
1 INTRODUCTION

1 Introduction

Reading: SW Chapter 1

What is statistics/biostatistics/biometry?

Examples of medical and research problems:

1. A couple is deciding whether or not to have a child, because of the existence of certain diseases
within the family. With present understanding of genetics, they are told that the probability
that a child of theirs having this defect is 0.01. What might they want to do? How would
the type of disease affect this? What if the probability is 0.50? What other factors besides
probabilities and the type of disease would be pertinent?

2. Research question: Is HPV (human papilloma virus) a risk factor for cervical dysplasia? How
does one approach answering this question? One possibility: Becker et al. (1994) conducted
a case-control study. The women in the study were patients at UNM clinics. The 175 cases
were women, aged 18-40, who had cervical dysplasia. The 308 controls were women aged
18-40 who did not have cervical dysplasia. Each women was classified as positive or negative,
depending on the presence of HPV. The data collected from the study are summarized below.

HPV Outcome Cases Controls
Positive 164 130
Negative 11 178

Sample size 175 308

The results can be summarized in a number of ways. The proportion positive among cases
is 164/175 = 0.94. the proportion positive among controls is 130/308 = 0.42. This gives an
odds ratio of 164 ∗ 178/(11 ∗ 130) = 20.4. Do these results indicate that HPV is a risk factor
for cervical dysplasia?

3. Research question: Is a new drug more effective in treating an illness than a previously used
drug? How to approach this question? One possibility: conduct a clinical trial (Phase II) with
one treatment group where all patients receive the new drug. The old drug has an assumed
cure rate obtained from repeated use of this treatment.

Outcomes and conclusions: Assume old drug cures 70%. If 9 people out of 10 with the
illness were cured with new treatment, then what would you conclude? If 6 were cured? If
90 out of a sample of 100?

Alternative possibility: conduct a clinical trial (Phase III) with two groups (new treat-
ment, old treatment), and randomize patients to the two groups.

Other possible outcomes of interest: reduction in fever, pain, itching of skin rash in
24-hour period (quantify reduction), reduction in tumor size.
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1 INTRODUCTION

SO WHAT DOES STATISTICS LEND TO THESE PROBLEMS?

1. What is statistics?

• Statistics is concerned with the STUDY, DESCRIPTION, and MANAGEMENT of vari-
ability.

• There are many ways to define statistics, but common components in the definitions are:
variation; uncertainty; inference.

• Biostatistics is the subset of statistics that is concerned with applications in biologi-
cal/medical areas.

2. What should you get out of an introductory course in biostatistics?

• Understand basic statistical concepts

• Be able to read papers in your field and understand the statistical results, and, hopefully,
the statistical methods that were used.

• Be able to determine appropriate statistical methods to use and implement them – in
simple analyses.

• Be able to determine when you can’t do something and seek out help from a statistician.

ASPECTS OF STATISTICS THAT WE WILL BE CONCERNED WITH

• Descriptive statistics and exploratory data analysis: ways to describe data using graphical
displays and numerical summaries

• Basic ideas of probability as a means of quantifying uncertainty

• Statistical inference: wish to draw some conclusions from data, based on hypothesis testing
and estimation methods.

Types of data/situations we will examine:

• data on one continuous variable (one, two and multiple samples)

• discrete data (single sample and two-way tables, including logistic regression)

• data on two or more continuous variables (linear regression and correlation, and survival
analysis)
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2 DESCRIPTIVE STATISTICS

2 Descriptive Statistics

Reading: SW Chapter 2, Sections 1-6

A natural first step towards answering a research question is for the experimenter to design a
study or experiment to collect data from the population (i.e. collection of individuals) of interest.
In most studies, data are collected on only a subset or sample from the population. Typically, a
number of different characteristics or variables are measured on each selected individual.

Once the data are collected, we should summarize the information graphically and numer-
ically. The actual methods used to summarize data depend on the types of variables that were
recorded.

Quantitative versus Qualitative

Simply, a quantitative variable is a variable expressed by a quantity, while a qualitative variable
is expressed by a quality (i.e. categorical).

Examples:

• number of pregnancies (quantitative)

• eye color (qualitative or categorical)

• age (quantitative)

• ethnic group (qualitative or categorical)

Discrete versus Continuous:

Variables that are expressed numerically can be further subdivided into discrete and contin-
uous variables. A discrete or counting variable is a variable that takes on a finite or countably
infinite number of values, while a continuous variable is a variable that assumes any of the values
in at least one interval of the real number line.

Examples:

• number of pregnancies (discrete)

• age (continuous)

• city population size (discrete)

• proportion of population who are HIV+ (continuous)

Nominal versus Ordinal:

Categorical variables are ordinal if the order of the categories is meaningful and are nominal
if the order is unimportant.

Examples:
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2 DESCRIPTIVE STATISTICS

• stage of cancer: in situ, local, regional, distant (ordinal)

• ethnic group (nominal)

Notes:

1. Continuous variables often have a well-defined measurement scale. For example, time in
seconds, temperature in degrees Celsius. However, the scale is often not unique. With
continuous variables you should always define the unit of measurement.

2. Discrete variables can be constructed from continuous variables. For example, age is a con-
tinuous variable, but the variable X defined by X = 1 if age is less than 40, otherwise X = 2
is a discrete variable that has been created by categorizing age. Note X is ordinal.

3. A qualitative variable can be coded to have numerical values. For example, if the variable
is eye color, we might define X = 1 if person has blue eyes, X = 0 otherwise.

4. A discrete variable that has only two possible values is called binary. The variable X above
is binary.

5. We are limited in our ability to measure continuous variables. Furthermore, many discrete
variables can be analyzed with methods for continuous variables, provided the discrete vari-
ables are “close-enough” to being continuous. For example, if scores on a psychological test
can take on integer values from 1 to 50, then the score variable is discrete. However, if a sam-
ple distribution of the scores contains many of the possible values, then it may be possible to
use methods for continuous data for analyzing the discrete data.

REMARK: We commonly use capital letters, say X and Y , to identify variables. This is useful
mathematical shorthand that is not intended to confuse you.

Summarizing and Displaying Numerical Data

Suppose we have a sample of n individuals, and we measure each individual’s response on one
quantitative characteristic, say height, weight, or systolic blood pressure. For notational simplicity,
the collected measurements are denoted by Y1, Y2, ..., Yn, where n is the sample size. The order
in which the measurements are assigned to the place-holders Y1, Y2, ..., Yn is irrelevant.

Two standard numerical summary measures are the sample mean Y and the sample stan-
dard deviation s. A numerical summary measure is called a statistic, so both the sample mean
and standard deviation are statistics.

The sample mean is a measure of central location, or a measure of a typical value for the
data set. The standard deviation is a measure of spread in the data set. These summary statistics
might be familiar to you. Let us consider a simple example to show you how to compute them.
Suppose we have a sample of n = 8 children with weights (in pounds): 5, 9, 12, 30, 14, 18, 32, 40.
Then
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2 DESCRIPTIVE STATISTICS

Y =
∑

i Yi

n
=

Y1 + Y2 + · · ·+ Yn

n

=
5 + 9 + 12 + 30 + 14 + 18 + 32 + 40

8
=

160
8

= 20.

The sample standard deviation is the square root of the sample variance given by the formula:

s2 =
∑

i(Yi − Y )2

n− 1
=

(Y1 − Y )2 + (Y2 − Y )2 + · · ·+ (Yk − Y )2

n− 1
.

For hand calculations, it is common to create a table from which s is computed, as below:

Data Deviation Squared Deviation
-----------------------------------------

5 5-20 = -15 (-15)^2 = 225
9 9-20 = -11 (-11)^2 = 121
12 12-20 = - 8 (- 8)^2 = 64
14 14-20 = - 6 (- 6)^2 = 36
18 18-20 = - 2 (- 2)^2 = 4
30 30-20 = 10 10^2 = 100
32 32-20 = 12 12^2 = 144
40 40-20 = 20 20^2 = 400
-------------------------------------------

The sample variance is obtained by adding the entries in the last column and dividing by n−1:

s2 =
225 + 121 + 64 + 36 + 4 + 100 + 144 + 400

8− 1
=

1094
7

= 156.3.

Thus, s =
√

s2 = 12.5. Summary statistics have well-defined units of measurement, for example,
Y = 20lb, s2 = 156.3lb2, and s = 12.5lb. The standard deviation is often used instead of s2 as a
measure of spread because s is measured in the same units as the data.

REMARK: If the divisor for s2 was n instead of n − 1, then the variance would be the average
squared deviation observations are from the center of the data as measured by the mean.

The following graphs should help you to see some physical meaning of the sample mean and
variance. If the data values were placed on a “massless” ruler, the balance point would be the mean
(20). The variance is basically the “average” (remember n-1 instead of n) of the total areas of all
the squares obtained when squares are formed by joining each value to the mean. In both cases
think about the implication of unusual values (outliers). What happens to the balance point if
the 40 were a 400 instead of a 40? What happens to the squares?
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2 DESCRIPTIVE STATISTICS

The sample median M is an alternative measure of central location. The measure of spread
reported along with M is the interquartile range, IQR = Q3−Q1, where Q1 and Q3 are the first
and third quartiles of the data set, respectively. To calculate the median and interquartile range,
order the data from lowest to highest values, all repeated values included. The ordered weights are

5 9 12 14 18 30 32 40.

The median M is the value located at the half-way point of the ordered string. There is an even
number of observations, so M is defined to be half-way between the two middle values, 14 and 18.
That is, M = .5(14 + 18) = 16lb. To get the quartiles, break the data into the lower half: 5 9 12
14, and the upper half: 18 30 32 and 40. Then

Q1 = first quartile = median of lower half of data = 9+12
2 = 10.5lb,

and

Q3 = third quartile = median of upper half of data = .5(30+32) = 31lb.

The interquartile range is

IQR = Q3 −Q1 = 31− 10.5 = 20.5lb.

The quartiles, with M being the second quartile, break the data set roughly into fourths. The
first quartile is also called the 25th percentile, whereas the median and third quartiles are the 50th

and 75th percentiles, respectively.. The IQR is the range for the middle half of the data.

Suppose we omit the largest observation from the weight data:
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5 9 12 14 18 30 32.

How do M and IQR change? With an odd number of observations, there is a unique middle
observation in the ordered string which is M . Here M = 14lb. It is unclear which half the median
should fall into, so M is placed into both the lower and upper halves of the data. The lower half
is 5 9 12 14, and the upper half is 14 18 30 32. With this convention, Q1 = .5(9 + 12) = 10.5 and
Q3 = .5(18 + 30) = 24, giving IQR = 24− 10.5 = 13.5(lb).

If you look at the data set with all eight observations, there actually are many numbers that
split the data set in half, so the median is not uniquely defined, although “everybody” agrees to
use the average of the two middle values. With quartiles there is the same ambiguity but no such
universal agreement on what to do about it, however, so Minitab will give slightly different values
for Q1 and Q3 than we just calculated, and other packages will report even different values. This
has no practical implication (all the values are “correct”) but it can appear confusing.

Minitab Implementation

Minitab will automatically compute the summaries we have discussed, and others. Erik will show
you how to do this in LAB. Following are numerical and graphical summaries for the data in
Example 1.4 pages 3-4 of SW. Monoamine oxidase (MAO) activity expressed as nmol benzylalde-
hyde product per 108 platelets per hour was measured on schizophrenic patients of three different
diagnoses. The data are on the CD in the back of SW.

The first display is simple descriptive statistics, the graphs are an enhancement of the simple
descriptive statistics. Eric will show you how to obtain both, and how to import into a program
like WORD. Let us discuss the output.

Descriptive Statistics: MAO-acti

Variable Diagnosis N N* Mean SE Mean StDev Minimum Q1 Median
MAO-acti I 18 0 9.806 0.853 3.618 4.100 7.375 9.200

II 16 2 6.281 0.720 2.880 1.500 3.850 6.150
III 8 10 5.96 1.13 3.19 1.10 3.30 6.10

Variable Diagnosis Q3 Maximum
MAO-acti I 12.100 18.800

II 8.325 11.400
III 8.75 10.80

7



2 DESCRIPTIVE STATISTICS

8
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Mean versus Median

Although the mean is the most commonly used measure of central location, it (and the standard
deviation) is very sensitive to the presence of extreme observations, sometimes called outliers. The
median and interquartile range are more robust (less sensitive) to the presence of outliers.

For example, the following data are the incomes in 1000 dollar units for a sample of 12 retired
couples: 7, 1110, 7, 5, 8, 12, 0, 5, 2, 2, 46, 7. The sample has two extreme outliers at 46 and 1110.
For these data Y = 100.9 and s = 318, whereas M = 7 and IQR = 8.3. If we hold out the two
outliers, then Y = 5.5 and s = 3.8, whereas M = 6 and IQR = 5.25.

The mean and median often have similar values in data sets without outliers, so in such a case
it does not matter much which one is used as the typical value. This issue is important, however,
in data sets with extreme outliers. In such instances, the median is often more reasonable. For
example, is Y = 100.9 a reasonable measure for a typical income in this sample, given that the
second largest income is only 46?

Further Points That Will Emphasized in Class:

1. I will mention another summary measure, the coefficient of variation: CV = 100% ∗ s/Y .

2. I will briefly discuss how the mean and standard deviation change if the units are changed.
For example, what happens in the weight problem if I change units from pounds to ounces?

3. The size of the standard deviation depends on the units of measure. We often use s to
compare spreads from different samples measured on the same attribute.
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3 GRAPHICAL DISPLAYS OF DATA

3 Graphical Displays of Data

Reading: SW Chapter 2, Sections 1-6

Summarizing and Displaying Qualitative Data

The data below are from a study of thyroid cancer, using NMTR data. The investigators looked
at all thyroid cancer cases diagnosed among NM residents between 1/1/69 and 12/31/91. A small
percentage of cases were omitted (those that weren’t first primary; those without more than 60
days of follow-up without another diagnosis of cancer), leaving 1338 cases of thyroid cancer.

A frequency distribution for a categorical variable gives the counts or frequency with which
the values occur in the various categories. The frequency distribution for histologic type is given
below. The relative frequency distribution gives the proportion (i.e number of cases divided by
sample size) or percentage (proportion times 100%) of cases in each histologic category.

Histology Frequency Relative Frequency Percentage
Papillary 687 687/1338 = 0.51 51%
Follicular 199 199/1338 = 0.15 15%

Mixed 323 323/1338 = 0.24 24%
Medullary 43 43/1338 = 0.03 3%

Other 86 86/1338 = 0.06 6%
Total 1338 0.99(1.00) 99% (100%)

The frequency distribution is usually summarized graphically via a bar graph, sometimes
called a bar chart. The next page give frequency and relative frequency distributions generated
by Minitab. Erik will show you how to do this in LAB.

The information conveyed is the same in both graphs. The graph of percentages has real advantages
when comparing two groups with much different sample sizes, however.

Example: SW pages 12, 14 - colors of Poinsettia.
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3 GRAPHICAL DISPLAYS OF DATA

Graphical Summaries of Numerical Data

There are four (actually, there a many more) graphical summaries of primary interest: the his-
togram, the dotplot, the stem and leaf display, and the boxplot. Each of these is easy to
generate in Minitab. Our goal with a graphical summary is to see patterns in the data. We want
to see what values are typical, how spread out are the values, where do the values tend to cluster,
and what (if any) big deviations from the overall patterns are present. Sometimes one summary is
better than another for a particular data set.

Histogram

The histogram breaks the range of data into several equal width intervals, and counts the number
(or proportion, or percentage) of observations in each interval. The histogram can be viewed as
a grouped frequency distribution for a continuous variable. Here is the “help” entry from
Minitab describing histograms:

Why is it reasonable to group measurements whereas with categorical data we computed the
number of observations with each distinct data value?

Most texts, including SW, discuss the choice of intervals. We will use Minitab for our cal-
culations, which usually does quite a good job of choosing the intervals for us. We already saw
histograms of MAO levels in the previous section.

The real strength of histograms is showing where data values tend to cluster. Their real weakness
is that the choice of intervals (bins) can be arbitrary, and the apparent clustering can depend
considerably on the choice of bins. Histograms work pretty well with larger data sets, where the
choice of bins usually has little effect; for smaller data sets, dotplots or stem and leaf displays
usually are a much better choice.
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3 GRAPHICAL DISPLAYS OF DATA

Dotplot

Where histograms try to condense the data into relatively few bins, dotplots present a similar
picture but emphasize the distinct values. Dotplots are particularly good at comparing different
data sets, especially smaller data sets. One big advantage is that you usually see all the data, so
no information is lost in the dotplot. The biggest disadvantage is that it gets pretty “noisy” for
large data sets.

Here is the “help” entry from Minitab describing dotplots:

Earlier we looked at histograms of MAO activity levels for schizophrenic patients of three
different diagnoses. The dotplots for the three data sets make comparisons quite easy. Isn’t it a lot
easier to see the nature of differences here than using the three histograms in the previous section?

Stem and Leaf Display

A stem and leaf display defines intervals for a grouped frequency distribution using the base 10
number system. Intervals are generated by selecting an appropriate number of lead digits for the
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data values to be the stem. The remaining digits comprise the leaf. Following is Minitab’s “help”
entry for the Stem and Leaf:

Look carefully at the display – how would the example above change if the numbers were 30,
40, 80, 80 and 100 instead of 3, 4, 8, 8, and 10. Try it and confirm the display looks the same with
one important difference. Following is the stem and leaf for the MAO activity levels of Diagnosis I
patients.

Stem-and-Leaf Display: MAO-acti

Stem-and-leaf of MAO-acti group = 1 N = 18
Leaf Unit = 1.0

2 0 45
7 0 67777
(4) 0 8899
7 1 001
4 1 2
3 1 44
1 1
1 1 8

Let’s examine this display, and make sure we can pick out what the actual numbers are. Look
at the original values (from SW). Is Minitab rounding numbers or just truncating excess digits?
SW would have you put larger numbers on top. That would seem more conventional, except stem
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and leaf displays almost always are done Minitab’s way with the larger numbers on the bottom.
There is a good reason for this – if you turn the graph 90 degrees counterclockwise, you end up
with a regular histogram (what are the bins?)

The stem and leaf was invaluable for “paper and pencil” data analysis. It is very quick to do
by hand, and it has the advantage of keeping the original data right on the display. It also sorts
the data (puts them in order), which allows quick calculation of medians and quartiles. I find the
dotplot a better tool, often, when summarizing small to moderate-sized data sets on the computer.
The stem and leaf is harder to use for comparing several groups, but still is more common in
practice than dotplots.

Erik will show you how to generate stem and leaf displays in Minitab, and a few of the options.

Example
Two stem and leaf displays for a data set on age at death for SIDS cases in Washington state

are given below. The first is for the data recorded in days, the second for the data recorded in
weeks. Note that the maximum value is 307 days, or 43.9 weeks.

Stem-and-Leaf Display: SIDS days

Stem-and-leaf of SIDS days N = 78
Leaf Unit = 10

9 0 222222333
18 0 444444555
31 0 6666666667777
(16) 0 8888888889999999
31 1 00000111111
20 1 22333
15 1 4455
11 1 6777
7 1 88
5 2 0
4 2 23
2 2
2 2 7
1 2
1 3 0

Stem-and-Leaf Display: SIDS weeks

Stem-and-leaf of SIDS weeks N = 78
Leaf Unit = 1.0

8 0 33334444
27 0 5666666778889999999
(22) 1 0111111112222223333444
29 1 55556666677889
15 2 0112344
8 2 5669
4 3 23
2 3 9
1 4 3

The structure of the two stem and leaf displays is slightly different. In particular, the days
display corresponds to a histogram with intervals of width 20 (confirm this!). The weeks display
corresponds to a histogram with intervals of width 5 (confirm!). Minitab does give you some control
over interval widths, but usually makes the right choice by default.
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Boxplots

Boxplots have become probably the most useful of all the graphical displays of numerical data.
I can go weeks without computing histograms, dotplots, or stem and leaf displays, but I usually
compute several boxplots per week. They succinctly summarize central location (average), spread
and shape of the data, and highlight outliers while permitting simple comparison of many data sets
at once. Following is the Minitab “help” description of boxplots.

Lots of elementary texts make the boxplots simpler by connecting the whiskers to the extremes
of the data; this keeps them from highlighting outliers and, in my opinion, erases substantial utility
of the boxplot. Minitab will allow you to compute those neutered boxplots, but you should not.
The box part of the boxplot is Q1, M, and Q3, a range containing half the data. The whiskers
connect the box to the extremes of “normal” looking data, and anything more extreme is plotted
separately (and importantly) as an outlier. Relative distance of the quartiles from the median,
and relative length of the whiskers tells us a lot about the shape of the data (we will explore that
below). Several packages, including Minitab, allow you to clutter the boxplot with a lot of other
features, but I usually prefer not to.

Boxplots of the SIDS and MAO data sets are below. Let’s pick out important features.
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Interpretation of Graphical Displays for Numerical Data

In many studies, the data are viewed as a subset or sample from a larger collection of observations
or individuals under study, called the population. A primary goal of many statistical analyses
is to generalize the information in the sample to infer something about the population. For this
generalization to be possible, the sample must reflect the basic patterns of the population. There
are several ways to collect data to ensure that the sample reflects the basic properties of the
population, but the simplest approach, by far, is to take a random or “representative” sample
from the population. A random sample has the property that every possible sample of a given
size has the same chance of being the sample eventually selected. Random sampling eliminates
any systematic biases associated with the selected observations, so the information in the sample
should accurately reflect features of the population. The process of sampling introduces random
variation or random errors associated with summaries. Statistical tools are used to calibrate the
size of the errors.

Whether we are looking at a histogram (or stem and leaf, or dotplot) from a sample, or are
conceptualizing the histogram generated by the population data, we can imagine approximating
the “envelope” around the display with a smooth curve. The smooth curve that approximates the
population histogram is called the population frequency curve. Statistical methods for inference
about a population usually make assumptions about the shape of the population frequency curve. A
common assumption is that the population has a normal frequency curve. In practice, the observed
data are used to assess the reasonableness of this assumption. In particular, a sample display should
resemble a population display, provided the collected data are a random or representative sample
from the population. Several common shapes for frequency distributions are given below, along
with the statistical terms used to describe them.

The first display is unimodal (one peak), symmetric and bell-shaped. This is the prototypi-
cal normal curve. The boxplot (laid on its side for this display) shows strong evidence of symmetry:
the median is about halfway between the first and third quartiles, and the tail lengths are roughly
equal. The boxplot is calibrated in such a way that 7 of every 1000 observations are outliers (more
than 1.5(Q3−Q1) from the quartiles) in samples from a population with a normal frequency curve.
Only 2 out of every 1 million observations are extreme outliers (more than 3(Q3 − Q1) from the
quartiles). We do not have any outliers here out of 250 observations, but we certainly could have
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3 GRAPHICAL DISPLAYS OF DATA

some without indicating nonnormality. If a sample of 30 observations contains 4 outliers, two of
which are extreme, would it be reasonable to assume the population from which the data were
collected has a normal frequency curve? Probably not.

Stem-and-Leaf Display: C1

Stem-and-leaf of C1 N = 250
Leaf Unit = 1.0

1 1 8
5 2 1378
9 3 3379
17 4 11223567
25 5 13455789
38 6 2222444458899
65 7 112222233455555667777888889
98 8 000011112233445555666666678888889
(32) 9 11112223344455555555667888899999
120 10 000123334444444455566667788889
90 11 00111112223334445556668899
64 12 0001111112223444455555689
39 13 001112344466779
24 14 011366677778
12 15 001133
6 16 04669
1 17 0

The boxplot is better at highlighting outliers than are other displays. The histogram and stem
and leaf displays below appear to have the same basic shape as a normal curve (unimodal, sym-
metric). However, the boxplot shows that we have a dozen outliers in a sample of 250 observations.
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We would only expect about two outliers in 250 observations when sampling from a population
with a normal frequency curve. The frequency curve is best described as unimodal, symmetric, and
heavy-tailed.

