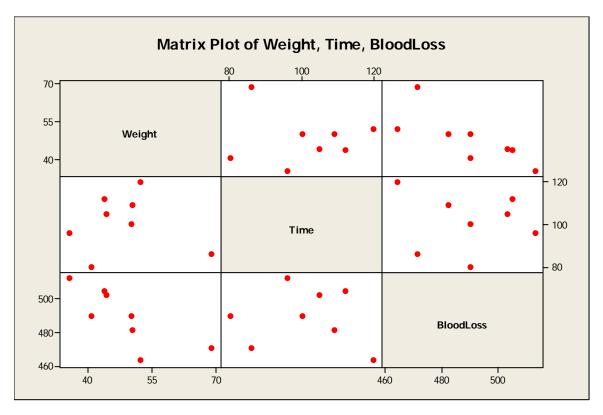

Blood Loss Analysis


Data Display

Row 1 2 3 4 5	Weight 44.3 40.6 69.0 43.7 50.3	Time 105 80 86 112 109	BloodLoss 503 490 471 505 482 490
5	50.3	109	482
6	50.2	100	490
7	35.4	96	513
8	52.2	120	464


Scatter Plots: Follow the menu path Graph > Scatterplot > Simple and enter the Y (vertical) and X (horizontal) variables. You can enter several at once.

An efficient way to generate a lot of these plots at once is Graph > Matrix Plot > Simple and then enter all the variables to plot. It generates all possible X and Y pairs. The matrix plot has less resolution but compactly presents all these graphs.

Correlations: To get the Pearson (product-moment) correlatons r, follow the menu path Stat > Basic Statistics > Correlation, then enter the group of variables for which you want pairwise correlations.

Correlations: Weight, Time, BloodLoss

Time	Weight -0.066 0.876	Time
BloodLoss	-0.772 0.025	-0.107 0.800
Cell Contents:	Pearson P-Value	correlation

Spearman Correlations: Minitab's recommended way to compute these is to compute ranks for each variable and then to compute Pearson correlations on the ranks (there is another round-about method in Tables, but Minitab's recommendation is best). They do not provide a direct method using the above path. The menu path Data > Rank opens a box where you enter the variable to rank and the destination. I named the variables containing ranks as follows:

Data Display

Row	Weight	Time	BloodLoss	RWeight	Rtime	RLoss
1	44.3	105	503	4	5	6.0
2	40.6	80	490	2	1	4.5
3	69.0	86	471	8	2	2.0
4	43.7	112	505	3	7	7.0
5	50.3	109	482	6	6	3.0
б	50.2	100	490	5	4	4.5
7	35.4	96	513	1	3	8.0
8	52.2	120	464	7	8	1.0

Correlations: RWeight, Rtime, RLoss

Rtime	RWeight 0.286 0.493	Rtime
RLoss	-0.874 0.005	-0.156 0.713

Cell Contents: Pearson correlation P-Value

Minitab does warn you in their help files, and strictly speaking they are correct, that the p-values printed for the Spearman correlations calculated in this way are not correct. This is also what JMP-IN does. I did go to the mega-package R, and calculated exact p-values and they were very close to these. Use these descriptively, but if you want to publish a value get the exact p-value from something like R.

There are tools available in Minitab that will allow you to calculate other measures of correlation, but nothing is direct.

Least Squares Regression: In order to predict Blood Loss from Weight, follow the menu path Stat > Regression > Regression. In the following, I asked for just about everything so we could discuss what it all means.

Regression Analysis: BloodLoss versus Weight

The regression equation is BloodLoss = 552 - 1.30 Weight Predictor Coef SE Coef T P Constant 552.44 21.44 25.77 0.000 Weight -1.3003 0.4364 -2.98 0.025

S = 11.6623 R-Sq = 59.7% R-Sq(adj) = 52.9%

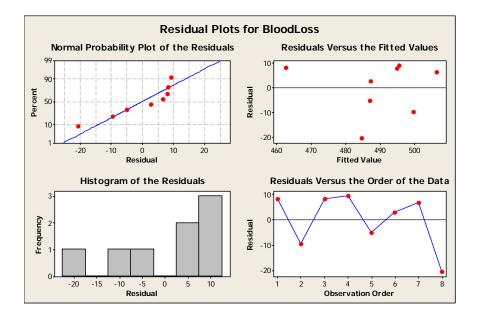
Analysis of Variance

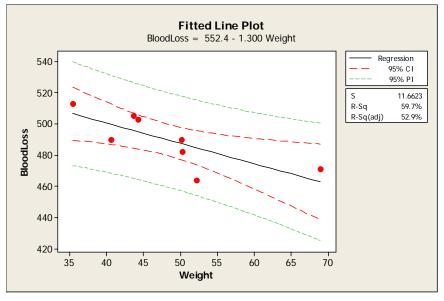
Source	DF	SS	MS	F	P
Regression	1	1207.5	1207.5	8.88	0.025
Residual Error	6	816.0	136.0		
Total	7	2023.5			

0bs	Weight	BloodLoss	Fit	SE Fit	Residual	St Resid
1	44.3	503.00	494.84	4.46	8.16	0.76
2	40.6	490.00	499.65	5.30	-9.65	-0.93
3	69.0	471.00	462.72	9.97	8.28	1.37
4	43.7	505.00	495.62	4.57	9.38	0.87
5	50.3	482.00	487.04	4.22	-5.04	-0.46
б	50.2	490.00	487.17	4.21	2.83	0.26
7	35.4	513.00	506.41	6.95	6.59	0.70
8	52.2	464.00	484.56	4.48	-20.56	-1.91

Predicted Values for New Observations

New						
Obs	Fit	SE Fit	95%	CI	95%	PI
1	494.84	4.46	(483.92,	505.76)	(464.28,	525.39)
2	499.65	5.30	(486.69,	512.61)	(468.31,	530.99)
3	462.72	9.97	(438.34,	487.10)	(425.18,	500.25)
4	495.62	4.57	(484.44,	506.80)	(464.97,	526.27)
5	487.04	4.22	(476.70,	497.37)	(456.69,	517.39)
б	487.17	4.21	(476.86,	497.48)	(456.82,	517.51)
7	506.41	6.95	(489.41,	523.41)	(473.19,	539.63)
8	484.56	4.48	(473.61,	495.52)	(454.00,	515.13)


Values of Predictors for New Observations


New Obs Weight 1 44.3 2 40.6 3 69.0 4 43.7 5 50.3

6	50.2
7	35.4
8	52.2

Data Display

Row	Weight	BloodLoss	COOK1
1	44.3	503	0.04923
2	40.6	490	0.11196
3	69.0	471	2.52679
4	43.7	505	0.06933
5	50.3	482	0.01619
6	50.2	490	0.00510
7	35.4	513	0.13612
8	52.2	464	0.31487