Stem-and-Leaf Display: C2

Stem-and-leaf of C2 N = 250
Leaf Unit = 1.0

1 6 5
11 7 2578899999
45 8 0001122233333334456777777888889999
124 9 00000011122222233333334444445555555556666666666667777777788888889+
(84) 10 00000000000000000011111111111222222333333333444444444445555556666+
42 11 00000011122222333345556689
16 12 000113567
7 13 12345
2 14
2 15 3
1 16 1

Not all symmetric distributions are mound-shaped, as the display below suggests. The box-
plot shows symmetry, but the tails of the distribution are shorter (lighter) than in the normal
distribution. Note that the distance between quartiles is roughly constant here.
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Stem-and-Leaf Display: C3

Stem-and-leaf of C3 N = 250
Leaf Unit = 1.0

29 5 00111122334555666677777899999
56 6 000001111223334566666777889
82 7 00011123334445555566678889
108 8 11122222344556667778888889
(18) 9 001113334466788889
124 10 000001223455566667788899999
97 11 000001112233345666688899
73 12 0011333444444555566678899
48 13 00000111233344456777888999
22 14 0001244455566666777999

The mean and median are identical in a population with a (exact) symmetric frequency curve.
The histogram and stem and leaf displays for a sample selected from a symmetric population will
tend to be fairly symmetric. Further, the sample means and medians will likely be close.

The distribution below is unimodal, and asymmetric or skewed. The distribution is said to be
skewed to the right, or upper end, because the right tail is much longer than the left tail. The
boxplot also shows the skewness - the region between the minimum observation and the median
contains half the data in less than 1/5 the range of values. In addition, the upper tail contains
several outliers.
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Stem-and-Leaf Display: C4

Stem-and-leaf of C4 N = 250
Leaf Unit = 1.0

105 10 00000000000000000000000111111111122222222233333333333334444444555+
(57) 11 000111112222222333333344444444455666667777777788888899999
88 12 0000000112233444455566666777788
57 13 01123334455556666778889
34 14 00112234489
23 15 00111235556
12 16 001256
6 17 19
4 18 1
3 19 44
1 20 0

The distribution below is unimodal and skewed to the left. The two examples show that
extremely skewed distributions often contain outliers in the longer tail of the distribution.
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Stem-and-Leaf Display: C5

Stem-and-leaf of C5 N = 250
Leaf Unit = 0.10

3 0 055
4 1 8
6 2 08
12 3 347899
23 4 34446788899
34 5 01556778899
57 6 01112233334444556667889
88 7 1122223333344455556677889999999
(57) 8 000001111112222222233333445555555556666666777777788888999
105 9 00000000111111111122222223333333444444444445555555666666666666677+
0 10

Not all distributions are unimodal. The distribution below has two modes or peaks, and is said
to be bimodal. Distributions with three or more peaks are called multi-modal.
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Stem-and-Leaf Display: C6

Stem-and-leaf of C6 N = 250
Leaf Unit = 10

4 0 2233
12 0 44455555
32 0 66666777777777777777
64 0 88888888888888888999999999999999
95 1 0000000000000011111111111111111
115 1 22222222222233333333
(15) 1 444444445555555
120 1 6666677777
110 1 88899999999
99 2 0000000000001111111111111111
71 2 222222222222222223333333333333333
38 2 4444444445555555555555

The boxplot and histogram or stem and leaf display (or dotplot) are used together to describe
the distribution. The boxplot does not provide information about modality - it only tells you about
skewness and the presence of outliers.

As noted earlier, many statistical methods assume the population frequency curve is normal.
Small deviations from normality usually do not dramatically influence the operating characteristics
of these methods. We worry most when the deviations from normality are severe, such as extreme
skewness or heavy tails containing multiple outliers.
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Interpretations for Examples

The MAO samples are fairly symmetric, unimodal (?), and have no outliers. The distributions
do not deviate substantially from normality. The various measures of central location (Y , M) are
fairly close, which is common with reasonably symmetric distributions containing no outliers.

The SIDS sample is unimodal, and skewed to the right due to the presence of four outliers in
the upper tail. Although not given, we expect the mean to be noticeably higher than the median
(Why?). A normality assumption here is unrealistic.

Example: Length of Stay in a Psychiatric Unit

Data on all 58 persons committed voluntarily to the acute psychiatric unit of a health care canter
in Wisconsin during the first six months of a year are stored in the worksheet HCC that installs
with Minitab. Two of the variables are Length (of stay, in number of days), and Reason (for
discharge, 1=normal, 2=other). It is of interest to see if the length of stay differs for the two types
of discharge. The main parts of the boxplots comparing the groups are rather compressed (and not
very useful) because outliers are using up all the scale.

The solution in a case like this is to zoom in using the Data Options in the boxplot display. In
this case let us exclude rows where Length > 30. Now we have a little more basis for comparison.
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Does it look like there is a really large difference between the groups? What would you say
about the shape of the distributions? Does it look like these are normally distributed values?

Examine the descriptive statistics. What is a reasonable summary here and what probably
is pretty distorted? What is your summary of the data based upon the boxplots and numerical
summaries?

Descriptive Statistics: Length

Variable Reason N N* Mean SE Mean StDev Minimum Q1 Median Q3
Length 1 42 0 11.55 2.25 14.60 0.00 1.75 7.50 13.50

2 16 0 6.44 1.78 7.11 0.00 1.25 4.50 8.25

Variable Reason Maximum
Length 1 75.00

2 25.00
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4 Basics of Probability

Most of this material is covered quite nicely in SW, so I plan to stick with the text very closely.

Populations and Samples

• SW Section 2.8. covers populations.

• SW Section 3.2 covers simple random sampling (SRS). We will use Minitab to illustrate
random sampling for Example 3.1 p.74

• Bias in sampling is illustrated in Examples 3.2, and 3.3. The other examples are worth
studying also.

• Sampling human populations often involves stratification and/or clustering of individuals into
groups. We’ll look at this, but for now just note that it is more complicated.

Probability

We will focus on the relative frequency interpretation of probability on p. 80, and the examples.

Probability Rules (Section 3.5) is really a huge topic, requiring more time than the value it
adds to your understanding. While it is on the syllabus, we are going to skip it. The material on
probability trees is more accessible and gets you most of what you need in probability calculation.

Probability Trees

SW Section 3.4. Trees provide a device for organizing probability calculations. Let us examine in
detail examples 15 and 17, and do problem 3.9. We want to get the terms sensitivity and specificity
out of this section, and understand how little information a test may have even with very good
values of both.

Density Curves

SW Section 3.6. These are basically histograms of populations standardized to have and area of 1
under them, so that area can be related to sampling probability. We will do some simulations in
Minitab to see how histograms of huge sets of numbers can look like smooth curves. We will cover
Example 3.30.

Random Variables

SW Section 3.7. All we really want to cover is the definition. This is a mathematical model for a
population. Populations have means (µ) and standard deviations (σ), and the idea is identical for
random variables. We will skip that part of this section.

Binomial Distribution

SW Section 3.8. This is our model for binary outcomes. We really want to understand well the
Independent-Trials Model on p. 103. We will use Minitab to do the calculation for Example 3.45,
and we want to understand how the model breaks down for Example 3.50.
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The Normal Distribution

SW Sections 4.1-4.3. We will just get a good start on this and continue next time. We need to see
how to use a table like Table 3 p. 675-6, although we will see how to get the answers more easily
out of Minitab. A great deal of what we do in statistics involves normal distribution calculations,
and while those usually are done within software we need to understand what is being done behind
the scenes.
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5 Probability, Sampling Distributions, Central Limit Theorem

As with last week, most of this material is covered quite nicely in SW, so I plan to stick with the
text very closely. We will do a quite a bit of computer work to accompany this material, both
during lecture and the lab.

Random Variables

SW Section 3.7.
This is our model for sampling from a population. If we sample (from either a categorical or

quantitative) population, we write Y = the value obtained. If we sample n values from a population,
the values obtained are Y1, Y2, . . . , Yn. The population we sampled from has a mean µ and standard
deviation σ (we’ll force even categorical variables into such a structure) – those are the mean and
standard deviation of the random variable as well. Don’t worry about the more mathematical
treatment in SW.

Binomial Distribution

SW Section 3.8.
Eric covered the Independent-Trials Model with you in lab. The binomial distribution lays

out probabilities for all the possible numbers of successes in n independent trials with probability
p of Success each trial. This is a new population with a mean µ = np and standard deviation
σ =

√
np(1− p). The model is important, but don’t worry about all the formulae in SW. Minitab

does a great job of calculating probabilities when needed.

Normal Distribution

SW Sections 4.1-3.
Eric also covered this in lab. We want to revisit Figure 4.7, the standard normal Z, and the

Standardization Formula Z = Y−µ
σ on p. 124. The figures on p. 125 are a valuable working guide.

We will work a couple of examples, including Minitab calculations.
Normal distributions pop up in many more situations than you would expect. We need to be

able to use them.

Assessing Normality

SW Section 4.4.
Eric will cover this in the lab. The normal probability plot is a widely used tool. SW do not

talk about box plots here, but those also serve as valuable tools. We will be making the assumption
many times that we sampled from a normal population. The assumption really does matter, so we
need methods to assess it.

Sampling Distribution of Y

SW Section 5.3.
If we randomly sample (SRS) n values Y1, Y2, . . . , Yn from a quantitative population and calcu-

late Y , then Y depends upon the random sample we drew — if we drew another random sample
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we would get a different value of Y . This means Y is a random variable, i.e. it is a single random
number sampled from some population.

From what population is Y drawn? It most certainly is not the same as the population
Y1, Y2, . . . , Yn come from (the possible values may not even be the same). It is a new popula-
tion called the sampling distribution of Y . I’ll spare you any derivations and just cite some
results.

Mean and Standard Deviation of Y
If the population Y1, Y2, . . . , Yn are sampled from has mean µ and standard deviation σ, the

sampling distribution of Y has mean µY = µ and standard deviation σY = σ/
√

n. On average Y
values come out the same place (µ) as the Yi values, but they tend to be closer to µ than are the
individual Yi, since the standard deviation is smaller.

Shape of Sampling Distribution of Y
This is the part with a lot of mathematics behind it. There are two cases when we can treat Y

as if it was sampled from a Normal Distribution (and we know how to use normal distributions!):

1. If the population Y1, Y2, . . . , Yn were sampled from is normal, no matter how small n is,

2. if n is large, almost no matter what the shape of the population from which Y1, Y2, . . . , Yn

were sampled.

We cannot say what the shape is for small n unless we originally sampled from a normal
distribution. This is why we worry so much about assessing normality with boxplots and normal
probability plots. Part 2 is the Central Limit Theorem.

Let us go over Examples 5.9 and 5.10. We will do a few simulations in Minitab to demonstrate
the preceding results.

Sampling Distribution of p̂

SW Sections 5.2, 5.5
This is how we really use the Independent-Trials Model, and the way we think of binary response

variables. We now randomly sample n individuals from a population where every value is either a
S or F (just generic labels). The proportion of S’s in the population is p, the proportion of S’s in
the sample is p̂. Again, p̂ is a random variable since it depends upon the random sample, so it has
a sampling distribution. What population is p̂ sampled from?

The amazing result is that if n is large, we can assume p̂ was drawn from a Normal population

with mean µp̂ = p and standard deviation σp̂ =
√

p(1−p)
n . For this to hold we need np ≥ 5 and

n(1− p) ≥ 5.
We will use Minitab to demonstrate this, and do a few calculations.
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6 Estimation in the One-Sample Situation

SW Chapter 6

Standard Errors and the t−Distribution

We need to add one more small complication to the sampling distribution of Y . What we saw last
time, and in SW Chapter 5, is that if Y1, Y2, ..., Yn is a random sample from a normal population
and that population has mean µ and standard deviation σ, then Y looks like it is a single number
randomly selected from a normal distribution also with mean µY = µ but with standard deviation

σY = σ√
n
. We get from this that Y−µ

σ
Y

= Y−µ
σ/
√

n
= Z is a standard normal random variable, and we

can use the table on the inside front cover of SW to compute probabilities involving Y .
Unfortunately, in the context in which we need to use this result, we would need to know σ in

order to apply the result. We are sampling from a population in order to find out something about
it, so almost certainly we do not know what σ is. What works well is to estimate the population
standard deviation σ with sample standard deviation S calculated from the random sample. Our
best guesses of the population mean and standard deviation µ and σ are the corresponding sample
values Y and S. While µ and σ are constants (we do not know the actual values, but they are
constants), Y and S depend upon the actual sample randomly selected from the population. If
we repeated the experiment and drew a second random sample of n observations, we would get
different values for Y and S, which is to say Y and S are random variables.

If we are going to estimate σ with S, then of course we would estimate σY = σ√
n

with S√
n
.

That is exactly what we do, and we give this quantity the name Standard Error of Y , SEY .

Instead of standardizing Y with the expression Y−µ
σ

Y
we use the new expression Y−µ

SE
Y

. Using SEY in
the denominator introduces extra variability, though, so this no longer looks like a random number
that came from a Z distribution. Provided our assumptions are correct (random sampling from a
normally distributed population), then Y−µ

SE
Y

looks like a single random number randomly selected
from a Student’s t−distribution with n−1 degrees of freedom (df). The amount of extra variability
introduced depends upon the sample size n; if n is very small it is a lot, but by the time n is 30
or so, there is very little difference from a Z, and in fact df =∞ makes the t− and Z distributions
the same. SW on p. 187 show how the distribution compares to the normal – it doesn’t look like
a big difference, but the probability statements we can make are different enough to matter.

Table 4 p. 677 in SW is a standard table of the t−distribution. It is organized differently from
the Normal Table, since it gives areas under the curve across the top and lets you look up the
“critical” values that generate those areas, while the Z table gives you critical values across the
side and top and lets you look up areas. We will go through some examples of reading this table
during the lecture.

Inference for a Population Mean

Suppose that you have identified a population of interest where individuals are measured on a
single quantitative characteristic, say, weight, height or IQ. You select a random or representative
sample from the population with the goal of estimating the (unknown) population mean value,
identified by µ.

29



6 ESTIMATION IN THE ONE-SAMPLE SITUATION

This is a standard problem in statistical inference, and the first inferential problem that we will
tackle. For notational convenience, identify the measurements on the sample as Y1, Y2, ..., Yn,
where n is the sample size. Given the data, our best guess, or estimate, of µ is the sample mean:

Ȳ =
∑

i
Yi

n = Y1+Y2+···+Yn
n .

Population
Huge set of values
Can see very little

Sample

Mean µ
Standard Deviation σ

µ and σ unknown

Y1, Y2, …, Yn

Inference

There are two main methods that are used for inferences on µ: confidence intervals (CI) and
hypothesis tests. The standard CI and test procedures are based on the sample mean and the
sample standard deviation, denoted by s. We will consider CIs in this lecture, and hypothesis tests
in the next lecture.

Let’s apply the results of the preceding section, and then lay out the mechanics of the procedure.
The main idea behind a CI is this: Y should be a pretty good guess as to what µ is, but while µ is
a constant (we don’t know the value, though), Y is a random variable (every possible sample gives
a different value), so most assuredly Y 6= µ. Still, Y should not be too far from µ, but how far
away from µ do we think Y could be? As a specific example, suppose we randomly sample n = 9
values from a normal population and get Y = 22 and S = 6. What could µ be?

To answer such a question, apply the t−distribution. Y−µ
SE

Y
looks like a single random number

sampled from a t−distribution with 8 df, so it should have come out somewhere in the middle
of that distribution. The middle 95% of that distribution is between -2.306 and 2.306 (from the
table). So, we had a 95% chance that Y−µ

SE
Y

would fall in that range. Substituting the actual values

of Y and S we obtained, we are 95% confident that 22−µ

6/
√

9
= 22−µ

2 is between -2.306 and 2.306, or
equivalently we are 95% confident that 22−µ is between -4.612 and 4.612. This says that µ should
be within 4.612 of 22, or in the range 22− 4.612 to 22 + 4.612, i.e. between 17.388 and 26.612. We
still do not know what µ is, but to have gotten data like this µ must be somewhere between 17.388
and 26.612.

The interval 17.388 ≤ µ ≤ 26.612 is referred to as a 95% confidence interval for µ. It is improper
to say there is a 95% chance that µ is in that range: If it is in that range, say 25, there is a 100%
chance it is in that range, while if it is not in that range, say 30, there is a 0% chance it is in that
range. The 95% refers to how often using this technique works (like a lifetime batting average) -
this interval either worked in capturing µ or it did not work, and we cannot know which is true.

30



6 ESTIMATION IN THE ONE-SAMPLE SITUATION

Mechanics of a CI for µ

A CI for µ is a range of plausible values for the unknown population mean µ, based on the observed
data. To compute a CI for µ:

1. Specify the confidence coefficient, which is a number between 0 and 100%, in the form
100(1− α)%. Solve for α.

2. Compute the t−critical value: tcrit = t.5α such that the area under the t− curve (df = n− 1)
to the right of tcrit is .5α.

3. The desired CI has lower and upper endpoints given by L = Ȳ − tcritSEY and U = Ȳ +
tcritSEY , respectively, where SEY = s/

√
n is the standard error of the sample mean. The CI

is often written in the form Ȳ ± tcritSEY .

In practice, the confidence coefficient is large, say 95% or 99%, which correspond to α = .05
and .01, respectively. The value of α expressed as a percent is known as the error rate of the CI.

The CI is determined once the confidence coefficient is specified and the data are collected. Prior
to collecting the data, the interval is unknown and is viewed as random because it will depend on
the actual sample selected. Different samples give different CIs. The “confidence” in, say, the
95% CI (which has a 5% error rate) can be interpreted as follows. If you repeatedly sample the
population and construct 95% CIs for µ, then 95% of the intervals will contain µ, whereas 5% will
not. The interval you construct from your data will either cover µ, or it will not.

The length of the CI
U − L = 2tcritSEY

depends on the accuracy of our estimate Y of µ, as measured by SEY = s/
√

n the standard error
of Y . Less precise estimates of µ lead to wider intervals for a given level of confidence.

Assumptions for Procedures

I described the classical CI. The procedure is based on the assumptions that the data are a random
sample from the population of interest, and that the population frequency curve is normal. The
population frequency curve can be viewed as a “smoothed histogram” created from the population
data.

The normality assumption can be checked using a stem-and-leaf display, a boxplot, or a normal
scores plot of the sample data (probably the more the better).

Example

Let us go through a hand-calculation of a CI, using Minitab to generate summary data. I will then
show you how the CI is generated automatically in Minitab. The ages (in years) at first transplant
for a sample of 11 heart transplant patients are as follows: 54 42 51 54 49 56 33 58 54 64 49.

Data Display

AgeTran
54 42 51 54 49 56 33 58 54 64 49

Stem-and-Leaf Display: AgeTran
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Stem-and-leaf of AgeTran N = 11
Leaf Unit = 1.0

1 3 3
1 3
2 4 2
4 4 99
(4) 5 1444
3 5 68
1 6 4

Descriptive Statistics: AgeTran

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
AgeTran 11 0 51.27 2.49 8.26 33.00 49.00 54.00 56.00 64.00

The summaries for the data are: n = 11, Y = 51.27, and s = 8.26 so that SEY = 8.26/
√

11 =
2.4904. The degrees of freedom are df = 11− 1 = 10.

A necessary first step in every problem is to define the population parameter in
question. Here, let

µ = mean age at time of first transplant for population of patients.

Let us calculate a 95% CI for µ. The degrees of freedom are df = 11 − 1 = 10. For a 95% CI
α = .05, so we need to find tcrit = t.025 = 2.228.

Now tcritSEY = 2.228 ∗ 2.4904 = 5.55. The lower limit on the CI is L = 51.27− 5.55 = 45.72.
The upper endpoint is U = 51.27 + 5.55 = 56.82.

I insist that the results of every CI be summarized in words. For example, I am 95%
confident that the population mean age at first transplant is between 45.7 and 56.8 years (rounding
off to 1 decimal place).

Minitab does all this very easily. Follow the menu path Stat > Basic Statistics > 1-Sample
t (be careful that you don’t select the 1-Sample Z — it will treat S as if it is actually σ and give
you incorrect bounds). Under Options... select Confidence Level of 95 (the default) and Alterna-
tive: not equal (we will understand that next week). Under Graphs check Boxplot. Do not check
Summarized data or Perform hypothesis test. You get the following results:

One-Sample T: AgeTran

Variable N Mean StDev SE Mean 95% CI
AgeTran 11 51.2727 8.2594 2.4903 (45.7240, 56.8215)

We might be a little concerned about the outlier and the possible skewness indicated in the boxplot
below, since that could be evidence we did not sample from a normal distribution. It will be
worth trying one of the nonparametric procedures we will learn about later, since the assumption
of normality is not made there.
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The Effect of α on a Two-Sided CI

A two-sided 100(1−α)% CI for µ is given by Y ± tcrits/
√

n. The CI is centered at Y and has length
2tcrits/

√
n. The confidence coefficient 100(1 − α)% is increased by decreasing α, which increases

tcrit. That is, increasing the confidence coefficient makes the CI wider. This is sensible: to increase
your confidence that the interval captures µ you must pinpoint µ with less precision by making the
CI wider. For example, a 95% CI is wider than a 90% CI.

SW Example 6.9 page 192: Let us compute a 90% and a 95% CI by hand.

Note: For large n the Central Limit Theorem gives us the ability to treat Y−µ
σ

Y
as a Z random

variable even without sampling from a normal distribution. Some texts would suggest using the
1-Sample Z procedure in this case (although that still begs the issue of not knowing σ). In practice
what we do about large n is to worry a little less about lack of normality in the population we
sampled from (outliers and extreme skewness are still problems, just slightly different ones), but
continue to use the t-procedures. Remember for large n we get large df, and for large df there is
little difference between Z and t.

Inference for a Population Proportion

Assume that you are interested in estimating the proportion p of individuals in a population with
a certain characteristic or attribute based on a random or representative sample of size n from the
population. The sample proportion p̂ =(# with attribute in the sample)/n is the best guess for
p based on the data.

This is the simplest categorical data problem. Each response falls into one of two exclusive
and exhaustive categories, called success and failure. Individuals with the attribute of interest are
in the success category. The rest fall into the failure category. Knowledge of the population pro-
portion p of successes characterizes the distribution across both categories because the population
proportion of failures is 1− p.

As an aside, note that the probability that a randomly selected individual has the attribute of
interest is the population proportion p with the attribute, so the terms population proportion and
probability can be used interchangeably with random sampling.
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The diagram of this is very similar to the earlier one. Note that a random sample of size n now
becomes just a set of S’s and F’s.

Population
Huge set of S’s and F’s

Can see very little

Sample

Proportion of S is p
p is unknown

p̂ = 
#S in Sample

n

Inference

A CI for p

The derivation of the CI follows the same basic ideas as before, except we do not have the idea of
df since we are considering n as large (np ≥ 5 and n(1− p) ≥ 5). p̂ is a random variable (it almost
surely is not p), and it looks like a single number randomly selected from a normal distribution

with mean µp̂ = p and standard deviation σp̂ =
√

p(1−p)
n , so p̂−p

σp̂
looks like a Z. We have the same

problem as before – to use this as we wish, we need to compute the denominator, but we need to
know p to compute it. We estimate it instead, and call the estimated standard deviation of p̂ the

standard error of p̂, SEp̂ =
√

p̂(1−p̂)
n . Everything proceeds as before.

A two-sided CI for p is a range of plausible values for the unknown population proportion p,
based on the observed data. To compute a two-sided CI for p:

1. Specify the confidence level as the percent 100(1− α)% and solve for the error rate α of the
CI.

2. Compute zcrit = z.5α (i.e. area under the standard normal curve to the right of zcrit is .5α.)

3. The 100(1− α)% CI for p has endpoints L = p̂− zcritSE and U = p̂ + zcritSE, respectively,
where the “CI standard error” is

SE =

√
p̂(1− p̂)

n
.

The CI is often written as p̂± zcritSE.

The CI is determined once the confidence level is specified and the data are collected. Prior
to collecting data, the CI is unknown and can be viewed as random because it will depend on the
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actual sample selected. Different samples give different CIs. The “confidence” in, say, the 95%
CI (which has a .05 or 5% error rate) can be interpreted as follows. If you repeatedly sample the
population and construct 95% CIs for p, then 95% of the intervals will contain p, whereas 5% (the
error rate) will not. The CI you get from your data either covers p, or it does not.

The length of the CI
U − L = 2zcritSE

depends on the accuracy of the estimate p̂, as measured by the standard error SE. For a given
p̂, this standard error decreases as the sample size n increases, yielding a narrower CI. For a fixed
sample size, this standard error is maximized at p̂ = .5, and decreases as p̂ moves towards either
0 or 1. In essence, sample proportions near 0 or 1 give narrower CIs for p. However, the normal
approximation used in the CI construction is less reliable for extreme values of p̂.

Example:
The 1983 Tylenol poisoning episode highlighted the desirability of using tamper-resistant pack-

aging. The article “Tamper Resistant Packaging: Is it Really?” (Packaging Engineering, June
1983) reported the results of a survey on consumer attitudes towards tamper-resistant packaging.
A sample of 270 consumers was asked the question: “Would you be willing to pay extra for tam-
per resistant packaging?” The number of yes respondents was 189. Construct a 95% CI for the
proportion p of all consumers who were willing in 1983 to pay extra for such packaging.

Here n = 270 and p̂ = 189/270 = .700. The critical value for a 95% CI for p is z.025 = 1.96.
The CI standard error is given by

SE =
√

.7 ∗ .3
270

= .028,

so zcritSE = 1.96 ∗ .028 = .055. The 95% CI for p is .700 ± .055. You are 95% confident that the
proportion of consumers willing to pay extra for better packaging is between .645 and .755. (How
much extra?).

Appropriateness of the CI

The standard CI is based on a large sample standard normal approximation to

z =
p̂− p

SE
.

A simple rule of thumb requires np ≥ 5 and n(1 − p) ≥ 5 for the method to be suitable. The
population proportion p is unknown so you should use p̂ in these formulae to check the suitability
of the CI. Given that np̂ and n(1− p̂) are the observed numbers of successes and failures, you should
have at least 5 of each to apply the large sample CI.

In the packaging example, np̂ = 270∗(.700) = 189 (the number who support the new packaging)
and n(1−p̂) = 270∗(.300) = 81 (the number who oppose) both exceed 5. The normal approximation
is appropriate here.
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More Accurate Confidence Intervals

Large sample CIs for p should be interpreted with caution in small sized samples because the true
error rate usually exceeds the assumed (nominal) value. For example, an assumed 95% CI, with a
nominal error rate of 5%, may be only an 80% CI, with a 20% error rate. The large sample CIs
are usually overly optimistic (i.e. too narrow) when the sample size is too small to use the normal
approximation.

SW use the following method, originally suggested by Alan Agresti, for a 95% CI. The standard
method computes the sample proportion as p̂ = y/n where y is the number of individuals in the
sample with the characteristic of interest, and n is the sample size. Agresti suggested estimating
the proportion with p̃ = (y + 2)/(n + 4), with a standard error of

SE =

√
p̃(1− p̃)
n + 4

,

and using the “usual interval” with these new summaries: p̃± 1.96SE. This appears odd, but just
amounts to adding two successes and two failures to the observed data, and then computing the
standard CI.

This adjustment has little effect when n is large and p̂ is not close to either 0 or 1, as in the
Tylenol example. Let us do examples using SW’s proposed CI.

SW Examples 6.16 and 6.17, page 208-9

Minitab Implementation

A CI for p can be obtained in Minitab from summary data from the menu path Stat > Basic
Statistics > 1 Proportion, check Summarized data, enter Number of trials (n) and Number
of events (# Successes), click Options, enter Confidence level in percent (95.0 usually), ignore
Test proportion for now, select Alternative: not equal, and check Use test and interval
based on normal distribution.

The above choices produce a CI based upon p̂. In order to use SW’s CI based on p̃, add 4 to n
and 2 to # Successes. Finally, to get the best interval (arguably the correct one), do not check Use
test and interval based on normal distribution. This third choice produces what is known
as an exact interval – it is a lot harder to explain how we get it (I’ll indicate where it comes from
next week), but the confidence level and error rate are correct and not subject to approximation
like the other two intervals. Minitab is a little unique in providing this. Let us examine Minitab
results from two examples:
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The Tylenol Example:

Using p̂:

Sample X N Sample p 95% CI Z-Value P-Value
1 189 270 0.700000 (0.645339, 0.754661) 6.57 0.000

Using p̃:

Sample X N Sample p 95% CI Z-Value P-Value
1 191 274 0.697080 (0.642670, 0.751490) 6.52 0.000

Using exact interval:

Exact
Sample X N Sample p 95% CI P-Value
1 189 270 0.700000 (0.641500, 0.754047) 0.000

Ignore the Z-Value and P-Value entries for now. You can see that the intervals all agree for any
practical interpretation.

Example 6.17 p. 209 of SW

Using p̂:

Sample X N Sample p CI Z-Value P-Value
1 0 11 0.000000 (*, *) -3.32 0.001

* NOTE * The normal approximation may be inaccurate for small samples.

Using p̃:

Sample X N Sample p 95% CI Z-Value P-Value
1 2 15 0.133333 (0.000000, 0.305361) -2.84 0.005

* NOTE * The normal approximation may be inaccurate for small samples.

Using exact interval:

Exact
Sample X N Sample p 95% CI P-Value
1 0 11 0.000000 (0.000000, 0.238404) 0.001

The only one of these I would trust is the exact one. The one based on p̃ is surprisingly informative,
though. Minitab’s warning on the other two should not be ignored.
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7 Hypothesis Testing in the One-Sample Situation

Suppose that you have identified a population with the goal of estimating the (unknown) pop-
ulation mean value, identified by µ. You select a random or representative sample from the popu-
lation where, for notational convenience, the sample measurements are identified as Y1, Y2, ..., Yn,
where n is the sample size.

Population
Huge set of values
Can see very little

Sample

Mean µ
Standard Deviation σ

µ and σ unknown

Y1, Y2, …, Yn

Inference

Given the data, our best guess, or estimate, of µ is the sample mean:

Ȳ =
∑

i Yi

n
=

Y1 + Y2 + · · ·+ Yn

n
.

There are two main methods for inferences on µ: confidence intervals (CI) and hypothesis
tests. The standard CI and test procedures are based on Y and s, the sample standard deviation.
I discussed CIs in the last lecture.

Hypothesis Test for µ

Suppose you are interested in checking whether the population mean µ is equal to some prespecified
value, say µ0. This question can be formulated as a two-sided hypothesis test, where you are trying
to decide which of two contradictory claims or hypotheses about µ is more reasonable given the
observed data. The null hypothesis, or the hypothesis under test, is H0 : µ = µ0, whereas the
alternative hypothesis is HA : µ 6= µ0.

I will explore the ideas behind hypothesis testing later. At this point, I focus on the mechanics
behind the test. The steps in carrying out the test are:
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1. Set up the null and alternative hypotheses: H0 : µ = µ0 and HA : µ 6= µ0, where µ0 is
specified by the context of the problem.

2. Choose the size or significance level of the test, denoted by α. In practice, α is set to a
small value, say, .01 or .05, but theoretically can be any value between 0 and 1.

3. Compute the critical value tcrit from the t−distribution table with degrees of freedom df =
n− 1. In terms of percentiles, tcrit = t.5α.

4. Compute the test statistic

ts =
X̄ − µ0

SE
,

where SE = s/
√

n is the standard error.

5. Reject H0 in favor of HA (i.e. decide that H0 is false, based on the data) if |ts| > tcrit.
Otherwise, do not reject H0. An equivalent rule is to Reject H0 if ts < −tcrit or if ts > tcrit.
I sometimes call the test statistic tobs to emphasize that the computed value depends on the
observed data.

The process is represented graphically below. The area under the t−probability curve outside ±tcrit

is the size of the test, α. One-half α is the area in each tail. You reject H0 in favor of HA only if
the test statistic is outside ±tcrit.

    0   
tcrit− tcrit

Reject H0Reject H0

1 − α α
2

α
2

Assumptions for Procedures

I described the classical t−test, which assumes that the data are a random sample from the popu-
lation and that the population frequency curve is normal. The population frequency curve can be
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viewed as a “smoothed histogram” created from the population data. You assess the reasonableness
of the normality assumption using a stem-and-leaf, histogram, and a boxplot of the sample data.
The stem-and-leaf and histogram should resemble a normal curve.

The t−test is known as a small sample procedure. For large samples, researchers sometimes
use a z−test, which is a minor modification of the t−method. For the z−test, replace tcrit with a
critical value zcrit from a standard normal table. The z−critical value can be obtained from the
t−table using the df = ∞ row. The z-test does not require normality, but does require that the
sample size n is large. In practice, most researchers just use the t−test whether or not n is large –
it makes little difference since z and t are very close when n is large.

Example: Age at First Transplant

The ages (in years) at first transplant for a sample of 11 heart transplant patients are as follows:
54 42 51 54 49 56 33 58 54 64 49. The summaries for these data are: n = 11, Y = 51.27, and s = 8.26.
Test the hypothesis that the mean age at first transplant is 50. Use α = .05. Also, find a 95% CI
for the mean age at first transplant.

A good (necessary) first step is to define the population parameter in question, and to write
down hypotheses symbolically. These steps help to avoid confusion. Let

µ = mean age at time of first transplant for population of patients.

You are interested in testing H0 : µ = 50 against HA : µ 6= 50, so µ0 = 50.
The degrees of freedom are df = 11− 1 = 10. The critical value for a 5% test is tcrit = t.025 =

2.228. (Note .5α = .5 ∗ .05 = .025). The same critical value is used with the 95% CI.
Let us first look at the CI calculation. Here SE = s/

√
n = 8.26/

√
11 = 2.4904 and tcrit ∗SE =

2.228 ∗ 2.4904 = 5.55. The lower limit on the CI is 51.27 − 5.55 = 45.72. The upper endpoint is
51.27+5.55 = 56.82. Thus, you are 95% confident that the population mean age at first transplant
is between 45.7 and 56.8 years (rounding to 1 decimal place).

For the test,

t =
X̄ − µ0

SE
=

51.27− 50
2.4904

= 0.51.

Since tcrit = 2.228, we do not reject H0 using a 5% test. Note the placement of t relative to tcrit

in the picture below. The results of the hypothesis test should not be surprising, since the CI tells
you that 50 is a plausible value for the population mean age at transplant. Note: All you can say
is that the data could have come from a distribution with a mean of 50 – this is not convincing
evidence that µ actually is 50.
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    0   
2.228−2.228

Reject H0Reject H0

.95
.025.025

0.51

ts in middle of distribution, so do not reject H0

P-values

The p-value, or observed significance level for the test, provides a measure of plausibility for
H0. Smaller values of the p-value imply that H0 is less plausible. To compute the p-value for a
two-sided test, you

1. Compute the test statistic ts as above.

2. Evaluate the area under the t−probability curve (with df = n− 1) outside ±|ts|.

    0   ts− ts

p−value
2

p−value
2
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In the picture above, the p-value is the total shaded area, or twice the area in either tail. You
can only get bounds on the p-value using SW’s t−table.

Most, if not all, statistical packages, including Minitab, summarize hypothesis tests with a
p-value, rather than a decision (i.e reject or not reject at a given α level). You can make a decision
to reject or not reject H0 for a size α test based on the p-value as follows - reject H0 if the p-value
is less than or equal to α. This decision is identical to that obtained following the formal rejection
procedure given earlier. The reason for this is that the p-value can be interpreted as the smallest
value you can set the size of the test and still reject H0 given the observed data.

There are a lot of terms to keep straight here. α and tcrit are constants we choose (actually, one
determines the other so we really only choose one, usually α) to set how rigorous evidence against
H0 needs to be. ts and the p-value (again, one determines the other) are random variables because
they are calculated from the random sample. They are the evidence against H0.

Example: Age at First Transplant

The picture below is used to calculate the p-value. Using SW’s table, all we know is that the
p-value is greater than .40. (Why?) The exact p-value for the test (generated with JMP-in) is 0.62.
For a 5% test, the p-value indicates that you would not reject H0 (because .62 > .05).

    0   
.51−.51

Total shaded area is the p−value, .62

Minitab output for the heart transplant problem is given below. Let us look at the output and find
all of the summaries we computed. Also, look at the graphical summaries to assess whether the
t−test and CI are reasonable here.

COMMENTS:

1. The data were entered into the worksheet as a single column (C1) that was labelled agetran.

2. To display the data follow the sequence Data > Display Data, and fill in the dialog box.

3. To get the stem and leaf display, follow the sequence Graph > Stem and Leaf ..., then fill in
the dialog box.
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4. To get a one-sample t-test and CI follow the sequence: STAT > BASIC STATISTICS >
1-sample t... . In the dialog box, select the column to analyze (C1). For the test, you need to
check the box for Perform Hypothesis Test and specify the null mean (i.e. µ0) and the type
of test (by clicking on OPTIONS): not equal gives a two-sided test (default), less than gives
a lower one-sided test, and greater than gives an upper one-sided test. The results of the test
are reported as a p-value. We have only discussed two-sided tests up to now. Click on the
Graphs button and select Boxplot of data.

5. I would also follow Stat > Basic Statistics > Display Descriptive Statistics to get a few more
summary statistics. The default from the test is a bit limited.

6. If you ask for a test, you will get a corresponding CI. The CI level is set by clicking on Option
in the dialog box. If you want a CI but not a test, do not check Perform Hypothesis Test in
the main dialog box. A 95% CI is the default.

7. The boxplot will include a CI for the mean.

8. The plots generated with Stat > Basic Statistics > Graphical Summary include a CI for the
population mean.

Data Display

agetran
33 42 49 49 51 54 54 54 56 58 64

Stem-and-Leaf Display: agetran

Stem-and-leaf of agetran N = 11
Leaf Unit = 1.0

1 3 3
1 3
2 4 2
4 4 99
(4) 5 1444
3 5 68
1 6 4

One-Sample T: agetran

Test of mu = 50 vs not = 50

Variable N Mean StDev SE Mean 95% CI T P
agetran 11 51.2727 8.2594 2.4903 (45.7240, 56.8215) 0.51 0.620

Descriptive Statistics: agetran

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
agetran 11 0 51.27 2.49 8.26 33.00 49.00 54.00 56.00 64.00

43



7 HYPOTHESIS TESTING IN THE ONE-SAMPLE SITUATION

Example: Meteorites

One theory of the formation of the solar system states that all solar system meteorites have
the same evolutionary history and thus have the same cooling rates. By a delicate analysis based
on measurements of phosphide crystal widths and phosphide-nickel content, the cooling rates, in
degrees Celsius per million years, were determined for samples taken from meteorites named in the
accompanying table after the places they were found.

Suppose that a hypothesis of solar evolution predicted a mean cooling rate of µ = .54 degrees
per million year for the Tocopilla meteorite. Do the observed cooling rates support this hypothesis?
Test at the 5% level. The boxplot and stem and leaf display (given below) show good symmetry.
The assumption of a normal distribution of observations basic to the t−test appears to be realistic.

Meteorite Cooling rates
Walker County 0.69 0.23 0.10 0.03 0.56 0.10 0.01 0.02 0.04 0.22

Uwet 0.21 0.25 0.16 0.23 0.47 1.20 0.29 1.10 0.16
Tocopilla 5.60 2.70 6.20 2.90 1.50 4.00 4.30 3.00 3.60 2.40 6.70 3.80

Let

µ = mean cooling rate over all pieces of the Tocopilla meteorite.

To answer the question of interest, we consider the test of H0 : µ = .54 against HA : µ 6= .54. I will
explain later why these are the natural hypotheses here. Let us go carry out the test, compute the
p-value, and calculate a 95% CI for µ. The sample summaries are n = 12, Y = 3.892, s = 1.583.
The standard error is SEY = s/

√
n = 0.457.

Minitab output for this problem is given below. For a 5% test (i.e. α = .05), you would reject H0

in favor of HA because the p− value ≤ .05. The data strongly suggest that µ 6= .54. The 95% CI

44



7 HYPOTHESIS TESTING IN THE ONE-SAMPLE SITUATION

says that you are 95% confident that the population mean cooling rate for the Tocopilla meteorite
is between 2.89 and 4.90 degrees per million years. Note that the CI gives us a means to assess
how different µ is from the hypothesized value of .54.

COMMENTS:

1. The data were entered as a single column in the worksheet, and labelled Toco.

2. Remember that you need to specify the null value for the mean (i.e. .54) in the 1-sample t
dialog box!

3. I generated a boxplot within the 1-sample t dialog box. A 95% CI for the mean cooling rate
is superimposed on the plots.

Data Display

Toco
5.6 2.7 6.2 2.9 1.5 4.0 4.3 3.0 3.6 2.4 6.7 3.8

Stem-and-Leaf Display: Toco

Stem-and-leaf of Toco N = 12
Leaf Unit = 0.10

1 1 5
2 2 4
4 2 79
5 3 0
(2) 3 68
5 4 03
3 4
3 5
3 5 6
2 6 2
1 6 7

One-Sample T: Toco

Test of mu = 0.54 vs not = 0.54

Variable N Mean StDev SE Mean 95% CI T P
Toco 12 3.89167 1.58255 0.45684 (2.88616, 4.89717) 7.34 0.000

Descriptive Statistics: Toco

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
Toco 12 0 3.892 0.457 1.583 1.500 2.750 3.700 5.275 6.700
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The Mechanics of Setting up an Hypothesis Test

SW Section 7.10
When setting up a test you should imagine you are the researcher conducting the experiment. In

many studies, the researcher wishes to establish that there has been a change from the status quo,
or that they have developed a method that produces a change (possibly in a specified direction)
in the typical response. The researcher sets H0 to be the status quo and HA to be the research
hypothesis - the claim the researcher wishes to make. In some studies you define the hypotheses
so that HA is the take action hypothesis - rejecting H0 in favor of HA leads one to take a radical
action.

Some perspective on testing is gained by understanding the mechanics behind the tests. An
hypothesis test is a decision process in the face of uncertainty. You are given data and asked which
of two contradictory claims about a population parameter, say µ, is more reasonable. Two decisions
are possible, but whether you make the correct decision depends on the true state of nature which
is unknown to you.

Decision If H0 true If HA true
Reject H0 in favor of HA Type I error correct decision
Do not Reject [accept] H0 correct decision Type II error

For a given problem, only one of these errors is possible. For example, if H0 is true you can
make a Type I error but not a Type II error. Any reasonable decision rule based on the data that
tells us when to reject H0 and when to not reject H0 will have a certain probability of making a
Type I error if H0 is true, and a corresponding probability of making a Type II error if H0 is false
and HA is true. For a given decision rule, define
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α = Prob( Reject H0 given H0 is true ) = Prob( Type I error )

and

β = Prob( Do not reject H0 when HA true ) = Prob( Type II error ).

The mathematics behind hypothesis tests allows you to prespecify or control α. For a given α,
the tests we use (typically) have the smallest possible value of β. Given the researcher can control
α, you set up the hypotheses so that committing a Type I error is more serious than committing a
Type II error. The magnitude of α, also called the size or level of the test, should depend on the
seriousness of a Type I error in the given problem. The more serious the consequences of a Type I
error, the smaller α should be. In practice α is often set to .10, .05, or .01, with α = .05 being the
scientific standard. By setting α to be a small value, you reject H0 in favor of HA only if the data
convincingly indicate that H0 is false.

Let us piece together these ideas for the meteorite problem. Evolutionary history predicts
µ = .54. A scientist examining the validity of the theory is trying to decide whether µ = .54 or
µ 6= .54. Good scientific practice dictates that rejecting another’s claim when it is true is more
serious than not being able to reject it when it is false. This is consistent with defining H0 : µ = .54
(the status quo) and HA : µ 6= .54. To convince yourself, note that the implications of a Type I
error would be to claim the evolutionary theory is false when it is true, whereas a Type II error
would correspond to not being able to refute the evolutionary theory when it is false. With this
setup, the scientist will refute the theory only if the data overwhelmingly suggest that it is false.

The Effect of α on the Rejection Region of a Two-Sided Test

For a size α test, you reject H0 : µ = µ0 if

ts =
Y − µ0

SE

satisfies |ts| > tcrit.

    0   

3.106

2.201

    0   

3.106

2.201

3.106

−2.201

    0   

3.106

2.201

−3.106

−2.201

Rejection Regions for .05 and .01 level tests
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The critical value is computed so that the area under the t−probability curve (with df = n−1)
outside ±tcrit is α, with .5α in each tail. Reducing α makes tcrit larger. That is, reducing the
size of the test makes rejecting H0 harder because the rejection region is smaller. A pictorial
representation is given above for the Tocopilla data, where µ0 = 0.54, n = 12 and df = 11. Note
that tcrit = 2.201 and 3.106 for α = 0.05 and 0.01, respectively.

The mathematics behind the test presumes that H0 is true. Given the data, you use

ts =
Ȳ − µ0

SE

to measure how far Y is from µ0, relative to the spread in the data given by SE. For ts to be in
the rejection region, Y must be significantly above or below µ0, relative to the spread in the data.
To see this, note that rejection rule can be expressed as: Reject H0 if

Y < µ0 − tcritSE or Y > µ0 + tcritSE.

The rejection rule is sensible because Y is our best guess for µ. You would reject H0 : µ = µ0 only
if Y is so far from µ0 that you would question the reasonableness of assuming µ = µ0. How far Y
must be from µ0 before you reject H0 depends on α (i.e. how willing you are to reject H0 if it is
true), and on the value of SE. For a given sample, reducing α forces Y to be further from µ0 before
you reject H0. For a given value of α and s, increasing n allows smaller differences between Y and
µ0 to be statistically significant (i.e. lead to rejecting H0). In problems where small differences
between Y and µ0 lead to rejecting H0, you need to consider whether the observed differences are
important.

In essence, the t− distribution provides an objective way to calibrate whether the observed Y is
typical of what sample means look like when sampling from a normal population where H0 is true.
If all other assumptions are satisfied, and Y is inordinately far from µ0, then our only recourse is
to conclude that H0 must be incorrect.

Two-Sided Tests, CI and P-Values

An important relationship among two-sided tests of H0 : µ = µ0, CI, and p-values is that

size α test rejects H0 ⇔ 100(1− α)% CI does not contain µ0 ⇔ p− value ≤ α.

size α test does not reject H0 ⇔ 100(1− α)% CI contains µ0 ⇔ p− value > α.

For example, an α = .05 test rejects H0 ⇔ 95% CI does not contain µ0 ⇔ p− value ≤ .05. The
picture above illustrates the connection between p-values and rejection regions.
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    0   
tcrit− tcrit

If ts is here then p−value > α

If ts is here then p−value < α

Either a CI or a test can be used to decide the plausibility of the claim that µ = µ0. Typically,
you use the test to answer the question is there a difference? If so, you use the CI to assess how
much of a difference exists. I believe that scientists place too much emphasis on hypothesis
testing. See the discussion below.

Statistical Versus Practical Significance

Suppose in the Tocopilla meteorite example, you rejected H0 : µ = .54 at the 5% level and found
a 95% two-sided CI for µ to be .55 to .58. Although you have sufficient evidence to conclude that
the population mean cooling rate µ differs from that suggested by evolutionary theory, the range
of plausible values for µ is small and contains only values close to .54. Although you have shown
statistical significance here, you need to ask ourselves whether the actual difference between µ and
.54 is large enough to be important. The answer to such questions is always problem specific.

Design Issues and Power

An experiment may not be sensitive enough to pick up true differences. For example, in the
Tocopilla meteorite example, suppose the true mean cooling rate is µ = 1.00. To have a 50%
chance of rejecting H0 : µ = .54, you would need about n = 30 observations. If the true mean
is µ = .75, you would need about 140 observations to have a 50% chance of rejecting H0. In
general, the smaller the difference between the true and hypothesized mean (relative to the spread
in the population), the more data that is needed to reject H0. If you have prior information on
the expected difference between the true and hypothesized mean, you can design an experiment
appropriately by choosing the sample size required to likely reject H0.

The power of a test is the probability of rejecting H0 when it is false. Equivalently,

power = 1 - Prob( not rejecting H0 when it is false ) = 1- Prob( Type II error ).
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For a given sample size, the tests I have discussed have maximum power (or smallest probability
of a Type II error) among all tests with fixed size α. However, the actual power may be small, so
sample size calculations, as briefly highlighted above, are important prior to collecting data. See
your local statistician.

One-Sided Tests on µ

There are many studies where a one-sided test is appropriate. The two common scenarios are the
lower one-sided test H0 : µ = µ0 (or µ ≥ µ0) versus HA : µ < µ0 and the upper one-sided
test H0 : µ = µ0 (or µ ≤ µ0) versus HA : µ > µ0. Regardless of the alternative hypothesis, the
tests are based on the t-statistic:

ts =
Y − µ0

SE
.

For the upper one-sided test

1. Compute the critical value tcrit such that the area under the t-curve to the right of tcrit is
the desired size α, that is tcrit = tα.

2. Reject H0 if and only if ts ≥ tcrit.

3. The p-value for the test is the area under the t−curve to the right of the test statistic ts.

The upper one-sided test uses the upper tail of the t− distribution for a rejection region.
The p-value calculation reflects the form of the rejection region. You will reject H0 only for large
positive values of ts which require Y to be significantly greater than µ0. Does this make sense?

For the lower one-sided test

1. Compute the critical value tcrit such that the area under the t-curve to the right of tcrit is
the desired size α, that is tcrit = talpha.

2. Reject H0 if and only if ts ≤ −tcrit.

3. The p-value for the test is the area under the t−curve to the left of the test statistic ts.

The lower one-sided test uses the lower tail of the t− distribution for a rejection region.
The calculation of the rejection region in terms of −tcrit is awkward but is necessary for hand
calculations because SW only give upper tail percentiles. Note that here you will reject H0 only
for large negative values of ts which require Y to be significantly less than µ0.

Pictures of the rejection region and the p-value evaluation for a lower one-sided test are given
on the next page. As with two-sided tests, the p-value can be used to decide between rejecting or
not rejecting H0 for a test with a given size α.
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    0   
tcrit

α

Upper One−Sided Rejection Region

    0   
ts

p−value

Upper One−Sided p−value

    0   
− tcrit

α

Lower One−Sided Rejection Region

    0   
ts

p−value

Lower One−Sided p−value

Example: Weights of canned tomatoes

A consumer group suspects that the average weight of canned tomatoes being produced by a
large cannery is less than the advertised weight of 20 ounces. To check their conjecture, the group
purchases 14 cans of the canner’s tomatoes from various grocery stores. The weights of the contents
of the cans to the nearest half ounce were as follows: 20.5, 18.5, 20.0, 19.5, 19.5, 21.0, 17.5, 22.5,
20.0, 19.5, 18.5, 20.0, 18.0, 20.5. Do the data confirm the group’s suspicions? Test at the 5% level.

Let µ = the population mean weight for advertised 20 ounce cans of tomatoes produced by the
cannery. The company claims that µ = 20, but the consumer group believes that µ < 20. Hence
the consumer group wishes to test H0 : µ = 20 (or µ ≥ 20) against HA : µ < 20. The consumer
group will reject H0 only if the data overwhelmingly suggest that H0 is false.
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You should assess the normality assumption prior to performing the t−test. The stem and
leaf display and the boxplot suggest that the distribution might be slightly skewed to the left.
However, the skewness is not severe and no outliers are present, so the normality assumption is not
unreasonable.

Minitab output for the problem is given below. Let us do a hand calculation using the summa-
rized data. The sample size, mean, and standard deviation are 14, 19.679, and 1.295, respectively.
The standard error is SEY = s/

√
n = .346. We see that the sample mean is less than 20. But is it

sufficiently less than 20 for us to be willing to publicly refute the canner’s claim? Let us carry out
the test, first using the rejection region approach, and then by evaluating a p-value.

The test statistic is

ts =
Y − µ0

SEY

=
19.679− 20

.346
= −.93

The critical value for a 5% one-sided test is t.05 = 1.771, so we reject H0 if ts < −1.771 (you can
get that value from Minitab or from the table). The test statistic is not in the rejection region.
Using the t-table, the p-value is between .15 and .20. I will draw a picture to illustrate the critical
region and p-value calculation. The exact p-value from Minitab is .185, which exceeds .05.

Both approaches lead to the conclusion that we do not have sufficient evidence to reject H0.
That is, we do not have sufficient evidence to question the accuracy of the canner’s claim. If you did
reject H0, is there something about how the data were recorded that might make you uncomfortable
about your conclusions?

COMMENTS:

1. The data are entered into the first column of the worksheet, which was labelled cans.

2. You need to remember to specify the lower one-sided test as an option in the 1 sample t-test
dialog box.

Descriptive Statistics: Cans

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3
Cans 14 0 19.679 0.346 1.295 17.500 18.500 19.750 20.500

Variable Maximum
Cans 22.500

Stem-and-Leaf Display: Cans

Stem-and-leaf of Cans N = 14
Leaf Unit = 0.10

1 17 5
2 18 0
4 18 55
4 19
7 19 555
7 20 000
4 20 55
2 21 0
1 21
1 22
1 22 5
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7 HYPOTHESIS TESTING IN THE ONE-SAMPLE SITUATION

One-Sample T: Cans

Test of mu = 20 vs < 20

95%
Upper

Variable N Mean StDev SE Mean Bound T P
Cans 14 19.6786 1.2951 0.3461 20.2915 -0.93 0.185

How should you couple a one-sided test with a CI procedure? For a lower one-sided test,
you are interested only in an upper bound on µ. Similarly, with an upper one-sided test you
are interested in a lower bound on µ. Computing these type of bounds maintains the consistency
between tests and CI procedures. The general formulas for lower and upper 100(1−α)% confidence
bounds on µ are given by

Y − tcritSEY and Y + tcritSEY

respectively, where tcrit = tα.
In the cannery problem, to get an upper 95% bound on µ, the critical value is the same as we

used for the one-sided 5% test: t.05 = 1.771. The upper bound on µ is

Y + t.05SEY = 19.679 + 1.771 ∗ .346 = 19.679 + .613 = 20.292.

Thus, you are 95% confident that the population mean weight of the canner’s 20oz cans of tomatoes
is less than or equal to 20.29. As expected, this interval covers 20.

If you are doing a one-sided test in Minitab, it will generate the correct one-sided bound. That
is, a lower one-sided test will generate an upper bound, whereas an upper one-sided test generates
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7 HYPOTHESIS TESTING IN THE ONE-SAMPLE SITUATION

a lower bound. If you only wish to compute a one-sided bound without doing a test, you need to
specify the direction of the alternative which gives the type of bound you need. An upper bound
was generated by Minitab as part of the test we performed earlier. The result agrees with the hand
calculation.

Quite a few packages, including only slightly older versions of Minitab, do not directly compute
one-sided bounds so you have to fudge a bit. In the cannery problem, to get an upper 95% bound
on µ, you take the upper limit from a 90% two-sided confidence limit on µ. The rationale for this
is that with the 90% two-sided CI, µ will fall above the upper limit 5% of the time and fall below
the lower limit 5% of the time. Thus, you are 95% confident that µ falls below the upper limit of
this interval, which gives us our one-sided bound. Here, you are 95% confident that the population
mean weight of the canner’s 20oz cans of tomatoes is less than or equal to 20.29, which agrees with
our hand calculation.

One-Sample T: Cans

Variable N Mean StDev SE Mean 90% CI
Cans 14 19.6786 1.2951 0.3461 (19.0656, 20.2915)

The same logic applies if you want to generalize the one-sided confidence bounds to arbitrary
confidence levels and to lower one-sided bounds - always double the error rate of the desired one-
sided bound to get the error rate of the required two-sided interval! For example, if you want a
lower 99% bound on µ (with a 1% error rate), use the lower limit on the 98% two-sided CI for µ
(which has a 2% error rate).

Two-Sided Hypothesis Test for p

Suppose you are interested in whether the population proportion p is equal to a prespecified value,
say p0. This question can be formulated as a two-sided hypothesis test. To carry out the test:

1. Define the null hypothesis H0 : p = p0 and alternative hypothesis HA : p 6= p0.

2. Choose the size or significance level of the test, denoted by α.

3. Using the standard normal probability table, find the critical value zcrit such that the areas
under the normal curve to the left and right of zcrit are 1 − .5α and .5α, respectively. That
is, zcrit = z.5α.

4. Compute the test statistic (often to be labeled zobs)

zs =
p̂− p0

SE
,

where the “test standard error” is

SE =

√
p0(1− p0)

n
.
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5. Reject H0 in favor of HA if |zobs| ≥ zcrit. Otherwise, do not reject H0.

The rejection rule is easily understood visually. The area under the normal curve outside ±zcrit

is the size α of the test. One-half of α is the area in each tail. You reject H0 in favor of HA if the
test statistic exceeds ±zcrit. This occurs when p̂ is significantly different from p0, as measured by
the standardized distance zobs between p̂ and p0.

    0   
zcrit− zcrit

Reject H0Reject H0

1 − α α
2

α
2

    0   zs− zs

p−value
2

p−value
2

The P-Value for a Two-Sided Test

To compute the p-value (not to be confused with the value of p!) for a two-sided test:

1. Compute the test statistic zs.

2. Evaluate the area under the normal probability curve outside ±zs.

Given the picture above with zobs > 0, the p-value is the shaded area under the curve, or twice
the area in either tail.

Recall that the null hypothesis for a size α test is rejected if and only if the p-value is less than
or equal to α.

Example (Emissions data) Each car in the target population (L.A. county) either has been
tampered with (a success) or has not been tampered with (a failure). Let p = the proportion of
cars in L.A. county with tampered emissions control devices. You want to test H0 : p = .15 against
HA : p 6= .15 (here p0 = .15). The critical value for a two-sided test of size α = .05 is zcrit = 1.96.

The data are a sample of n = 200 cars. The sample proportion of cars that have been tampered
with is p̂ = 21/200 = .105. The test statistic is

zs =
.105− .15

.025
= −1.78,

where the test standard error satisfies

SE =
√

.15 ∗ .85
200

= .025.
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Given that |zs| = 1.78 < 1.96, you have insufficient evidence to reject H0 at the 5% level. That
is, you have insufficient evidence to conclude that the proportion of cars in L.A. county that have
been tampered with differs from the statewide proportion.

This decision is reinforced by the p-value calculation. The p-value is the area under the standard
normal curve outside ±1.78. This is about 2 ∗ .0375 = .075, which exceeds the test size of .05.

REMARK: It is important to recognize that the mechanics of the test on proportions is similar to
tests on means, except we use a different test statistic and a different probability table for critical
values.

Appropriateness of Test

The z-test is based on a large sample normal approximation, which works better for a given sample
size when p0 is closer to .5. The sample size needed for an accurate approximation increases
dramatically the closer p0 gets to 0 or to 1. Unfortunately, there is no universal agreement as to
when the sample size n is “large enough” to apply the test. A simple rule of thumb says that the
test is appropriate when np0(1− p0) ≥ 5.

In the emissions example, np0(1 − p0) = 200 ∗ (.15) ∗ (.85) = 25.5 exceeds 5, so the normal
approximation is appropriate.

Minitab Implementation

This is done precisely as in constructing CIs, covered last week. Follow Stat > Basic Statistics
> 1 Proportion and enter summarized data. We are using the normal approximation for these
calculations. You need to enter p0 and make the test two-sided under Options.

Test and CI for One Proportion

Test of p = 0.15 vs p not = 0.15

Sample X N Sample p 95% CI Z-Value P-Value
1 21 200 0.105000 (0.062515, 0.147485) -1.78 0.075

My own preference for this particular problem would be to use the exact procedure. What we
are doing here is the most common practice, however, and does fit better with procedures we do
later. You should confirm that the exact procedure (not using the normal approximation) makes
no difference here (because the normal approximation is appropriate).

One-Sided Tests and One-Sided Confidence Bounds

For one-sided tests on proportions, we follow the same general approach adopted with tests on
means, except using a different test statistic and table for evaluation of critical values.

For an upper one-sided test H0 : p = p0 (or p ≤ p0) versus HA : p > p0, you reject H0 when p̂
is significantly greater than p0, as measured by test statistic

zs =
p̂− p0

SE
.
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In particular, you reject H0 when zs ≥ zcrit, where the area under the standard normal curve to the
right of zcrit is α, the size of the test. That is zcrit = zα. The p-value calculation reflects the form
of the rejection region, so the p-value for an upper one-sided test is the area under the z−curve
to the right of zs. The graphs on page 51 of the notes illustrated all this for the t−statistic; the
picture here is the same except we now are using a z.

The lower tail of the normal distribution is used for the lower one-sided test H0 : p = p0 (or
p ≥ p0) versus HA : p < p0. Thus, the p-value for this test is the area under the z−curve to the
left of zs. Similarly, you reject H0 when zs ≤ −zcrit, where zcrit is the same critical value used for
the upper one-sided test of size α.

Lower and upper one-sided 100(1− α)% confidence bounds for p are

p̂− zcritSE and p̂ + zcritSE,

respectively, where zcrit = zα is the critical value for a one-sided test of size α and SE =√
p̂(1− p̂)/n is the “confidence interval” standard error. Recall that upper bounds are used in

conjunction with lower one-sided tests and lower bounds are used with upper one-sided tests.
These are large sample tests and confidence bounds, so check whether n is large enough to apply

these methods.

Example An article in the April 6, 1983 edition of The Los Angeles Times reported on a study
of 53 learning impaired youngsters at the Massachusetts General Hospital. The right side of the
brain was found to be larger than the left side in 22 of the children. The proportion of the general
population with brains having larger right sides is known to be .25. Do the data provide strong
evidence for concluding, as the article claims, that the proportion of learning impaired youngsters
with brains having larger right sides exceeds the proportion in the general population?

I will answer this question by computing a p-value for a one-sided test. Let p be the population
proportion of learning disabled children with brains having larger right sides. I am interested in
testing H0 : p = .25 against HA : p > .25 (here p0 = .25).

The proportion of children sampled with brains having larger right sides is p̂ = 22/53 = .415.
The test statistic is

zs =
.415− .25

.0595
= 2.78,

where the test standard error satisfies

SE =
√

.25 ∗ .75
53

= .0595.

The p-value for an upper one-sided test is the area under the standard normal curve to the right
of 2.78, which is approximately .003. I would reject H0 in favor of HA using any of the standard
test levels, say .05 or .01. The newspaper’s claim is reasonable.

A sensible next step in the analysis would be to compute a lower confidence bound for p. For
illustration, consider a 95% bound. The CI standard error is

SE =

√
p̂(1− p̂)

n
=

√
.415 ∗ .585

53
= .0677.

The critical value for a one-sided 5% test is zcrit = 1.645, so a lower 95% bound on p is .415−1.645∗
.0677 = .304. I am 95% confident that the population proportion of learning disabled children with
brains having larger right sides is at least .304. Values of p smaller than .304 are not plausible.
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You should verify that the sample size is sufficiently large to use the approximate methods in
this example.

Minitab does this one sample procedure very easily, and it makes no real difference if you use the
normal approximation or the exact procedure (what does that say about the normal approxima-
tion?).

Test of p = 0.25 vs p > 0.25

95%
Lower

Sample X N Sample p Bound Z-Value P-Value
1 22 53 0.415094 0.303766 2.78 0.003

Test and CI for One Proportion

Test of p = 0.25 vs p > 0.25

95%
Lower Exact

Sample X N Sample p Bound P-Value
1 22 53 0.415094 0.300302 0.006
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8 TWO-SAMPLE INFERENCES FOR MEANS

8 Two-Sample Inferences for Means

SW Chapters 7 and 9

Comparing Two Sets of Measurements

Suppose you have collected data on one variable from two (independent) samples and you are
interested in “comparing” the samples. What tools are good to use?

Example: Head Breadths
In this analysis, we will compare a physical feature of modern day Englishmen with the corre-

sponding feature of some of their ancient countrymen. The Celts were a vigorous race of people
who once populated parts of England. It is not entirely clear whether they simply died out or
merged with other people who were the ancestors of those who live in England today. A goal of
this study might be to shed some light on possible genetic links between the two groups.

The study is based on the comparison of maximum head breadths (in millimeters) made on
unearthed Celtic skulls and on a number of skulls of modern-day Englishmen. The data are given
below. We have a sample of 18 Englishmen and an independent sample of 16 Celtic skulls.

Row ENGLISH CELTS

1 141 133
2 148 138
3 132 130
4 138 138
5 154 134
6 142 127
7 150 128
8 146 138
9 155 136

10 158 131
11 150 126
12 140 120
13 147 124
14 148 132
15 144 132
16 150 125
17 149
18 145

What features of these data would we likely be interested in comparing? The centers of the
distributions, the spreads within each distribution, the distributional shapes, etc.

These data can be analyzed in Minitab as either STACKED data (1 column containing both
samples, with a separate column of labels or subscripts to distinguish the samples) or UN-
STACKED (2 columns, 1 for each sample). The form of subsequent Minitab commands will depend
on which data mode is used. It is often more natural to enter UNSTACKED data, but with large
data bases STACKED data is the norm (for reasons that I will explain verbally). It is easy to
create STACKED data from UNSTACKED data and vice-versa. Graphical comparisons usually
require the plots for the two groups to have the same scale, which is easiest to control when the
data are STACKED.
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8 TWO-SAMPLE INFERENCES FOR MEANS

The head breadth data was entered as two separate columns, c1 and c2 (i.e. UNSTACKED).
To STACK the data, follow: Data > Stack > Columns. In the dialog box, specify that you wish
to stack the English and Celt columns, putting the results in c3, and storing the subscripts in c4.
The output below shows the data in the worksheet after stacking the two columns.

Data Display

Head
Row ENGLISH CELTS Bread Group

1 141 133 141 ENGLISH
2 148 138 148 ENGLISH
3 132 130 132 ENGLISH
4 138 138 138 ENGLISH
5 154 134 154 ENGLISH
6 142 127 142 ENGLISH
7 150 128 150 ENGLISH
8 146 138 146 ENGLISH
9 155 136 155 ENGLISH
10 158 131 158 ENGLISH
11 150 126 150 ENGLISH
12 140 120 140 ENGLISH
13 147 124 147 ENGLISH
14 148 132 148 ENGLISH
15 144 132 144 ENGLISH
16 150 125 150 ENGLISH
17 149 149 ENGLISH
18 145 145 ENGLISH
19 133 CELTS
20 138 CELTS
21 130 CELTS
22 138 CELTS
23 134 CELTS
24 127 CELTS
25 128 CELTS
26 138 CELTS
27 136 CELTS
28 131 CELTS
29 126 CELTS
30 120 CELTS
31 124 CELTS
32 132 CELTS
33 132 CELTS
34 125 CELTS

Plotting head breadth data:

1. A dotplot with the same scale for both samples is obtained from the UNSTACKED data by
selecting Multiple Y’s with the Simple option, and then choosing C1 and C2 to plot. For the
STACKED data, choose One Y With Groups, select c3 as the plotting variable and c4 as the
Categorical variable for grouping. There are minor differences in the display generated – I
prefer the Stacked data form. In the following, the Unstacked form is on the left, the stacked
form on the right.
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2. Histograms are hard to compare unless you make the scale and actual bins the same for both.
Click on Multiple Graphs and check In separate panels of the same graph. That puts the two
graphs next to each other. The left graph below is the unstacked form with only that option.
Next check Same X, including same bins so you have some basis of comparison. The right
graph below uses that option. Why is that one clearly preferable?

The stacked form is more straightforward (left graph below). Click on Multiple Graphs and
define a By Variable. The Histogram With Outline and Groups is an interesting variant (right
graph below).
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3. Stem-and-leaf displays in unstacked data can be pretty useless. The stems are not forced
to match (just like with histograms). It is pretty hard to make quick comparisons with the
following:

Stem-and-Leaf Display: ENGLISH, CELTS

Stem-and-leaf of ENGLISH N = 18
Leaf Unit = 1.0

1 13 2
2 13 8
6 14 0124
(6) 14 567889
6 15 0004
2 15 58

Stem-and-leaf of CELTS N = 16
Leaf Unit = 1.0

1 12 0
1 12
3 12 45
5 12 67
6 12 8
8 13 01
8 13 223
5 13 4
4 13 6
3 13 888

Unfortunately, Minitab seems to be using an old routine for stem-and-leaf plots, and you
cannot use stacked data with the Group variable we created. Minitab is wanting a numeric
group variable in this case (their older routines always required numeric). Follow Data >
Code > Text to Numeric in order to create a new variable in C5 with 1 for ENGLISH and 2
for CELTS. Now the stems at least match up:

Stem-and-Leaf Display: Head Bread

Stem-and-leaf of Head Bread C5 = 1 N = 18
Leaf Unit = 1.0

1 13 2
2 13 8
6 14 0124
(6) 14 567889
6 15 0004
2 15 58

Stem-and-leaf of Head Bread C5 = 2 N = 16
Leaf Unit = 1.0

2 12 04
6 12 5678
(6) 13 012234
4 13 6888
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4. For boxplots, either Unstacked (Multiple Y’s) or Stacked (One Y with Groups) works well.
Again, I prefer the default from the stacked form, but it really doesn’t matter much. Which
is which below?

Many of the data summaries will work on either Unstacked or Stacked data. For the head breadth
data, descriptive statistics output is given below, obtained from both the Stacked data (speci-
fying data in c3 with c4 as a “by variable”) and the Unstacked data (specifying data in separate
columns c1 and c2).

Descriptive Statistics: ENGLISH, CELTS <<<<<<---------Unstacked

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3
ENGLISH 18 0 146.50 1.50 6.38 132.00 141.75 147.50 150.00
CELTS 16 0 130.75 1.36 5.43 120.00 126.25 131.50 135.50

Variable Maximum
ENGLISH 158.00
CELTS 138.00

Descriptive Statistics: Head Bread <<<<<<---------Stacked

Variable Group N N* Mean SE Mean StDev Minimum Q1 Median
Head Bread CELTS 16 0 130.75 1.36 5.43 120.00 126.25 131.50

ENGLISH 18 0 146.50 1.50 6.38 132.00 141.75 147.50

Variable Group Q3 Maximum
Head Bread CELTS 135.50 138.00

ENGLISH 150.00 158.00

Salient Features to Notice

The stem and leaf displays and boxplots indicate that the English and Celt samples are slightly
skewed to the left. There are no outliers in either sample. It is not unreasonable to operationally
assume that the population frequency curves (i.e. the histograms for the populations from which
the samples were selected) for the English and Celtic head breadths are normal.

The sample means and medians are close to each other in each sample, which is not surprising
given the near symmetry and the lack of outliers.

63



8 TWO-SAMPLE INFERENCES FOR MEANS

The data suggest that the typical modern English head breadth is greater than that for Celts.
The data sets have comparable spreads, as measured by either the standard deviation or the IQR
(you need to calculate IQR or ask for it in the above summaries).

Two-Sample Methods: Paired Versus Independent Samples

Suppose you have two populations of interest, say populations 1 and 2, and you are interested in
comparing their (unknown) population means, µ1 and µ2. Inferences on the unknown population
means are based on samples from each population. In practice, most problems fall into one of two
categories.

1. Independent samples, where the sample taken from population 1 has no effect on which
observations are selected from population 2, and vice versa. (SW Chapter 7)

2. Paired or dependent samples, where experimental units are paired based on factors related
or unrelated to the variable measured. (SW Chapter 9)

The distinction between paired and independent samples is best mastered through a series of
examples.

Example The English and Celt head breadth samples are independent

Example Suppose you are interested in whether the CaCO3 (calcium carbonate) level in the
Atrisco well field, which is the water source for Albuquerque, is changing over time. To answer this
question, the CaCO3 level was recorded at each of 15 wells at two time points. These data are
paired. The two samples are the Times 1 and 2 observations.

Example To compare state incomes, a random sample of New Mexico households was selected, and
an independent sample of Arizona households was obtained. It is reasonable to assume independent
samples.

Example Suppose you are interested in whether the husband or wife is typically the heavier
smoker among couples where both adults smoke. Data are collected on households. You measure
the average number of cigarettes smoked by each husband and wife within the sample of households.
These data are paired, i.e. you have selected husband wife pairs as the basis for the samples. It is
reasonable to believe that the responses within a pair are related, or correlated.

Although the focus here will be on comparing population means, you should recognize that in
paired samples you may also be interested, as in the problems above, in how observations compare
within a pair. These goals need not agree, depending on the questions of interest. Note that with
paired data, the sample sizes are equal, and equal to the number of pairs.

Two Independent Samples: CI and Test Using Pooled Variance

These methods assume that the populations have normal frequency curves, with equal population
standard deviations, i.e. σ1 = σ2. Let (n1, Y 1, s1) and (n2, Y 2, s2) be the sample sizes, means
and standard deviations from the two samples.
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The standard CI for µ1 − µ2 is given by

Lower = (Y 1 − Y 2)− tcritSEY 1−Y 2

Upper = (Y 1 − Y 2) + tcritSEY 1−Y 2

The t-statistic for testing H0 : µ1 − µ2 = 0 (µ1 = µ2) against HA : µ1 − µ2 6= 0 (µ1 6= µ2) is
given by

ts =
Y 1 − Y 2

SEY 1−Y 2

.

The standard error of Y 1 − Y 2 used in both the CI and the test is given by

SEY 1−Y 2
= spooled

√
1
n1

+
1
n2

.

Here the pooled variance estimator,

s2
pooled =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
,

is our best estimate of the common population variance. The pooled estimator of variance is a
weighted average of the two sample variances, with more weight given to the larger sample. If
n1 = n2 then s2

pooled is the average of s2
1 and s2

2.
The critical value tcrit for CI and tests is obtained in usual way from a t-table with df =

n1 + n2 − 2. For the test, follow the one-sample procedure, with the new ts and tcrit.
The pooled CI and tests are sensitive to the normality and equal standard deviation assump-

tions. The observed data can be used to assess the reasonableness of these assumptions. You should
look at boxplots and stem-and-leaf displays to assess normality, and should check whether s1 ≈ s2

to assess the assumption σ1 = σ2. Formal tests of these assumptions will be discussed later.

Satterthwaite’s Method

Satterthwaite’s method assumes normality, but does not require equal population standard
deviations. Satterthwaite’s procedures are somewhat conservative, and adjust the SE and df
to account for unequal population variances. Satterthwaite’s method uses the same CI and test
statistic formula, with a modified standard error:

SEY 1−Y 2
=

√
s2
1

n1
+

s2
2

n2
,

and degrees of freedom:

df =

(
s2
1

n1
+ s2

2
n2

)2

s4
1

n2
1(n1−1)

+ s4
2

n2
2(n2−1)

.

Note that df = n1 + n2 − 2 when n1 = n2 and s1 = s2. The Satterthwaite and pooled variance
procedures usually give similar results when s1 ≈ s2.
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SW use Satterthwaite’s method for CI and tests, and only briefly touch upon the use of the
pooled procedures. The df formula for Satterthwaite’s method is fairly complex, so SW propose a
conservative df formula that uses the minimum of n1 − 1 and n2 − 1 instead.

Examples: SW examples 7.7 and 7.8 pages 229-230.

Minitab does the pooled and Satterthwaite analyses, either on stacked or unstacked data. Follow
the steps STAT > BASIC STATISTICS > 2 sample t. In the dialog box, specify the data to be
analyzed, choose a CI level, and check if you wish to assume equal variances. The output will
contain a p-value for a two-sided tests of equal population means and a CI for the difference in
population means. If you check the box for assuming equal variances you will get the pooled
method, otherwise the output is for Satterthwaite’s method.

An important point to note: You can request individual values plots and side-by-side boxplots
as an option in the dialog box - and the data need not be stacked.

Example: Head Breadths

The English and Celts are independent samples. We looked at boxplots and stem and leaf
displays, which suggested that the normality assumption for the t-test is reasonable. The Minitab
output below shows the English and Celt sample standard deviations are fairly close, so the pooled
and Satterthwaite results should be comparable. The pooled analysis is preferable here, but either
is appropriate.

The form of the output will tell you which sample corresponds to population 1 and which
corresponds to population 2. This should be clear from the dialog box if you use the UNSTACKED
data, as I did. Here the CI tells us about the difference between the English and Celt population
means, so I need to define µ1 = population mean head breadths for all Englishmen and µ2 =
population mean head breadths for Celts.

Two-Sample T-Test and CI: ENGLISH, CELTS

Two-sample T for ENGLISH vs CELTS <<<--------- Pooled

N Mean StDev SE Mean
ENGLISH 18 146.50 6.38 1.5
CELTS 16 130.75 5.43 1.4

Difference = mu (ENGLISH) - mu (CELTS)
Estimate for difference: 15.7500
95% CI for difference: (11.5809, 19.9191)
T-Test of difference = 0 (vs not =): T-Value = 7.70 P-Value = 0.000 DF = 32
Both use Pooled StDev = 5.9569

Two-Sample T-Test and CI: ENGLISH, CELTS

Two-sample T for ENGLISH vs CELTS <<<--------- Satterthwaite

N Mean StDev SE Mean
ENGLISH 18 146.50 6.38 1.5
CELTS 16 130.75 5.43 1.4
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Difference = mu (ENGLISH) - mu (CELTS)
Estimate for difference: 15.7500
95% CI for difference: (11.6158, 19.8842)
T-Test of difference = 0 (vs not =): T-Value = 7.77 P-Value = 0.000 DF = 31

The boxplot, asked for optionally, is nice here – it show means, and connects them to emphasize
the analysis being done.

Remarks: The T = entry on the T-TEST line is tobs, whereas P = is the p-value.

The pooled analysis strongly suggests that H0 : µ1 − µ2 = 0 is false, given the 2-sided p-value
of .0000. We are 95% confident that µ1 − µ2 is between 11.6 and 19.9 mm. That is, we are 95%
confident that the population mean head breadth for Englishmen (µ1) exceeds the population mean
head breadth for Celts (µ2) by between 11.6 and 19.9 mm.

The CI interpretation is made easier by recognizing that we concluded the population means
are different, so the direction of difference must be consistent with that seen in the observed data,
where the sample mean head breadth for Englishmen exceeds that for the Celts. Thus, the limits
on the CI for µ1−µ2 tells us how much larger the mean is for the English population (i.e. between
11.6 and 19.9 mm).

The interpretation of the analysis is always simplified if you specify the first sample in the dialog
box (for an UNSTACKED analysis) to be the sample with the larger mean. Why?

Example: Androstenedione Levels in Diabetics

The data consist of independent samples of diabetic men and women. For each individual,
the scientist recorded their androstenedione level (a hormone - Mark McGwire’s favorite dietary
supplement). Let µ1 = mean androstenedione level for the population of diabetic men, and µ2 =
mean androstenedione level for the population of diabetic women. We are interested in comparing
the population means given the observed data.

The raw data and Minitab output is given below. The boxplots suggest that the distributions
are reasonably symmetric. However, the normality assumption for the women is unreasonable due
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to the presence of outliers. The equal population standard deviation assumption also appears un-
reasonable. The sample standard deviation for men is noticeably larger than the women’s standard
deviation, even with outliers in the women’s sample.

I am more comfortable with the Satterthwaite analysis here than the pooled variance analy-
sis. However, I would interpret all results cautiously, given the unreasonableness of the normality
assumption.

Data Display

Row men women andro sex

1 217 84 217 1
2 123 87 123 1
3 80 77 80 1
4 140 84 140 1
5 115 73 115 1
6 135 66 135 1
7 59 70 59 1
8 126 35 126 1
9 70 77 70 1

10 63 73 63 1
11 147 56 147 1
12 122 112 122 1
13 108 56 108 1
14 70 84 70 1
15 80 84 2
16 101 87 2
17 66 77 2
18 84 84 2
19 73 2
20 66 2
21 70 2
22 35 2
23 77 2
24 73 2
25 56 2
26 112 2
27 56 2
28 84 2
29 80 2
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30 101 2
31 66 2
32 84 2

Descriptive Statistics: men, women

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
men 14 0 112.5 11.4 42.8 59.0 70.0 118.5 136.3 217.0
women 18 0 75.83 4.06 17.24 35.00 66.00 77.00 84.00 112.00

Stem-and-Leaf Display: andro

Stem-and-leaf of andro sex = 1 N = 14
Leaf Unit = 10

1 0 5
4 0 677
5 0 8
7 1 01
7 1 2223
3 1 44
1 1
1 1
1 2 1

Stem-and-leaf of andro sex = 2 N = 18
Leaf Unit = 10

1 0 3
3 0 55
(7) 0 6677777
8 0 888888
2 1 01

Using the Satterthwaite test, the data strongly suggest that the population mean androstene-
dione levels are different. In particular, the Welsh (Satterthwaite) p-value for testing H0 : µ1−µ2 =
0 is .008. The 95% Satterthwaite CI for µ1 − µ2 extends from 11.0 to 62.4, which implies that we
are 95% confident that the population mean andro level for diabetic men exceeds that for diabetic
women by at least 11.0 but by no more than 62.4.

As a comparison, let us examine the output for the pooled procedure. The p-value for the
pooled t-test is .002, whereas the 95% confidence limits are 14.1 and 59.2. That is, we are 95%
confident that the population mean andro level for men exceeds that for women by at least 14.1
but by no more than 59.2. These results are qualitatively similar to the Satterthwaite conclusions.

Two-Sample T-Test and CI: men, women

Two-sample T for men vs women

N Mean StDev SE Mean
men 14 112.5 42.8 11 women 18 75.8 17.2 4.1

Difference = mu (men) - mu (women)
Estimate for difference: 36.6667
95% CI for difference: (10.9577, 62.3756)
T-Test of difference = 0 (vs not =): T-Value = 3.02 P-Value = 0.008 DF = 16
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Two-Sample T-Test and CI: men, women

Two-sample T for men vs women

N Mean StDev SE Mean
men 14 112.5 42.8 11 women 18 75.8 17.2 4.1

Difference = mu (men) - mu (women) Estimate for difference: 36.6667
95% CI for difference: (14.1124, 59.2210)
T-Test of difference = 0 (vs not =): T-Value = 3.32 P-Value = 0.002 DF = 30
Both use Pooled StDev = 30.9914

One-Sided Tests

SW discuss one-sided tests for two-sample problems, where the null hypothesis is H0 : µ1 − µ2 = 0
but the alternative is directional, either HA : µ1 − µ2 < 0 (i.e. µ1 < µ2) or HA : µ1 − µ2 > 0 (i.e.
µ1 > µ2). Once you understand the general form of rejection regions and p-values for one-sample
tests, the one-sided two-sample tests do not pose any new problems. Use the t− statistic, with
the appropriate tail of the t−distribution to define critical values and p-values. One-sided two-
sample tests are directly implemented in Minitab, by specifying the type of test in the dialog box.
One-sided confidence bounds are given with the one-sided tests.

Paired Analysis

With paired data, inferences on µ1−µ2 are based on the sample of differences within pairs. By taking
differences within pairs, two dependent samples are transformed into one sample, which contains
the relevant information for inferences on µd = µ1 − µ2. To see this, suppose the observations
within a pair are Y1 and Y2. Then within each pair, compute the difference d = Y1 − Y2. If the Y1

data are from a population with mean µ1 and the Y2 data are from a population with mean µ2,
then the d’s are a sample from a population with mean µd = µ1 − µ2. Furthermore, if the sample
of differences comes from a normal population, then we can use standard one sample techniques to
test µd = 0 (i.e. µ1 = µ2), and to get a CI for µd = µ1 − µ2.

Let d̄ = Y 1−Y 2 be the sample mean of the differences (which is also the mean difference), and
let sd be the sample standard deviation of the differences. The standard error of d̄ is SEd̄ = sd/

√
n,

where n is the number of pairs. The paired t−test (two-sided) CI for µd is given by d̄ ± tcritSEd̄.
To test H0 : µd = 0 (µ1 = µ2) against HA : µd 6= 0 (µ1 6= µ2), use

ts =
d̄− 0
SEd̄

to compute a p-value as in a two-sided one-sample test. One-sided tests are evaluated in the usual
way for one-sample tests on means.

A graphical analysis of paired data focuses on the sample of differences, and not on the
original samples. In particular, the normality assumption is assessed on the sample of differences.
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Minitab Analysis

The most natural way to enter paired data is as two columns, one for each treatment group. At
this point you can use the Minitab calculator to create a column of differences, and do the usual
one-sample graphical and inferential analysis on this column of differences, or you can do the paired
analysis directly without this intermediate step.

Example: Paired Analysis of Data on Twins

Burt (1966) presented data on IQ scores for identical twins that were raised apart, one by foster
parents and one by the genetic parents. Assuming the data are a random sample of twin pairs,
consider comparing the population mean IQs for twins raised at home to those raised by foster
parents. Let µf=population mean IQ for twin raised by foster parents, and µg=population mean
IQ for twin raised by genetic parents.

I created the data in the worksheet (c1=foster; c2=genetic), and computed the differences
between the IQ scores for the children raised by the genetic and foster parents (c3=diff=genetic-
foster). I also made a scatter plot of the genetic versus foster IQ scores.

Data Display

Row foster genetic diff

1 82 82 0
2 80 90 10
3 88 91 3
4 108 115 7
5 116 115 -1
6 117 129 12
7 132 131 -1
8 71 78 7
9 75 79 4

10 93 82 -11
11 95 97 2
12 88 100 12
13 111 107 -4
14 63 68 5
15 77 73 -4
16 86 81 -5
17 83 85 2
18 93 87 -6
19 97 87 -10
20 87 93 6
21 94 94 0
22 96 95 -1
23 112 97 -15
24 113 97 -16
25 106 103 -3
26 107 106 -1
27 98 111 13
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This plot of IQ scores shows that scores are related within pairs of twins. This is consistent
with the need for a paired analysis.

Given the sample of differences, I created a boxplot and a stem and leaf display, neither which
showed marked deviation from normality. The boxplot is centered at zero, so one would not be too
surprised if the test result is insignificant.

Stem-and-Leaf Display: diff

Stem-and-leaf of diff N = 27
Leaf Unit = 1.0

2 -1 65
4 -1 10
6 -0 65
(8) -0 44311110
13 0 02234
8 0 5677
4 1 0223
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Given the sample of differences, I generated a one-sample CI and test (i.e. STAT > BASIC
STATISTICS > 1-sample t). The hypothesis under test is µd = µg − µf = 0. The p-value for this
test is large. We do not have sufficient evidence to claim that the population mean IQs for twins
raised apart are different. This is consistent with the CI for µd given below, which covers zero.

One-Sample T: diff

Test of mu = 0 vs not = 0

Variable N Mean StDev SE Mean 95% CI T P
diff 27 0.185185 7.736214 1.488835 (-2.875159, 3.245529) 0.12 0.902

Alternatively, I can generate the test and CI directly from the raw data in two columns, fol-
lowing: STAT > BASIC STATISTICS > paired-t, and specifying genetic as the first sample and
foster as the second. This gives the following output, which leads to identical conclusions to the
earlier analysis. If you take this approach, you can get high quality graphics in addition to the test
and CI.

You might ask why I tortured you by doing the first analysis, which required creating and
analyzing the sample of differences, when the alternative and equivalent second analysis is so much
easier. ( A later topic deals with non-parametric analyses of paired data for which the differences
must be first computed. )

Paired T-Test and CI: genetic, foster

Paired T for genetic - foster

N Mean StDev SE Mean
genetic 27 95.2963 15.7353 3.0283
foster 27 95.1111 16.0823 3.0950
Difference 27 0.185185 7.736214 1.488835

95% CI for mean difference: (-2.875159, 3.245529)
T-Test of mean difference = 0 (vs not = 0): T-Value = 0.12
P-Value = 0.902

Remark: I could have defined the difference to be the foster IQ score minus the genetic IQ score.
How would this change the conclusions?

Example: Paired Comparisons of Two Sleep Remedies

The following data give the amount of sleep gained in hours from two sleep remedies, A and B,
applied to 10 individuals who have trouble sleeping an adequate amount. Negative values imply
sleep loss. In 9 of the 10 individuals, the sleep gain on B exceeded that on A.

Let µA = population mean sleep gain (among troubled sleepers) on remedy A, and µB =
population mean sleep gain (among troubled sleepers) on remedy B. Consider testing H0 : µB−µA =
0 or equivalently µd = 0, where µd = µB − µA.

The observed distribution of differences between B and A is slightly skewed to the right, with
a single outlier in the upper tail. The normality assumption of the standard one-sample t-test and
CI are suspect here. I will continue with the analysis.
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Data Display

diff
Row a b (b-a)

1 0.7 1.9 1.2
2 -1.6 0.8 2.4
3 -0.2 1.1 1.3
4 -1.2 0.1 1.3
5 0.1 -0.1 -0.2
6 3.4 4.4 1.0
7 3.7 5.5 1.8
8 0.8 1.6 0.8
9 0.0 4.6 4.6
10 2.0 3.0 1.0

Stem-and-Leaf Display: diff (b-a)

Stem-and-leaf of diff (b-a) N = 10
Leaf Unit = 0.10

1 -0 2
2 0 8
(6) 1 002338
2 2 4
1 3
1 4 6

One-Sample T: diff (b-a)

Test of mu = 0 vs not = 0

Variable N Mean StDev SE Mean 95% CI T P
diff (b-a) 10 1.52000 1.27174 0.40216 (0.61025, 2.42975) 3.78 0.004

The p-value for testing H0 is .004. We’d reject H0 at the 5% or 1% level, and conclude that the
population mean sleep gains on the remedies are different. We are 95% confident that µB exceeds
µA by between .61 and 2.43 hours. Again, these results must be reported with caution, because
the normality assumption is unreasonable. However, the presence of outliers tends to make the
t-test and CI conservative, so we’d expect to find similar conclusions if we used the nonparametric
methods discussed later.
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Query: In what order should the remedies be given to the patients?

Should You Compare Means?

The mean is the most common feature on which two distributions are compared. You should not,
however, blindly apply the two-sample tests (paired or unpaired) without asking yourself whether
the means are the relevant feature to compare. This issue is not a big concern when, as highlighted
in the first graph below, the two (normal) populations have equal spreads or standard deviations. In
such cases the difference between the two population means is equal to the difference between any
fixed percentile for the two distributions, so the mean difference is a natural measure of difference.

Consider instead the hypothetical scenario depicted in the bottom pane below, where the pop-
ulation mean lifetimes using two distinct drugs for a fatal disease are µ1 = 16 months from time of
diagnosis and µ2 = 22 months from time of diagnosis, respectively. The standard deviations under
the two drugs are σ1 = 1 and σ2 = 6, respectively. The second drug has the higher mean lifetime,
but at the expense of greater risk. For example, the first drug gives you a 97.7% chance of living
at least 14 months, whereas the second drug only gives you a 90.8% chance of living at least 14
months. Which drug is best? It depends on what is important to you, a higher expected lifetime
or a lower risk of dying early.

0 5 10 15

Normal Distributions with Identical Variances

10 15 20 25 30 35 40

Normal Distributions with Different Variances
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Nonparametric Procedures

Usually the biggest problems with assumptions of normality occur when we see extreme skewness
and/or outliers. The first remedy most statisticians try in such cases is to transform the data using
logs or another appropriate transformation to obtain approximate normality on the transformed
scale. That often works well but does not handle nearly all problems. Nonparametric procedures
are a set of methods designed as alternatives to procedures like t-tests and t-confidence intervals
that can be applied even when sampling is not from a normal distribution. I will cover these in a
very cursory fashion – this is actually a huge topic on its own.

Minitab implements some of the more popular methods if you follow the path
Stat > Nonparametrics. The first three options are 1-Sample Sign, 1-Sample Wilcoxon, and
Mann-Whitney. The Sign Test is an alternative to the 1-Sample t-test and makes no real assumption
about the shape of the distribution sampled from; it focuses on the population median rather than
the mean, however. The Wilcoxon Signed Rank test also is an alternative to the 1-Sample t-test; the
only assumption about the distribution sampled from is that it is symmetric. The Mann-Whitney
test is an alternative to the 2-Sample t-test. It focuses on differences in population medians, and
assumes only that the two population distributions have the same general shape.

The Sign Test is pretty inefficient to use for data actually sampled from a normal distribution,
but it protects against arbitrarily large outliers. The Wilcoxon and Mann-Whitney tests, if they
are appropriate, are very efficient (just as powerful) relative to the t-test, and they also provide
great protection against the bad effects of outliers.

Let’s look at the Sign Test and Wilcoxon tests for the data on sleep remedies (paired data give
rise to 1-Sample methods applied to the differences).

One-Sample T: diff (b-a) <<<<<<<<< COMPARE WITH T

Test of mu = 0 vs not = 0

Variable N Mean StDev SE Mean 95% CI T P
diff (b-a) 10 1.52000 1.27174 0.40216 (0.61025, 2.42975) 3.78 0.004

Sign CI: diff (b-a) <<<<<<<<< ASK FOR CI AND TEST SEPARATELY

Sign confidence interval for median

Confidence
Achieved Interval

N Median Confidence Lower Upper Position
diff (b-a) 10 1.250 0.8906 1.000 1.800 3

0.9500 0.932 2.005 NLI <<-- USE THIS
0.9785 0.800 2.400 2

Sign Test for Median: diff (b-a)

Sign test of median = 0.00000 versus not = 0.00000

N Below Equal Above P Median
diff (b-a) 10 1 0 9 0.0215 1.250
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Wilcoxon Signed Rank CI: diff (b-a)

Confidence
Estimated Achieved Interval

N Median Confidence Lower Upper
diff (b-a) 10 1.30 94.7 0.80 2.70

Wilcoxon Signed Rank Test: diff (b-a)

Test of median = 0.000000 versus median not = 0.000000

N
for Wilcoxon Estimated

N Test Statistic P Median
diff (b-a) 10 10 54.0 0.008 1.300

There is very little difference among these results. The sign test has the shortest CI (but it is
for a population median, not mean). For real interpretation, though, your conclusions would not
depend on which of these procedures you used. That at least makes you more comfortable if you
go ahead and report the results of the t-test.

Let’s go back to the androstenedione data set where we saw a problem with outliers. For
purposes of illustration, we’ll compare the Mann-Whitney to the 2-Sample t-test. Again, there is
no real difference in a practical sense. I am uncomfortable with the Mann-Whitney here since the
shapes do not really look the same.

Two-Sample T-Test and CI: men, women

Two-sample T for men vs women

N Mean StDev SE Mean
men 14 112.5 42.8 11
women 18 75.8 17.2 4.1

Difference = mu (men) - mu (women)
Estimate for difference: 36.6667
95% CI for difference: (10.9577, 62.3756)
T-Test of difference = 0 (vs not =): T-Value = 3.02 P-Value = 0.008 DF = 16

Mann-Whitney Test and CI: men, women

N Median
men 14 118.50
women 18 77.00

Point estimate for ETA1-ETA2 is 38.00
95.4 Percent CI for ETA1-ETA2 is (3.99,56.01)
W = 293.5
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0185
The test is significant at 0.0183 (adjusted for ties)

Finally, to see that there really can be a difference, let’s return to the income data from several
lectures ago. The two large outliers pretty well destroy any meaning to the t-interval, but the
sign-interval makes a lot of sense for a population median.

Data Display
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Income
7 1110 7 5 8 12 0 5 2 2 46
7

One-Sample T: Income

Variable N Mean StDev SE Mean 95% CI
Income 12 100.917 318.008 91.801 (-101.136, 302.969)

Sign CI: Income

Sign confidence interval for median

Confidence
Achieved Interval

N Median Confidence Lower Upper Position
Income 12 7.00 0.8540 5.00 8.00 4

0.9500 2.79 10.95 NLI
0.9614 2.00 12.00 3

**** REMARK: NLI stands for non-linear interpolation

SW do discuss the Mann-Whitney test in Section 7.11.

78



9 ONE-WAY ANALYSIS OF VARIANCE

9 One-Way Analysis of Variance

SW Chapter 11 - all sections except 6.

The one-way analysis of variance (ANOVA) is a generalization of the two sample t−test to
k ≥ 2 groups. Assume that the populations of interest have the following (unknown) population
means and standard deviations:

population 1 population 2 · · · population k

mean µ1 µ2 · · · µk

std dev σ1 σ2 · · · σk

A usual interest in ANOVA is whether µ1 = µ2 = · · · = µk. If not, then we wish to know which
means differ, and by how much. To answer these questions we select samples from each of the k
populations, leading to the following data summary:

sample 1 sample 2 · · · sample k

size n1 n2 · · · nk

mean Y 1 Y 2 · · · Y k

std dev s1 s2 · · · sk

A little more notation is needed for the discussion. Let Yij denote the jth observation in the ith

sample and define the total sample size n∗ = n1 + n2 + · · · + nk. Finally, let Y be the average
response over all samples (combined), that is

Y =
∑

ij Yij

n∗
=
∑

i niY i

n∗
.

Note that Y is not the average of the sample means, unless the samples sizes ni are equal.
An F−statistic is used to test H0 : µ1 = µ2 = · · · = µk against HA : not H0. The assumptions

needed for the standard ANOVA F−test are analogous to the independent two-sample t−test
assumptions: (1) Independent random samples from each population. (2) The population frequency
curves are normal. (3) The populations have equal standard deviations, σ1 = σ2 = · · · = σk.

The F−test is computed from the ANOVA table, which breaks the spread in the combined data
set into two components, or Sums of Squares (SS). The Within SS, often called the Residual
SS or the Error SS, is the portion of the total spread due to variability within samples:

SS(Within) = (n1 − 1)s2
1 + (n2 − 1)s2

2 + · · ·+ (nk − 1)s2
k =

∑
ij(Yij − Y i)2.

The Between SS, often called the Model SS, measures the spread between (actually among!) the
sample means

SS(Between) = n1(Y 1 − Y )2 + n2(Y 2 − Y )2 + · · ·+ nk(Y k − Y )2 =
∑

i ni(Y i − Y )2,

weighted by the sample sizes. These two SS add to give

SS(Total) = SS(Between) + SS(Within) =
∑

ij(Yij − Y )2.
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Each SS has its own degrees of freedom (df). The df(Between) is the number of groups minus
one, k − 1. The df(Within) is the total number of observations minus the number of groups:
(n1−1)+(n2−1)+· · · (nk−1) = n∗−k. These two df add to give df(Total) = (k−1)+(n∗−k) = n∗−1.

The Sums of Squares and df are neatly arranged in a table, called the ANOVA table:

Source df SS MS
Between Groups k − 1

∑
i ni(Y i − Y )2

Within Groups n∗ − k
∑

i(ni − 1)s2
i

Total n∗ − 1
∑

ij(Yij − Y )2.

The ANOVA table often gives a Mean Squares (MS) column, left blank here. The Mean
Square for each source of variation is the corresponding SS divided by its df . The Mean Squares
can be easily interpreted.

The MS(Within)

(n1 − 1)s2
1 + (n2 − 1)s2

2 + · · ·+ (nk − 1)s2
k

n∗ − k
= s2

pooled

is a weighted average of the sample variances. The MS(Within) is known as the pooled estimator
of variance, and estimates the assumed common population variance. If all the sample sizes are
equal, the MS(Within) is the average sample variance. The MS(Within) is identical to the pooled
variance estimator in a two-sample problem when k = 2.

The MS(Between) ∑
i ni(Y i − Y )2

k − 1
is a measure of variability among the sample means. This MS is a multiple of the sample variance
of Y 1, Y 2, ..., Y k when all the sample sizes are equal.

The MS(Total) ∑
ij(Yij − Y )2

n∗ − 1
is the variance in the combined data set.

The decision on whether to reject H0 : µ1 = µ2 = · · · = µk is based on the ratio of the
MS(Between) and the MS(Within):

Fs =
MS(Between)
MS(Within)

.

Large values of Fs indicate large variability among the sample means Y 1, Y 2, ..., Y k relative to the
spread of the data within samples. That is, large values of Fs suggest that H0 is false.

Formally, for a size α test, reject H0 if Fs ≥ Fcrit, where Fcrit is the upper-α percentile from
an F distribution with numerator degrees of freedom k − 1 and denominator degrees of freedom
n∗ − k (i.e. the df for the numerators and denominators in the F−ratio.) The p-value for the test
is the area under the F− probability curve to the right of Fs:
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0 1 2 3 4 5 6FCrit

α = .05 (fixed)

Reject H0 for FS here

F with 4 and 20 degrees of freedom

0 1 2 3 4 5 6FS

p−value (random)

F with 4 and 20 degrees of freedom
FS not significant

FCrit

For k = 2 the ANOVA F− test is equivalent to the pooled two-sample t−test.

Minitab summarizes the ANOVA F−test with a p-value. The data can be either UNSTACKED
or STACKED, but for multiple comparisons discussed later the data must be STACKED. To carry
out the analysis, follow the sequence: STAT > ANOVA > ONE-WAY for STACKED data or
ONE-WAY (unstacked) for UNSTACKED data. With STACKED data, you need to specify the
response variable (i.e. the column containing the measurements to be analyzed) and the factor
(i.e. the column with subscripts that identify the samples) in the dialog box. As with a two-sample
analysis, high quality side-by-side boxplots and dotplots can be generated from the ANOVA dialog
box. The command line syntax for ANOVA can be obtained from the on-line help, if you are
interested.

Example: Comparison of Fats

During cooking, doughnuts absorb fat in various amounts. A scientist wished to learn whether
the amount absorbed depends on the type of fat. For each of 4 fats, 6 batches of 24 doughnuts
were prepared. The data are grams of fat absorbed per batch (minus 100).

Let

µi = pop mean grams of fat i absorbed per batch of 24 doughnuts (-100).

The scientist wishes to test H0 : µ1 = µ2 = µ3 = µ4 against HA : not H0. There is no strong
evidence against normality here. Furthermore the sample standard deviations (see output below)
are close. The standard ANOVA appears to be appropriate here.

The p-value for the F−test is .001. The scientist would reject H0 at any of the usual test levels
(i.e. .05 or .01). The data suggest that the population mean absorption rates differ across fats in
some way. The F−test does not say how they differ.
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Row fat1 fat2 fat3 fat4
1 64 78 75 55
2 72 91 86 66
3 68 97 78 49
4 77 82 71 64
5 90 85 63 70
6 76 77 76 68

One-way ANOVA: grams versus fat

Source DF SS MS F P
fat 3 1595.5 531.8 7.95 0.001
Error 20 1338.3 66.9
Total 23 2933.8

S = 8.180 R-Sq = 54.38% R-Sq(adj) = 47.54%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -----+---------+---------+---------+----
fat1 6 74.500 9.028 (------*-----)
fat2 6 85.000 7.772 (------*------)
fat3 6 74.833 7.627 (------*------)
fat4 6 62.000 8.222 (------*------)

-----+---------+---------+---------+----
60 70 80 90

Pooled StDev = 8.180

Fisher 95% Individual Confidence Intervals <<<<<<<<<<< WILL EXPLAIN SOON
All Pairwise Comparisons among Levels of fat

Simultaneous confidence level = 80.83%

fat = fat1 subtracted from:

fat Lower Center Upper ------+---------+---------+---------+---
fat2 0.648 10.500 20.352 (----*----)
fat3 -9.518 0.333 10.185 (----*----)
fat4 -22.352 -12.500 -2.648 (----*----)

------+---------+---------+---------+---
-20 0 20 40
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fat = fat2 subtracted from:

fat Lower Center Upper ------+---------+---------+---------+---
fat3 -20.018 -10.167 -0.315 (----*----)
fat4 -32.852 -23.000 -13.148 (----*---)

------+---------+---------+---------+---
-20 0 20 40

fat = fat3 subtracted from:

fat Lower Center Upper ------+---------+---------+---------+---
fat4 -22.685 -12.833 -2.982 (----*----)

------+---------+---------+---------+---
-20 0 20 40

Fisher 99.167% Individual Confidence Intervals <<<<<<<<-- Bonferroni comparisons
All Pairwise Comparisons among Levels of fat

Simultaneous confidence level = 96.16%

fat = fat1 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat2 -3.325 10.500 24.325 (------*------)
fat3 -13.492 0.333 14.159 (------*------)
fat4 -26.325 -12.500 1.325 (------*------)

--------+---------+---------+---------+-
-20 0 20 40

fat = fat2 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat3 -23.992 -10.167 3.659 (------*------)
fat4 -36.825 -23.000 -9.175 (------*-----)

--------+---------+---------+---------+-
-20 0 20 40

fat = fat3 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat4 -26.659 -12.833 0.992 (------*-----)

--------+---------+---------+---------+-
-20 0 20 40

Multiple Comparison Methods: Fisher’s Method

The ANOVA F−test checks whether all the population means are equal. Multiple comparisons
are often used as a follow-up to a significant ANOVA F−test to determine which population means
are different. I will discuss Fisher’s, Bonferroni’s and Tukey’s methods for comparing all pairs of
means. These approaches are implemented in Minitab.

Fisher’s Least significant difference method (LSD or FSD) is a two-step process:
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9 ONE-WAY ANALYSIS OF VARIANCE

1. Carry out the ANOVA F−test of H0 : µ1 = µ2 = · · · = µk at the α level. If H0 is not rejected,
stop and conclude that there is insufficient evidence to claim differences among population
means. If H0 is rejected, go to step 2.

2. Compare each pair of means using a pooled two sample t−test at the α level. Use spooled

from the ANOVA table and df = df(Residual).

To see where the name LSD originated, consider the t−test of H0 : µi = µj (i.e. populations i and
j have same mean). The t−statistic is

ts =
Y i − Y j

spooled

√
1
ni

+ 1
nj

.

You reject H0 if |ts| ≥ tcrit, or equivalently, if

|Y i − Y j | ≥ tcritspooled

√
1
ni

+
1
nj

.

The minimum absolute difference between Y i and Y j needed to reject H0 is the LSD, the quantity
on the right hand side of this inequality. If all the sample sizes are equal n1 = n2 = · · · = nk then
the LSD is the same for each comparison:

LSD = tcritspooled

√
2
n1

,

where n1 is the common sample size.
I will illustrate Fisher’s method on the doughnut data, using α = .05. At the first step, you

reject the hypothesis that the population mean absorptions are equal because p− value = .001. At
the second step, compare all pairs of fats at the 5% level. Here, spooled = 8.18 and tcrit = 2.086 for
a two-sided test based on 20 df (the df for Residual SS). Each sample has six observations, so the
LSD for each comparison is

LSD = 2.086 ∗ 8.18 ∗
√

2
6

= 9.85.

Any two sample means that differ by at least 9.85 in magnitude are significantly different at the
5% level.

An easy way to compare all pairs of fats is to order the samples by their sample means. The
samples can then be grouped easily, noting that two fats are in the same group if the absolute
difference between their sample means is smaller than the LSD.

Fats Sample Mean
2 85.00
3 74.83
1 74.50
4 62.00

There are six comparisons of two fats. From this table, you can visually assess which sample
means differ by at least the LSD=9.85, and which ones do not. For completeness, the table below
summarizes each comparison:
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Comparison Absolute difference in means Exceeds LSD?
Fats 2 and 3 10.17 Yes

2 and 1 10.50 Yes
2 and 4 23.00 Yes

Fats 3 and 1 0.33 No
3 and 4 12.83 Yes

Fats 1 and 4 12.50 Yes

The end product of the multiple comparisons is usually presented as a collection of groups,
where a group is defined to be a set of populations with sample means that not significantly different
from each other. Overlap among groups is common, and occurs when one or more populations
appears in two or more groups. Any overlap requires a more careful interpretation of the analysis.

There are three groups for the doughnut data, with no overlap. Fat 2 is in a group by itself, and
so is Fat 4. Fats 3 and 1 are in a group together. This information can be summarized by ordering
the samples from lowest to highest average, and then connecting the fats in the same group using
an underscore:

FAT 4 FAT 1 FAT 3 FAT 2
----- -------------- -----

The results of a multiple comparisons must be interpreted carefully. At the 5% level, you have
sufficient evidence to conclude that the population mean absorption for Fat 2 exceeds the other
population means, whereas the mean absorption for Fat 4 is smallest. However, there is insufficient
evidence to conclude that the population mean absorptions for Fats 1 and 3 differ.

Be Careful with Interpreting Groups in Multiple Comparisons!

To see why you must be careful when interpreting groupings, suppose you obtain two groups in a
three sample problem. One group has samples 1 and 3. The other group has samples 3 and 2:

1 3 2
---------

-----------

This occurs, for example, when |Y 1 − Y 2| ≥ LSD, but both |Y 1 − Y 3| and |Y 3 − Y 2| are
less than the LSD. There is a tendency to conclude, and please try to avoid this line of attack,
that populations 1 and 3 have the same mean, populations 2 and 3 have the same mean, but
populations 1 and 2 have different means. This conclusion is illogical. The groupings imply that
we have sufficient evidence to conclude that population means 1 and 2 are different, but insufficient
evidence to conclude that population mean 3 differs from either of the other population means.
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FSD Multiple Comparisons in Minitab

To get Fisher comparisons in Minitab, check on COMPARISONS in the one-way ANOVA dialog
box. Then choose Fisher, with individual error rate = 5 to get the individual comparisons at the
5% level, as considered above. One slight difficulty relative to our presentation is that Minitab
summarizes the multiple comparisons in terms of all possible 95% CIs for differences in population
means. This output can be used to generate groupings by noting that the individual CIs will cover
zero if and only if the corresponding 5% tests of equal means is not significant. Thus a CI for the
difference in the population means that covers zero implies that the two populations are in the
same group. A summary of the CIs is given below; see the earlier output. Let us see that we can
recover the groups from this output.

95% CI for Limits
µ2 − µ1 0.65 to 20.35
µ3 − µ1 -9.52 to 10.19
µ3 − µ1 -22.35 to -2.65

µ3 − µ2 -20.02 to -0.32
µ4 − µ2 -32.85 to -13.15

µ4 − µ3 -22.69 to -2.98

Discussion of the FSD Method

There are c = .5k(k − 1) pairs of means to compare in the second step of the FSD method. Each
comparison is done at the α level, where for a generic comparison of the ith and jth populations

α = probability of rejecting H0 : µi = µj when H0 is true.

This probability is called the comparison error rate by SAS and the individual error rate by
Minitab.

The individual error rate is not the only error rate that is important in multiple comparisons.
The family error rate (FER), or the experimentwise error rate, is defined to be the probability
of at least one false rejection of a true hypothesis H0 : µi = µj over all comparisons. When many
comparisons are made, you may have a large probability of making or or more false rejections of
true null hypotheses. In particular, when all c comparisons of two population means are performed,
each at the α level, then

α < FER < cα.

For example, in the doughnut problem where k = 4, there are c = .5 ∗ 4 ∗ 3 = 6 possible
comparisons of pairs of fats. If each comparison is carried out at the 5% level, then .05 < FER <
.30. At the second step of the FSD method, you could have up to a 30% chance of claiming one or
more pairs of population means are different if no differences existed between population means.
Minitab gives the actual FER for this problem as .192. SAS and most other statistical packages
do not evaluate the exact FER, so the upper bound is used.

The first step of the FSD method is the ANOVA “screening” test. The multiple comparisons
are carried out only if the F−test suggests that not all population means are equal. This screening
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test tends to deflate the FER for the two-step FSD procedure. However, the FSD method is
commonly criticized for being extremely liberal (too many false rejections of true null hypotheses)
when some, but not many, differences exist - especially when the number of comparisons is large.
This conclusion is fairly intuitive. When you do a large number of tests, each, say, at the 5% level,
then sampling variation alone will suggest differences in 5% of the comparisons where the H0 is
true. The number of false rejections could be enormous with a large number of comparisons. For
example, chance variation alone would account for an average of 50 significant differences in 1000
comparisons each at the 5% level.

Bonferroni Comparisons

The Bonferroni method controls the FER by reducing the individual comparison error rate. The
FER is guaranteed to be no larger than a prespecified amount, say α, by setting the individual error
rate for each of the c comparisons of interest to α/c. Larger differences in the sample means are
needed before declaring statistical significance using the Bonferroni adjustment than when using
the FSD method at the α level.

Assuming all comparisons are of interest, you can implement the Bonferroni adjustment in
Minitab by specifying the Fisher comparisons with the appropriate individual error rate.
Minitab gives the actual FER, and 100(1 − α/c)% CI for all pairs of means µi − µj . A by-
product of the Bonferroni adjustment is that we have at least 100(1 − α)% confidence that all CI
statements hold simultaneously!

If you wish to guarantee a FER ≤ .05 on all six comparisons in the doughnut problem, then
set the individual error rate to .05/6 = .0083. Minitab gives 100(1 − .0083)% = 99.17% CIs for
all µi − µj , and computes the actual FER. Here FER=.0382. The Bonferroni output was given
earlier. Looking at the output, can you create the groups? You should get the groups given below,
which implies you have sufficient evidence to conclude that the population mean absorption for Fat
2 exceeds that for Fat 4.

FAT 4 FAT 1 FAT 3 FAT 2
-----------------------

------------------------

The Bonferroni method tends to produce “coarser” groups than the FSD method, because
the individual comparisons are conducted at a lower level. Equivalently, the minimum significant
difference is inflated for the Bonferroni method. For example, in the doughnut problem with
FER ≤ .05, the critical value for the individual comparisons at the .0083 level is tcrit = 2.929. You
can read this off the Minitab output or estimate it from a t−table with df = 20. The minimum
significant difference for the Bonferroni comparisons is

LSD = 2.929 ∗ 8.18 ∗
√

2
6

= 13.824

versus an LSD=9.85 for the FSD method. Referring back to our table of sample means on page
71, we see that the sole comparison where the absolute difference between sample means exceeds
13.824 involves Fats 2 and 4.
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Example from Koopmans: Facial Tissue Thickness

In an anthropological study of facial tissue thickness for different racial groups, data were taken
during autopsy at several points on the faces of deceased individuals. The Glabella measurements
taken at the bony ridge for samples of individuals from three racial groups (cauc = Caucasian,
afam = African American and naao = Native American and Oriental) follow. The data values are
in mm.

There are 3 groups, so there are 3 possible pairwise comparisons. If you want a Bonferroni
analysis with FER of no greater than .05, you should do the individual comparisons at the .05/3 =
.0167 level. Minitab output is given below. Except for the mild outlier in the Caucasian sample,
the observed distributions are fairly normal, with similar spreads. I would expect the standard
ANOVA to perform well here.

Let µc = population mean Glabella measurement for Caucasians, µa = population mean
Glabella measurement for African Americans, and µn = population mean Glabella measurement
for Native Americans and Orientals. At the 5% level, you would not reject the hypothesis that the
population mean Glabella measurements are identical. That is, you do not have sufficient evidence
to conclude that these racial groups differ with respect to their average Glabella measurement.

The Bonferroni intervals reinforce this conclusion, since each interval for a difference in popula-
tion means contains zero. You can think of the Bonferroni intervals as simultaneous CI. We’re (at
least) 95% confident that all of the following statements hold simultaneously: −1.62 ≤ µc − µa ≤
.32, −.91 ≤ µn − µc ≤ 1.00, and −1.54 ≤ µn − µa ≤ .33. The individual CI have level
100(1− .0167)% = 98.33%. Any further comments?

CONTENTS OF WORKSHEET: Data in Columns c1-c3, labeled

Row cauc afam naao
1 5.75 6.00 8.00
2 5.50 6.25 7.00
3 6.75 6.75 6.00
4 5.75 7.00 6.25
5 5.00 7.25 5.50
6 5.75 6.75 4.00
7 5.75 8.00 5.00
8 7.75 6.50 6.00
9 5.75 7.50 7.25
10 5.25 6.25 6.00
11 4.50 5.00 6.00
12 6.25 5.75 4.25
13 5.00 4.75
14 6.00

Descriptive Statistics: cauc, afam, naao

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
cauc 12 0 5.813 0.241 0.833 4.500 5.313 5.750 6.125 7.750
afam 13 0 6.462 0.248 0.895 5.000 5.875 6.500 7.125 8.000
naao 14 0 5.857 0.298 1.117 4.000 4.938 6.000 6.438 8.000
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One-way ANOVA: Glabella versus Group

Source DF SS MS F P
Group 2 3.398 1.699 1.83 0.175
Error 36 33.461 0.929
Total 38 36.859

S = 0.9641 R-Sq = 9.22% R-Sq(adj) = 4.18%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -----+---------+---------+---------+----
afam 13 6.4615 0.8947 (----------*----------)
cauc 12 5.8125 0.8334 (----------*-----------)
naao 14 5.8571 1.1168 (---------*----------)

-----+---------+---------+---------+----
5.50 6.00 6.50 7.00

Pooled StDev = 0.9641

Fisher 98.33% Individual Confidence Intervals
All Pairwise Comparisons among Levels of Group

Simultaneous confidence level = 95.69%

Group = afam subtracted from:

Group Lower Center Upper ---+---------+---------+---------+------
cauc -1.6178 -0.6490 0.3198 (-------------*-------------)
naao -1.5365 -0.6044 0.3277 (------------*-------------)

---+---------+---------+---------+------
-1.40 -0.70 0.00 0.70

Group = cauc subtracted from:

Group Lower Center Upper ---+---------+---------+---------+------
naao -0.9074 0.0446 0.9967 (-------------*------------)

---+---------+---------+---------+------
-1.40 -0.70 0.00 0.70
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Further Discussion of Multiple Comparisons

The FSD and Bonferroni methods comprise the ends of the spectrum of multiple comparisons
methods. Among multiple comparisons procedures, the FSD method is most likely to find differ-
ences, whether real or due to sampling variation, whereas Bonferroni is often the most conservative
method. You can be reasonably sure that differences suggested by the Bonferroni method will be
suggested by almost all other methods, whereas differences not significant under FSD will not be
picked up using other approaches.

The Bonferroni method is conservative, but tends to work well when the number of comparisons
is small, say 4 or less. A smart way to use the Bonferroni adjustment is to focus attention only on
the comparisons of interest (generated independently of looking at the data!), and ignore the rest.
I will return to this point later.

Two commonly used alternatives to FSD and Bonferroni are Tukey’s honest significant dif-
ference method (HSD) and Newman-Keuls studentized range method. Tukey’s method can be
implemented in Minitab by specifying Tukey multiple comparisons (typically with FER=5%) in
the one-way ANOVA dialog box. SW discuss the Newman-Keuls approach, which is not imple-
mented in Minitab.

To implement Tukey’s method with a FER of α, reject H0 : µi = µj when

|Y i − Y j | ≥
qcrit√

2
spooled

√
1
ni

+
1
nj

,

where qcrit is the α level critical value of the studentized range distribution. For the doughnut fats,
the groupings based on Tukey and Bonferroni comparisons are identical; see the Minitab output
below.

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of fat

Individual confidence level = 98.89%

fat = fat1 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat2 -2.725 10.500 23.725 (-----*------)
fat3 -12.891 0.333 13.558 (-----*------)
fat4 -25.725 -12.500 0.725 (------*-----)

--------+---------+---------+---------+-
-20 0 20 40

fat = fat2 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat3 -23.391 -10.167 3.058 (------*------)
fat4 -36.225 -23.000 -9.775 (------*-----)

--------+---------+---------+---------+-
-20 0 20 40

fat = fat3 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat4 -26.058 -12.833 0.391 (------*-----)

--------+---------+---------+---------+-
-20 0 20 40
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Checking Assumptions in ANOVA Problems

The classical ANOVA assumes that the populations have normal frequency curves and the popu-
lations have equal variances (or spreads). You can test the normality assumption using multiple
normal scores tests, which we discussed earlier. An alternative approach that is useful with three
or more samples is to make a single normal scores plot for the entire data set. The samples must
be centered at the same location for this to be meaningful. (WHY?) This is done by subtracting
the sample mean from each observation in the sample, giving the so-called residuals. A normal
scores plot or histogram of the residuals should resemble a sample from a normal population. These
two plots can be generated with the ANOVA procedure in Minitab, but the normal probability
plot does not include a p-value for testing normality. However, the residuals can be stored in the
worksheet, and then a formal test of normality is straightforward (from the path Stat > Basic
Statistics > Normality Test — use either the Anderson Darling or the Ryan Joiner test).

Bartlett’s test and Levene’s test for equal population variances are obtained from Stat > ANOVA
> Test for Equal Variances. Bartlett’s test is a little sensitive to the normality assumption,
while Levene’s is not. I will now define Bartlett’s test, which assumes normally distributed data.
As above, let n∗ = n1 + n2 + · · · + nk, where the nis are the sample sizes from the k groups, and
define

v = 1 +
1

3(k − 1)

(
k∑

i=1

1
ni − 1

− 1
n∗ − k

)
.

Bartlett’s statistic for testing H0 : σ2
1 = · · · = σ2

k is given by

Bobs =
2.303

v

{
(n− k)logs2

pooled −
k∑

i=1

(ni − 1)logs2
i

}
,

where s2
pooled is the pooled estimator of variance and s2

i is the estimated variance based on the ith

sample.
Large values of Bobs suggest that the population variances are unequal. For a size α test, we

reject H0 if Bobs ≥ χ2
k−1,crit, where χ2

k−1,crit is the upper-α percentile for the χ2
k−1 (chi-squared)

probability distribution with k−1 degrees of freedom. A generic plot of the χ2 distribution is given
below. SW give a chi-squared table on p. 653. A p-value for the test is given by the area under
the chi-squared curve to the right of Bobs.
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0 4 χCrit
2

α = .05 (fixed)

Reject H0 for χS
2 here

χ2 distribution with 3 degrees of freedom

Minitab does the calculation for us, as illustrated below. Follow the menu path Stat > ANOVA
> Test for equal variances. This result is not surprising given how close the sample variances
are to each other.
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Example from the Child Health and Development Study (CHDS)

We consider data from the birth records of 680 live-born white male infants. The infants were
born to mothers who reported for pre-natal care to three clinics of the Kaiser hospitals in northern
California. As an initial analysis, we will examine whether maternal smoking has an effect on
the birth weights of these children. To answer this question, we define 3 groups based on mother’s
smoking history: (1) mother does not currently smoke or never smoked (2) mother smoked less than
one pack of cigarettes a day during pregnancy (3) mother smoked at least one pack of cigarettes a
day during pregnancy.

Let µi = pop mean birth weight (in lbs) for children in group i, (i = 1, 2, 3). We wish to test
H0 : µ1 = µ2 = µ3 against HA : not H0.

Several plots were generated as part of the analysis: dotplots and boxplots, normal probability
plots for each sample, and a normal probability plot and histogram of the residuals from the
ANOVA. These are included at the end of the notes.

Looking at the boxplots, there is some evidence of non-normality here. Although there are
outliers in the no smoking group, we need to recognize that the sample size for this group is fairly
large - 381. Given that boxplots are calibrated in such a way that 7 outliers per 1000 observations
are expected when sampling from a normal population, 5 outliers (you only see 4!) out of 381 seems
a bit excessive. A formal test rejects the hypothesis of normality in the no and low smoker groups.
The normal probability plot and the histogram of the residuals also suggests that the population
distributions are heavy tailed. I also saved the residuals from the ANOVA and did a formal test of
normality on the combined sample, which was significant (p-value=.029). However, I am not overly
concerned about this for the following reasons - in large samples, small deviations from normality
are often statistically significant and in my experience, the small deviations we are seeing here are
not likely to impact our conclusions, in the sense that non-parametric methods that do not require
normality will lead to the same conclusions.

Looking at the summaries, we see that the sample standard deviations are close. Formal tests
of equal population variances are far from significant. The p-values for Bartlett’s test and Levene’s
test are greater than .4. Thus, the standard ANOVA appears to be appropriate here.

The p-value for the F−test is less than .0001. We would reject H0 at any of the usual test levels
(i.e. .05 or .01). The data suggest that the population mean birth weights differ across smoking
status groups. The Tukey multiple comparisons suggest that the mean birth weights are higher for
children born to mothers that did not smoke during pregnancy.

Descriptive Statistics: Weight

Variable Smoke_Gp N N* Mean SE Mean StDev Minimum Q1 Median
Weight 1 381 0 7.7328 0.0539 1.0523 3.3000 7.0000 7.7000

2 169 0 7.2213 0.0829 1.0778 5.2000 6.3500 7.1000
3 130 0 7.2662 0.0957 1.0909 4.4000 6.5000 7.3000

Variable Smoke_Gp Q3 Maximum
Weight 1 8.4500 11.4000

2 7.8500 10.0000
3 8.0000 9.4000

One-way ANOVA: Weight versus Smoke_Gp

Source DF SS MS F P
Smoke_Gp 2 40.70 20.35 17.90 0.000
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Error 677 769.49 1.14
Total 679 810.20

S = 1.066 R-Sq = 5.02% R-Sq(adj) = 4.74%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -------+---------+---------+---------+--
1 381 7.733 1.052 (-----*----)
2 169 7.221 1.078 (-------*-------)
3 130 7.266 1.091 (--------*--------)

-------+---------+---------+---------+--
7.20 7.40 7.60 7.80

Pooled StDev = 1.066

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Smoke_Gp

Individual confidence level = 98.05%

Smoke_Gp = 1 subtracted from:

Smoke_Gp Lower Center Upper -----+---------+---------+---------+----
2 -0.742 -0.512 -0.281 (-------*-------)
3 -0.720 -0.467 -0.213 (-------*--------)

-----+---------+---------+---------+----
-0.60 -0.30 0.00 0.30

Smoke_Gp = 2 subtracted from:

Smoke_Gp Lower Center Upper -----+---------+---------+---------+----
3 -0.246 0.045 0.336 (--------*---------)

-----+---------+---------+---------+----
-0.60 -0.30 0.00 0.30
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10 Discrete Data Analysis

SW Chapter 10
Earlier this semester we discussed inference for a single proportion problem. In this section we

will generalize those methods in two directions. First we consider single sample problems involving
categorical variables with multiple categories. Second, we consider problems with two or more
samples.

Goodness-of-Fit Tests

Example The following data set was used as evidence in a court case. The data represent a
sample of 1336 individuals from the jury pool of a large municipal court district for the years 1975-
1977. The fairness of the representation of various age groups on juries was being contested. The
strategy for doing this was to challenge the representativeness of the pool of individuals from which
the juries are drawn. This was done by comparing the age group distribution within the jury pool
against the age distribution in the district as a whole, which was available from census figures.

Age group (yrs) Obs. Counts Obs. Prop. Census Prop.
18-19 23 .017 .061
20-24 96 .072 .150
25-29 134 .100 .135
30-39 293 .219 .217
40-49 297 .222 .153
50-64 380 .284 .182
65-99 113 .085 .102

A statistical question here is whether the jury pool population proportions are equal to the
census proportions across the age categories. This comparison can be formulated as a goodness-
of-fit test, which generalizes the large sample test on a single proportion to a categorical variable
(here age) with r > 2 levels. For r = 2 categories, the goodness-of-fit test and large sample test
on a single proportion are identical. Although this problem compares two populations, only one
sample is involved because the census data is a population summary!

In general, suppose each individual in a population is categorized into one and only one of
r levels or categories. Let p1, p2, ..., pr be the population proportions in the r categories, where
each pi ≥ 0 and p1 + p2 + · · · + pr = 1. The hypotheses of interest in a goodness-of-fit problem
are H0 : p1 = p0

1, p2 = p0
2, ..., pr = p0

r and HA : not H0, where p0
1, p0

2, ..., p
0
r are given category

proportions.
The plausibility of H0 is evaluated by comparing the hypothesized category proportions to

estimated (i.e. observed) category proportions p̂1, p̂2, ..., p̂r from a random or representative
sample of n individuals selected from the population. The discrepancy between the hypothesized
and observed proportions is measured by the Pearson chi-squared statistic:

χ2
s =

r∑
i=1

(Oi − Ei)2

Ei
,
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where Oi is the observed number in the sample that fall into the ith category (Oi = np̂i), and
Ei = np0

i is the number of individuals expected to be in the ith category when H0 is true.
The Pearson statistic can also be computed as the sum of the squared residuals:

χ2
s =

r∑
i=1

Z2
i ,

where Zi = (Oi − Ei)/
√

Ei, or in terms of the observed and hypothesized category proportions

χ2
s = n

r∑
i=1

(p̂i − p0
i )

2

p0
i

.

The Pearson statistic χ2
s is “small” when all of the observed counts (proportions) are close to

the expected counts (proportions). The Pearson χ2 is “large” when one or more observed counts
(proportions) differs noticeably from what is expected when H0 is true. Put another way, large
values of χ2

s suggest that H0 is false.
The critical value χ2

crit for the test is obtained from a chi-squared probability table with r − 1
degrees of freedom. A chi-squared table is given on page 686 of SW. The picture below shows
the form of the rejection region. For example, if r = 5 and α = .05, then you reject H0 when
χ2

s ≥ χ2
crit = 9.49. The p-value for the test is the area under the chi-squared curve with df = r− 1

to the right of the observed χ2
s value.

0 5 10 15
χCrit

2

α = .05 (fixed)

Reject H0 for χS
2 here

χ2 with 4 degrees of freedom

0 5 10 15
χCrit

2 χS
2

p − value (random)

χ2 with 4 degrees of freedom

χS
2 significant

Example (Jury pool problem) Let p18 be the proportion in the jury pool population between
ages 18 and 19. Define p20, p25, p30, p40, p50 and p65 analogously. You are interested in testing
H0 : p18 = .061, p20 = .150, p25 = .135, p30 = .217, p40 = .153, p50 = .182 and p65 = .102 against
HA : not H0, using the sample of 1336 from the jury pool.

The observed counts, the expected counts, and the category residuals are given in the table
below. For example, E18 = 1336 ∗ (.061) = 81.5 and Z18 = (23− 81.5)/

√
81.5 = −6.48 in the 18-19

year category.
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The Pearson statistic is

χ2
s = (−6.48)2 + (−7.38)2 + (−3.45)2 + .182 + 6.482 + 8.782 + (−1.99)2 = 231.26

on r − 1 = 7 − 1 = 6 degrees of freedom. Here χ2
crit = 12.59 at α = .05. The p-value for the

goodness-of-fit test is less than .001, which suggests that H0 is false.

Age group (yrs) Obs. Counts Exp. Counts Residual
18-19 23 81.5 -6.48
20-24 96 200.4 -7.38
25-29 134 180.4 -3.45
30-39 293 289.9 0.18
40-49 297 204.4 6.48
50-64 380 243.2 8.78
65-99 113 136.3 -1.99

Adequacy of the Goodness-of-Fit Test

The chi-squared goodness-of-fit test is a large sample test. A conservative rule of thumb is that the
test is suitable when each expected count is at least five. This holds in the jury pool example.
There is no widely available alternative method for testing goodness-of-fit with smaller sample sizes.
There is evidence, however, that the chi-squared test is slightly conservative (the p-values are
too large, on average) when the expected counts are smaller. Some statisticians recommend that
the chi-squared approximation be used when the minimum expected count is at least one, provided
the expected counts are not too variable.

Minitab Implementation

Minitab will do a chi-squared goodness-of-fit test in the by following the menu path Stat > Tables
> Chi-Square Goodness-of-Fit Test (One Variable). Unlike the method we used for a single
proportion of entering summarized data from a dialog box, the summarized data need to be entered
into the worksheet (having counts for categories is summarized data). Following is the Minitab
output for the jury pool problem:

Data Display

Row Age Count CensusProp
1 18-19 23 0.061
2 20-24 96 0.150
3 25-29 134 0.135
4 30-39 293 0.217
5 40-49 297 0.153
6 50-64 380 0.182
7 65-99 113 0.102
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Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Count

Using category names in Age

Test Contribution
Category Observed Proportion Expected to Chi-Sq
18-19 23 0.061 81.496 41.9871
20-24 96 0.150 200.400 54.3880
25-29 134 0.135 180.360 11.9164
30-39 293 0.217 289.912 0.0329
40-49 297 0.153 204.408 41.9420
50-64 380 0.182 243.152 77.0192
65-99 113 0.102 136.272 3.9743

N DF Chi-Sq P-Value
1336 6 231.260 0.000

The term “Contribution to Chi-Square” refers to the values of (O−E)2

E for each category. χ2
s is the

sum of those contributions.

Comparing Two Proportions: Independent Samples

The New Mexico state legislature is interested in how the proportion of registered voters that
support Indian gaming differs between New Mexico and Colorado. Assuming neither population
proportion is known, the state’s statistician might recommend that the state conduct a survey
of registered voters sampled independently from the two states, followed by a comparison of the
sample proportions in favor of Indian gaming.

Statistical methods for comparing two proportions using independent samples can be formulated
as follows. Let p1 and p2 be the proportion of populations 1 and 2, respectively, with the attribute
of interest. Let p̂1 and p̂2 be the corresponding sample proportions, based on independent random
or representative samples of size n1 and n2 from the two populations.

Large Sample CI and Tests for p1 − p2

A large sample CI for p1 − p2 is (p̂1 − p̂2)± zcritSECI(p̂1 − p̂2), where zcrit is the standard normal
critical value for the desired confidence level, and

SECI(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)
n2
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is the CI standard error.
A large sample p-value for a test of the null hypothesis H0 : p1 − p2 = 0 against the two-sided

alternative HA : p1 − p2 6= 0 is evaluated using tail areas of the standard normal distribution
(identical to 1 sample evaluation) in conjunction with the test statistic

zs =
p̂1 − p̂2

SEtest(p̂1 − p̂2)
,

where

SEtest(p̂1 − p̂2) =

√
p̄(1− p̄)

n1
+

p̄(1− p̄)
n2

=

√
p̄(1− p̄)

(
1
n1

+
1
n2

)
is the test standard error for p̂1 − p̂2. The pooled proportion

p̄ =
n1p̂1 + n2p̂2

n1 + n2

is the proportion of successes in the two samples combined. The test standard error has the same
functional form as the CI standard error, with p̄ replacing the individual sample proportions.

The pooled proportion is the best guess at the common population proportion when H0 : p1 = p2

is true. The test standard error estimates the standard deviation of p̂1 − p̂2 assuming H0 is true.

Example Two hundred and seventy nine French skiers were studied during two one-week periods
in 1961. One group of 140 skiers receiving a placebo each day, and the other 139 receiving 1
gram of ascorbic acid (Vitamin C) per day. The study was double blind - neither the subjects
nor the researchers knew who received what treatment. Let p1 be the probability that a member
of the ascorbic acid group contracts a cold during the study period, and p2 be the corresponding
probability for the placebo group. Linus Pauling and I are interested in testing whether p1 = p2.
The data are summarized below as a two-by-two table of counts (a contingency table)

Outcome Ascorbic Acid Placebo
# with cold 17 31

# with no cold 122 109
Totals 139 140

The sample sizes are n1 = 139 and n2 = 140. The sample proportion of skiers developing colds
in the placebo and treatment groups are p̂2 = 31/140 = .221 and p̂1 = 17/139 = .122, respectively.
The pooled proportion is the number of skiers that developed colds divided by the number of skiers
in the study: p̄ = 48/279 = .172.

The test standard error is:

SEtest(p̂1 − p̂2) =

√
.172 ∗ (1− .172)

(
1

139
+

1
140

)
= .0452.

The test statistic is
zs =

.122− .221
.0452

= −2.19.

The p-value for a two-sided test is twice the area under the standard normal curve to the right of
2.19 (or twice the area to the left of -2.19), which is 2 ∗ (.014) = .028 At the 5% level, we reject the
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hypothesis that the probability of contracting a cold is the same whether you are given a placebo
or Vitamin C.

A CI for p1 − p2 provides a measure of the size of the treatment effect. For a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
.221 ∗ (1− .221)

140
+

.122 ∗ (1− .122)
139

= 1.96 ∗ (.04472) = .088.

The 95% CI for p1 − p2 is (.122 − .221) ± .088, or (−.187,−.011). We are 95% confident that p2

exceeds p1 by at least .011 but not by more than .187.
On the surface, we would conclude that a daily dose of Vitamin C decreases a French skier’s

chance of developing a cold by between .011 and .187 (with 95% confidence). This conclusion was
somewhat controversial. Several reviews of the study felt that the experimenter’s evaluations of
cold symptoms were unreliable. Many other studies refute the benefit of Vitamin C as a treatment
for the common cold.

Example A case-control study was designed to examine risk factors for cervical dysplasia (Becker
et al. 1994). All the women in the study were patients at UNM clinics. The 175 cases were women,
aged 18-40, who had cervical dysplasia. The 308 controls were women aged 18-40 who did not have
cervical dysplasia. Each women was classified as positive or negative, depending on the presence
of HPV (human papilloma virus).

The data are summarized below.

HPV Outcome Cases Controls
Positive 164 130
Negative 11 178

Sample size 175 308

Let p1 be the probability that a case is HPV positive and let p2 be the probability that a control
is HPV positive. The sample sizes are n1 = 175 and n2 = 308. The sample proportions of positive
cases and controls are p̂1 = 164/175 = .937 and p̂2 = 130/308 = .422.

For a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
.937 ∗ (1− .937)

175
+

.422 ∗ (1− .422)
308

= 1.96 ∗ (.03336) = .0659.

A 95% CI for p1− p2 is (.937− .422)± .066, or .515± .066, or (.449, .581). I am 95% confident that
p1 exceeds p2 by at least .45 but not by more than .58.

Not surprisingly, a two-sided test at the 5% level would reject H0 : p1 = p2. In this problem
one might wish to do a one-sided test, instead of a two-sided test. Let us carry out this test, as a
refresher on how to conduct one-sided tests.

Appropriateness of Large Sample Test and CI

The standard two sample CI and test used above are appropriate when each sample is large. A rule
of thumb suggests a minimum of at least five successes (i.e. observations with the characteristic of
interest) and failures (i.e. observations without the characteristic of interest) in each sample before
using these methods. This condition is satisfied in our two examples.
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Minitab Implementation

For the Vitamin C example, in order to get Minitab to do all the calculations as presented, it is
easiest to follow the menu path Stat > Basic Statistics > 2 Proportions and enter summary
data as follows (you need to check the box for pooled estimate of p for test).

Test and CI for Two Proportions

Sample X N Sample p
1 17 139 0.122302
2 31 140 0.221429

Difference = p (1) - p (2)
Estimate for difference: -0.0991264
95% CI for difference: (-0.186859, -0.0113937)
Test for difference = 0 (vs not = 0): Z = -2.19 P-Value = 0.028

For the cervical dysplasia example, Minitab results are as follows:

Test and CI for Two Proportions

Sample X N Sample p
1 164 175 0.937143
2 130 308 0.422078

Difference = p (1) - p (2)
Estimate for difference: 0.515065
95% CI for difference: (0.449221, 0.580909)
Test for difference = 0 (vs not = 0): Z = 11.15 P-Value = 0.000

The above analyses are not the most common way to see data like this presented. The ability
to get a confidence interval is particularly nice, and I do recommend including such an analysis.
Usually, though, we present such data as a two-by-two contingency table. We need this structure
in the rest of this section, so let us do that for these two examples.

The basic structure of data entry (it must be in the worksheet) is similar to our earlier use of
stacked data. This is how SAS, Stata, and most other packages want it as well. For the Vitamin
C example, the data are entered as follows:
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Data Display

Row Cold Group Count
1 1Yes 1Vit C 17
2 1Yes 2Placebo 31
3 2No 1Vit C 122
4 2No 2Placebo 109

The values for Cold could be entered as just Yes and No, but then Minitab alphabetizes in the
presentation. What I have done is one way to get Minitab to present the table in the order we want
it. Now we follow the menu path Stat > Tables > Cross Tabulation and Chi-Square and fill
in the following box appropriately:

The various Display options and Other Stats are reflected in the following output. I structured
this to present what I usually get out of SAS by default.

Tabulated statistics: Cold, Group

Using frequencies in Count

Rows: Cold Columns: Group

1Vit C 2Placebo All

1Yes 17 31 48
35.42 64.58 100.00
12.23 22.14 17.20
6.09 11.11 17.20
23.9 24.1 48.0

1.9990 1.9847 *

2No 122 109 231
52.81 47.19 100.00
87.77 77.86 82.80
43.73 39.07 82.80
115.1 115.9 231.0

0.4154 0.4124 *

All 139 140 279
49.82 50.18 100.00
100.00 100.00 100.00
49.82 50.18 100.00
139.0 140.0 279.0
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* * *

Cell Contents: Count
% of Row
% of Column
% of Total
Expected count
Contribution to Chi-square

Pearson Chi-Square = 4.811, DF = 1, P-Value = 0.028
Likelihood Ratio Chi-Square = 4.872, DF = 1, P-Value = 0.027

Fisher’s exact test: P-Value = 0.0384925

The Pearson χ2
s = 4.811 is just the square of Zs = −2.19, so for this case it’s really an identical

test (only for the two-sided hypothesis, though). The Likelihood Ratio Chi-Square is another
large-sample test. Fisher’s Exact test is another test that does not need large samples - I use
it in practice very frequently. Minitab only performs this test for two-by-two tables — for more
complicated tables, this is can be a very hard test to compute. SAS and Stata will at least try to
compute it for arbitrary tables, though they do not always succeed. Let us examine the output to
see what all these terms mean.

For the cervical dysplasia data, the results are:

Data Display

Row HPV Group Count
1 1Pos Case 164
2 1Pos Control 130
3 2Neg Case 11
4 2Neg Control 178

Tabulated statistics: HPV, Group

Using frequencies in Count

Rows: HPV Columns: Group

Case Control All

1Pos 164 130 294
55.78 44.22 100.00
93.71 42.21 60.87
33.95 26.92 60.87
106.5 187.5 294.0
31.01 17.62 *

2Neg 11 178 189
5.82 94.18 100.00
6.29 57.79 39.13
2.28 36.85 39.13
68.5 120.5 189.0
48.25 27.41 *

All 175 308 483
36.23 63.77 100.00
100.00 100.00 100.00
36.23 63.77 100.00
175.0 308.0 483.0
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* * *

Cell Contents: Count
% of Row
% of Column
% of Total
Expected count
Contribution to Chi-square

Pearson Chi-Square = 124.294, DF = 1, P-Value = 0.000
Likelihood Ratio Chi-Square = 144.938, DF = 1, P-Value = 0.000

Fisher’s exact test: P-Value = 0.0000000

Effect Measures in Two-by-Two Tables

Consider a study of a particular disease, where each individual is either exposed or not-exposed to
a risk factor. Let p1 be the proportion diseased among the individuals in the exposed population,
and p2 be the proportion diseased among the non-exposed population. This population information
can be summarized as a two-by-two table of population proportions:

Outcome Exposed population Non-Exposed population
Diseased p1 p2

Non-Diseased 1− p1 1− p2

A standard measure of the difference between the exposed and non-exposed populations is the
absolute difference: p1 − p2. We have discussed statistical methods for assessing this difference.

In many epidemiological and biostatistical settings, other measures of the difference between
populations are considered. For example, the relative risk

RR =
p1

p2

is commonly reported when the individual risks p1 and p2 are small. The odds ratio

OR =
p1/(1− p1)
p2/(1− p2)

is another standard measure. Here p1/(1− p1) is the odds of being diseased in the exposed group,
whereas p2/(1− p2) is the odds of being diseased in the non-exposed group.

We will discuss these measures more completely next semester. At this time I will note that
each of these measures can be easily estimated from data, using the sample proportions as estimates
of the unknown population proportions. For example, in the vitamin C study:

Outcome Ascorbic Acid Placebo
# with cold 17 31

# with no cold 122 109
Totals 139 140
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the proportion with colds in the placebo group is p̂2 = 31/140 = .221. The proportion with colds
in the vitamin C group is p̂1 = 17/139 = .122.

The estimated absolute difference in risk is p̂1 − p̂2 = .122− .221 = −.099. The estimated risk
ratio and odds ratio are

R̂R =
.122
.221

= .55

and
ÔR =

.122/(1− .122)

.221/(1− .221)
= .49,

respectively.

Testing for Homogeneity of Proportions

Example The following two-way table of counts summarizes the location of death and age at
death from a study of 2989 cancer deaths (Public Health Reports, 1983):

(Obs Counts) Location of death
Age Home Acute Care Chronic care Row Total

15-54 94 418 23 535
55-64 116 524 34 674
65-74 156 581 109 846
75+ 138 558 238 934

Col Total 504 2081 404 2989

The researchers want to compare the age distributions across locations. A one-way ANOVA
would be ideal if the actual ages were given. Because the ages are grouped, the data should be
treated as categorical. Given the differences in numbers that died at the three types of facilities, a
comparison of proportions or percentages in the age groups is appropriate. A comparison of counts
is not.

The table below summarizes the proportion in the four age groups at each location. For example,
in the acute care facility 418/2081 = .201 and 558/2081 = .268. The pooled proportions are the
Row Totals divided by the total sample size of 2989. The pooled summary gives the proportions
in the four age categories, ignoring location of death.

The age distributions for home and for the acute care facilities are similar, but are very different
from the age distribution at chronic care facilities.

To formally compare the observed proportions, one might view the data as representative sample
of ages at death from the three locations. Assuming independent samples from the three locations
(populations), a chi-squared statistic is used to test whether the population proportions of ages at
death are identical (homogeneous) across locations. The chi-squared test for homogeneity of
population proportions can be defined in terms of proportions, but is traditionally defined in terms
of counts.
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(Proportions) Location of death
Age Home Acute Care Chronic care Pooled

15-54 .187 .201 .057 .179
55-64 .230 .252 .084 .226
65-74 .310 .279 .270 .283
75+ .273 .268 .589 .312
Total 1.000 1.000 1.000 1.000

In general, assume that the data are independent samples from c populations (strata, groups,
sub-populations), and that each individual is placed into one of r levels of a categorical variable.
The raw data will be summarized as a r × c contingency table of counts, where the columns
correspond to the samples, and the rows are the levels of the categorical variable. In the age
distribution problem, r = 4 and c = 3. (SW uses k to identify the number of columns.)

To implement the test:

1. Compute the (estimated) expected count for each cell in the table as follows:

E =
Row Total ∗ Column Total

Total Sample Size
.

2. Compute the Pearson test statistic

χ2
s =

∑
all cells

(O − E)2

E
,

where O is the observed count.

3. For a size α test, reject the hypothesis of homogeneity if χ2
s ≥ χ2

crit, where χ2
crit is the upper

α critical value from the chi-squared distribution with df = (r − 1)(c− 1).

The p-value for the chi-squared test of homogeneity is equal to the area under the chi-squared curve
to the right of X2; see the picture on page 98.

For a two-by-two table of counts, the chi-squared test of homogeneity of proportions
is identical to the two-sample proportion test we discussed earlier.

Minitab Analysis

Enter data as follows (just as for the two-by-two table):

Data Display

Row Age Care Count
1 15-54 1Home 94
2 15-54 Acute 418
3 15-54 Chronic 23
4 55-64 1Home 116
5 55-64 Acute 524
6 55-64 Chronic 34
7 65-74 1Home 156
8 65-74 Acute 581
9 65-74 Chronic 109

10 75+ 1Home 138
11 75+ Acute 558
12 75+ Chronic 238
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Follow the same path Stat > Tables > Cross Tabulation and Chi-Square with these results:

Tabulated statistics: Age, Care

Using frequencies in Count

* NOTE * Fisher’s exact test available only for 2 x 2 tables.

Rows: Age Columns: Care

1Home Acute Chronic All

15-54 94 418 23 535
17.57 78.13 4.30 100.00
18.65 20.09 5.69 17.90
3.14 13.98 0.77 17.90
90.2 372.5 72.3 535.0
0.159 5.564 33.627 *

55-64 116 524 34 674
17.21 77.74 5.04 100.00
23.02 25.18 8.42 22.55
3.88 17.53 1.14 22.55
113.6 469.3 91.1 674.0
0.049 6.388 35.789 *

65-74 156 581 109 846
18.44 68.68 12.88 100.00
30.95 27.92 26.98 28.30
5.22 19.44 3.65 28.30
142.7 589.0 114.3 846.0
1.249 0.109 0.250 *

75+ 138 558 238 934
14.78 59.74 25.48 100.00
27.38 26.81 58.91 31.25
4.62 18.67 7.96 31.25
157.5 650.3 126.2 934.0
2.412 13.092 98.937 *

All 504 2081 404 2989
16.86 69.62 13.52 100.00
100.00 100.00 100.00 100.00
16.86 69.62 13.52 100.00
504.0 2081.0 404.0 2989.0

* * * *

Cell Contents: Count
% of Row
% of Column
% of Total
Expected count
Contribution to Chi-square

Pearson Chi-Square = 197.624, DF = 6, P-Value = 0.000
Likelihood Ratio Chi-Square = 200.972, DF = 6, P-Value = 0.000

The Pearson statistic and the likelihood ratio statistic, which is an alternative statistic for
testing homogeneity, both report a p-value of 0 to three places. The data strongly suggest that
there are differences in the age distributions among locations. The likelihood ratio statistic leads to
the same conclusion. The various summaries help us to explain what is the nature of the differences.
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Testing for Homogeneity in Cross-Sectional and Stratified Studies

Two-way tables of counts are often collected either by stratified sampling or by cross-sectional
sampling.

In a stratified design, distinct groups, strata, or sub-populations are identified. Independent
samples are selected from each group, and the sampled individuals are classified into categories.
The HPV study is an illustration of a stratified design (and a case-control study). Stratified
designs provide estimates for the strata (population) proportion in each of the categories. A test
for homogeneity of proportions is used to compare the strata.

In a cross-sectional design, individuals are randomly selected from a population and classified
by the levels of two categorical variables. With cross-sectional samples you can test homogeneity
of proportions by comparing either the row proportions or by comparing the column proportions.

Example The following data (The Journal of Advertising, 1983, p. 34-42) are from a cross-sectional
study that involved soliciting opinions on anti-smoking advertisements. Each subject was asked
whether they smoked and their reaction (on a five-point ordinal scale) to the ad. The data are
summarized as a two-way table of counts, given below:

Str. Dislike Dislike Neutral Like Str. Like Row Tot
Smoker 8 14 35 21 19 97

Non-smoker 31 42 78 61 69 281
Col Total 39 56 113 82 88 378

The row proportions are

(Row Prop) Str. Dislike Dislike Neutral Like Str. Like Row Tot
Smoker .082 .144 .361 .216 .196 1.000

Non-smoker .110 .149 .278 .217 .245 1.000

For example, the entry for the (Smoker, Str. Dislike ) cell is: 8/97 = .082.

Similarly, the column proportions are

(Col Prop) Str. Dislike Dislike Neutral Like Str. Like
Smoker .205 .250 .310 .256 .216

Non-smoker .795 .750 .690 .744 .784
Total 1.000 1.000 1.000 1.000 1.000

Although it may be more natural to compare the smoker and non-smoker row proportions, the
column proportions can be compared across ad responses. There is no advantage to comparing
“rows” instead of “columns” in a formal test of homogeneity of proportions with cross-sectional
data. The Pearson chi-squared test (and the likelihood ratio test) treats the rows and columns
interchangeably, so you get the same result regardless of how you view the comparison. However,
one of the two comparisons may be more natural to interpret.
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Note that checking for homogeneity of proportions is meaningful in stratified stud-
ies only when the comparison is across strata! Further, if the strata correspond to columns of
the table, then the column proportions or percentages are meaningful whereas the row proportions
are not.
Question: How do these ideas apply to the age distribution problem?

Testing for Independence in a Two-Way Contingency Table

The row and column classifications for a population where each individual is cross-classified by two
categorical variables are said to be independent if each population cell proportion in the two-way
table is the product of the proportion in a given row and the proportion in a given column. One can
show that independence is equivalent to homogeneity of proportions. In particular, the two-way
table of population cell proportions satisfies independence if and only if the population column
proportions are homogeneous. If the population column proportions are homogeneous then so are
the population row proportions.

This suggests that a test for independence or no association between two variables based on a
cross-sectional study can be implemented using the chi-squared test for homogeneity of proportions.
This suggestion is correct. If independence is not plausible, I tend to interpret the dependence as
a deviation from homogeneity, using the classification for which the interpretation is most natural.

Example

Data Display

Row Smoker Opinion Count
1 1Yes 1 Str. Dislike 8
2 1Yes 2 Dislike 14
3 1Yes 3 Neutral 35
4 1Yes 4 Like 21
5 1Yes 5 Str. Like 19
6 No 1 Str. Dislike 31
7 No 2 Dislike 42
8 No 3 Neutral 78
9 No 4 Like 61

10 No 5 Str. Like 69

Tabulated statistics: Smoker, Opinion

Using frequencies in Count

* NOTE * Fisher’s exact test available only for 2 x 2 tables.

Rows: Smoker Columns: Opinion

1 Str.
Dislike 2 Dislike 3 Neutral 4 Like 5 Str. Like All

1Yes 8 14 35 21 19 97
8.25 14.43 36.08 21.65 19.59 100.00

20.51 25.00 30.97 25.61 21.59 25.66
2.12 3.70 9.26 5.56 5.03 25.66
10.01 14.37 29.00 21.04 22.58 97.00

0.40286 0.00955 1.24259 0.00009 0.56819 *

No 31 42 78 61 69 281
11.03 14.95 27.76 21.71 24.56 100.00
79.49 75.00 69.03 74.39 78.41 74.34
8.20 11.11 20.63 16.14 18.25 74.34
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28.99 41.63 84.00 60.96 65.42 281.00
0.13907 0.00330 0.42894 0.00003 0.19614 *

All 39 56 113 82 88 378
10.32 14.81 29.89 21.69 23.28 100.00
100.00 100.00 100.00 100.00 100.00 100.00
10.32 14.81 29.89 21.69 23.28 100.00
39.00 56.00 113.00 82.00 88.00 378.00

* * * * * *

Cell Contents: Count
% of Row
% of Column
% of Total
Expected count
Contribution to Chi-square

Pearson Chi-Square = 2.991, DF = 4, P-Value = 0.559
Likelihood Ratio Chi-Square = 2.980, DF = 4, P-Value = 0.561

The Pearson chi-squared test is not significant (p-value = .561). The observed association
between smoking status and the ad reaction is not significant. This suggests, for example, that
the smoker’s reactions to the ad were not statistically significantly different from the non-smoker’s
reactions, which is consistent with the smokers and non-smokers attitudes being fairly similar.
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11 Correlation and Regression

SW, Chapter 12.

Suppose we select n = 10 persons from the population of college seniors who plan to take the
MCAT exam. Each takes the test, is coached, and then retakes the exam. Let Xi be the pre-
coaching score and let Yi be the post-coaching score for the ith individual, i = 1, 2, · · · , n. There
are several questions of potential interest here, for example: Are Y and X related (associated), and
how? Does coaching improve your MCAT score? Can we use the data to develop a mathematical
model (formula) for predicting post-coaching scores from the pre-coaching scores? These questions
can be addressed using correlation and regression models.

The correlation coefficient is a standard measure of association or relationship between two
features Y and X. Most scientists equate Y and X being correlated to mean that Y and X are
associated, related, or dependent upon each other. However, correlation is only a measure of the
strength of a linear relationship. For later reference, let ρ be the correlation between Y and X
in the population and let r be the sample correlation. I define r below. The population correlation
is defined analogously from population data.

Suppose each of n sampled individuals is measured on two quantitative characteristics called Y
and X. The data are pairs of observations (X1, Y1), (X2, Y2), · · · (Xn, Yn), where (Xi, Yi) is the
(X, Y ) pair for the ith individual in the sample. The sample correlation between Y and X, also
called the Pearson product moment correlation coefficient, is

r =
SXY

SXSY
=

∑
i(Xi −X)(Yi − Y )√∑

i(Xi −X)2
∑

i(Yi − Y )2
,

where

SXY =
∑n

i=1(Xi −X)(Yi − Y )
n− 1

is the sample covariance between Y and X, and SY =
√∑

i(Yi − Y )2/(n− 1) and SX =√∑
i(Xi −X)2/(n− 1) are the standard deviations for the Y and X samples. Here are eight

important properties of r:

1. −1 ≤ r ≤ 1.

2. If Yi tends to increase linearly with Xi then r > 0.

3. If Yi tends to decrease linearly with Xi then r < 0.

4. If there is a perfect linear relationship between Yi and Xi with a positive slope then r = +1.

5. If there is a perfect linear relationship between Yi and Xi with a negative slope then r = −1.

6. The closer the points (Xi, Yi) come to forming a straight line, the closer r is to ±1.

7. The magnitude of r is unchanged if either the X or Y sample is transformed linearly (i.e. feet
to inches, pounds to kilograms, Celsius to Fahrenheit).

8. The correlation does not depend on which variable is called Y and which is called X.
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11 CORRELATION AND REGRESSION

If r is near ±1, then there is a strong linear relationship between Y and X in the sample.
This suggests we might be able to accurately predict Y from X with a linear equation (i.e. linear
regression). If r is near 0, there is a weak linear relationship between Y and X, which suggests
that a linear equation provides little help for predicting Y from X. The pictures below should help
you develop a sense about the size of r.

Note that r = 0 does not imply that Y and X are not related in the sample. It only implies
they are not linearly related. For example, in the last plot r = 0 yet Yi = X2

i .

•••• •

•

•
••

•

•
•

•

•

•
•

•

•

•

• •

•

•

•

•

•

•
•

•
•

•

•

• •

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

•
•

•
•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•
•

•

•

•
••

•
•

••

•

••
•

•••

• •

•

•

Correlation=1

•
•

•• ••

••

• •

•

•

•

••

• •

•

•
•

••

•

•

•

•

•

•
•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

• •

•

•
•

•

•

•
•

• •

••

••

•

•

•

•

•

•

•
••

• •

•
••

•

•

•

•

• •

•

•

•
•

•
••

••

••

••

•
•

•

•

•
•

•
•

•

Correlation=-1

•
••

•

•

•
•

•

• •

•
••

• •
•

•
•

•

•

••

•

•

•

•

• •
•

•

•

•

•

•

•

•

•

•

•
• •

•

•
•

•

•

•

•
•

• •

•

•

•

•

•

•

•

•

•

•
•

•
•

•

•

•

•

•

•
•

•

•

•
•

•

•

•
• •

•
•

•

•

•

•

•

•

•
•

•

•

•

• • •

•

•
•

•

Correlation=.7

••

•

•

•
•

•

•
• •

•

•

••
•

•

•• ••

•

•

•

•
•• •

•
• •

•

•
•

•

•

•

•

•

••• •
•

•

•
•

• •
•

•
•

•
•

••
•

•

•

•
•

• ••

•

• • •
••

•

•
•

•

••

• •
•

•• •• •
•

•

••

•

•
••

•
•

•
• •

•

•

•

•

Correlation=-.7

••
•

•
•
•

•

••

• •

•
•

•
•

• •
• •

•

• •

•

• •

•

•

•

• •

•

•

•

•
•

••

•

•
•

•

•
•

••
••

•

•

•

•

•

• •
••

•

•
•

•
•
•

•

•

•

•

••

•
•

•

•
•

•

•

•

•
•

•

•

•

•
•

•
• •

•

•

•

•

•

••

•

•

••
•

•

•

Correlation=.3

•

•

•

•
• •

•

•

•

•

•

•

•

•

•

•
•

•

•
•

•
•

•

•

•

•
•

•

•

•

•
••

• • •
•

• •

•

•

••
•

•
•

•

•
•

•
•

•

•
•

• •

•
•

•

•

• •

•
• •

•

• •

•• •
•

•

••

•

•

•

•
•

•

••

• • •

•• • •

••

•

•

•

•
• • ••

Correlation=-.3

•

••
•

•

•

•
•

•
•

•

•

•

•

••

•

•
•

•

•
••

•

•

•

•

•
•

•
• ••

•

•

•
•

• •

•

•

•
•

•

•
••

••

•

•
•

•

•

•
•

•

•
•

•
•

••

•
•

•

• ••••

•

•
•

•
•

•

•

•

•

•
•

•

•

•
•

•

••

•

•
•

•

•

•

• •

•

•

•

Correlation=0
•

•

•
•

•
•

•
• • • • • • •

•
•

•
•

•

•

•

-10 -5 0 5 10

0
20

40
60

80
10

0

Correlation=0

Testing that ρ = 0

Suppose you want to test H0 : ρ = 0 against HA : ρ 6= 0, where ρ is the population correlation
between Y and X. This test is usually interpreted as a test of no association, or relationship,
between Y and X in the population. Keep in mind, however, that ρ measures the strength of a
linear relationship.

The standard test of H0 : ρ = 0 is based on the magnitude of r. If we let

ts = r

√
n− 2
1− r2

,

then the test rejects H0 in favor of HA if |ts| ≥ tcrit, where tcrit is the two-sided test critical value
from a t-distribution with df = n−2. The p-value for the test is the area under the t-curve outside
±ts (i.e. two-tailed test p-value).

This test assumes that the data are a random sample from a bivariate normal population
for (X, Y ). This assumption implies that all linear combinations of X and Y , say aX + bY , are
normal. In particular, the (marginal) population frequency curves for X and Y are normal. At a
minimum, you should make boxplots of the X and Y samples to check marginal normality. For
large-sized samples, a plot of Y against X should be roughly an elliptical cloud, with the density
of the points decreasing as the points move away from the center of the cloud.

The Spearman Correlation Coefficient

The Pearson correlation r can be highly influenced by outliers in one or both samples. For example,
r ≈ −1 in the plot below. If you delete the one extreme case with the largest X and smallest Y

114



11 CORRELATION AND REGRESSION

value then r ≈ 0. The two analyses are contradictory. The first analysis (ignoring the plot) suggests
a strong linear relationship, whereas the second suggests the lack of a linear relationship. I will not
strongly argue that you should (must?) delete the extreme case, but I am concerned about any
conclusion that depends heavily on the presence of a single observation in the data set.
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Spearman’s rank correlation coefficient rS is a sensible alternative to r when normality
is unreasonable or outliers are present. Most books give a computational formula for rS . I will
verbally describe how to compute rS . First, order the Xis and assign them ranks. Then do the
same for the Yis and replace the original data pairs by the pairs of ranked values. The Spearman
rank correlation is the Pearson correlation computed from the pairs of ranks.

The Spearman correlation rS estimates the population rank correlation coefficient, which
is a measure of the strength of linear relationship between population ranks. The Spearman cor-
relation, as with other rank based methods, is not sensitive to the presence of outliers in the data.
In the plot above, rS ≈ 0 whether the unusual point is included or excluded from the analysis. In
samples without unusual observations and a linear trend, you often find that rS ≈ r.

An important point to note is that the magnitude of the Spearman correlation does not change
if either X or Y or both are transformed (monotonically). Thus, if rS is noticeably greater than r,
a transformation of the data might provide a stronger linear relationship.

Example

Eight patients underwent a thyroid operation. Three variables were measured on each patient:
weight in kg, time of operation in minutes, and blood loss in ml. The scientists were interested in
the factors that influence blood loss. Minitab output for this data set is a separate document.

weight time blood loss
44.3 105 503
40.6 80 490
69.0 86 471
43.7 112 505
50.3 109 482
50.2 100 490
35.4 96 513
52.2 120 464

115



11 CORRELATION AND REGRESSION

Comments:

1. (Pearson correlations). Blood loss tends to decrease linearly as weight increases, so r should
be negative. The output gives r = −.77. There is not much of a linear relationship between
blood loss and time, so r should be close to 0. The output gives r = −.11. Similarly, weight
and time have a weak negative correlation, r = −.07.

2. The Pearson and Spearman correlations are fairly consistent here. Only the correlation
between blood loss and weight is significant at the α = 0.05 level (the p-values are given
below the correlations).

Simple Linear Regression

In linear regression, we are interested in developing a linear equation that best summarizes the
relationship in a sample between the response variable Y and the predictor variable (or
independent variable) X. The equation is also used to predict Y from X. The variables are not
treated symmetrically in regression, but the appropriate choice for the response and predictor is
usually apparent.

Linear Equation

If there is a perfect linear relationship between Y and X then Y = β0 + β1X for some β0 and β1,
where β0 is the Y-intercept and β1 is the slope of the line. Two plots of linear relationships are
given below. The left plot has β0 = 5 and β1 = 3. The slope is positive, which indicates that Y
increases linearly when X increases. The right plot has β0 = 7 and β1 = −2. The slope is negative,
which indicates that Y decreases linearly when X increases.
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1
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The line Y = 5 + 3X

X

Y
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1

-2

The line Y = 7 - 2X

Least Squares

Data rarely, if ever, fall on a straight line. However, a straight line will often describe the trend
for a set of data. Given a data set (Xi, Yi), i = 1, ..., n with a linear trend, what linear equation
“best” summarizes the observed relationship between Y and X? There is no universally accepted
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11 CORRELATION AND REGRESSION

definition of “best”, but many researchers accept the Least Squares line (LS line) as a reasonable
summary.

Mathematically, the LS line chooses the values of β0 and β1 that minimize

n∑
i=1

{Yi − (β0 + β1Xi)}2

over all possible choices of β0 and β1. These values can be obtained using calculus. Rather than
worry about this calculation, note that the LS line makes the sum of squared deviations between
the responses Yi and the line as small as possible, over all possible lines. The LS line typically goes
through “the heart” of the data, and is often closely approximated by an eye-ball fit to the data.
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The equation of the LS line is
ŷ = b0 + b1X

where the intercept b0 satisfies
b0 = Y − b1X

and the slope is

b1 =
∑

i(Yi − Y )(Xi −X)∑
i(Xi −X)2

= r
SY

SX
.

As before, r is the Pearson correlation between Y and X, whereas SY and SX are the sample
standard deviations for the Y and X samples, respectively. The sign of the slope and the sign
of the correlation are identical (i.e. + correlation implies + slope).

Special symbols b0 and b1 identify the LS intercept and slope to distinguish the LS line from
the generic line Y = β0 + β1X. You should think of Ŷ as the fitted value at X, or the value of
the LS line at X.
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Minitab Implementation

The separate document shows Minitab output from a least squares fit.

For the thyroid operation data with Y = Blood loss in ml and X = Weight in kg, the LS line
is Ŷ = 552.44 − 1.30X, or Predicted Blood Loss = 552.44 − 1.30 Weight. For an 86kg individual,
the Predicted Blood Loss = 552.44− 1.30 ∗ 86 = 440.64ml.

The LS regression coefficients for this model are interpreted as follows. The intercept b0 is the
predicted blood loss for a 0 kg individual. The intercept has no meaning here. The slope b1 is the
predicted increase in blood loss for each additional kg of weight. The slope is -1.30, so the predicted
decrease in blood loss is 1.30 ml for each increase of 1 kg in weight.

Any fitted linear relationship holds only approximately and does not necessarily extend outside
the range of the data. In particular, nonsensical predicted blood losses of less than zero are obtained
at very large weights outside the range of data.

ANOVA Table for Regression

The LS line minimizes
n∑

i=1

{Yi − (β0 + β1Xi)}2

over all choices for β0 and β1. Inserting the LS estimates b0 and b1 into this expression gives

Residual Sums of Squares =
n∑

i=1

{Yi − (b0 + b1Xi)}2.

Several bits of notation are needed. Let

Ŷi = b0 + b1Xi

be the predicted or fitted Y−value for an X−value of Xi and let ei = Yi − Ŷi. The fitted value Ŷi

is the value of the LS line at Xi whereas the residual ei is the distance that the observed response
Yi is from the LS line. Given this notation,

Residual Sums of Squares = Res SS =
n∑

i=1

(Yi − ŷi)2 =
n∑

i=1

e2
i .

Here is a picture to clarify matters:
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The Residual SS, or sum of squared residuals, is small if each Ŷi is close to Yi (i.e. the line
closely fits the data). It can be shown that

Total SS in Y =
n∑

i=1

(Yi − Y )2 ≥ Res SS ≥ 0.

Also define

Regression SS = Reg SS = Total SS − Res SS = b1

n∑
i=1

(Yi − Y )(Xi −X).

The Total SS measures the variability in the Y−sample. Note that

0 ≤ Regression SS ≤ Total SS.

The percentage of the variability in the Y− sample that is explained by the linear rela-
tionship between Y and X is

R2 = coefficient of determination =
Reg SS
Total SS

.

Given the definitions of the Sums of Squares, we can show 0 ≤ R2 ≤ 1 and

R2 = square of Pearson correlation coefficient = r2.

To understand the interpretation of R2, at least in two extreme cases, note that

Reg SS = Total SS ⇔ Res SS = 0
⇔ all the data points fall on a straight line
⇔ all the variability in Y is explained by the linear relationship with X

(which has variation)
⇔ R2 = 1. (see the picture below)
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Furthermore,

Reg SS = 0 ⇔ Total SS = Res SS
⇔ b1 = 0
⇔ LS line is Ŷ = Y

⇔ none of the variability in Y is explained by a linear relationship
⇔ R2 = 0.
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Each Sum of Squares has a corresponding df (degrees of freedom). The Sums of Squares and
df are arranged in an analysis of variance (ANOVA) table:
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Source df SS MS
Regression 1
Residual n− 2

Total n− 1

The Total df is n − 1. The Residual df is n minus the number of parameters (2) estimated
by the LS line. The Regression df is the number of predictor variables (1) in the model. A Mean
Square is always equal to the Sum of Squares divided by the df . SW use the following notation for
the Residual MS: s2

Y |X = Resid(SS)/(n− 2).

Brief Discussion of Minitab Output for Blood Loss Problem

1. Identify fitted line: Blood Loss = 552.44 - 1.30 Weight (i.e. b0 = 552.44 and b1 = −1.30).
2. Locate Analysis of Variance Table. More on this later.
3. Locate Parameter Estimates Table. More on this later.
4. Note that R2 = .5967 = (−.77247)2 = r2.

The regression model

The following statistical model is assumed as a means to provide error estimates for the LS line,
regression coefficients, and predictions. Assume that the data (Xi, Yi), i = 1, ..., n are a sample of
(X, Y ) values from the population of interest, and

1. The mean in the population of all responses Y at a given X value (called µY |X by SW)
falls on a straight line, β0 + β1X, called the population regression line.

2. The variation among responses Y at a given X value is the same for each X, and is denoted
by σ2

Y |X .

3. The population of responses Y at a given X is normally distributed.

4. The pairs (Xi, Yi) are a random sample from the population. Alternatively, we can think
that the Xis were fixed by the experimenter, and that the Yi are random responses at the
selected predictor values.

The model is usually written in the form

Yi = β0 + β1Xi + εi

(i.e. Response = Mean Response + Residual), where the εis are, by virtue of assumptions 2, 3 and
4, independent normal random variables with mean 0 and variance σ2

Y |X . The following picture
might help see this. Note that the population regression line is unknown, and is estimated from
the data using the LS line.
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Back to the Data

There are three unknown population parameters in the model: β0, β1 and σ2
Y |X . Given the data,

the LS line
Ŷ = b0 + b1X

estimates the population regression line β0+β1X. The LS line is our best guess about the unknown
population regression line. Here b0 estimates the intercept β0 of the population regression line and
b1 estimates the slope β1 of the population regression line.

The ith observed residual ei = Yi− Ŷi, where Ŷi = b0 +b1Xi is the ith fitted value, estimates
the unobservable residual εi. ( εi is unobservable because β0 and β1 are unknown.) See the
picture on page 10 to refresh your memory on the notation. The Residual MS from the ANOVA
table is used to estimate σ2

Y |X :

s2
Y |X = Res MS =

Res SS
Res df

=
∑

i(Yi − Ŷi)2

n− 2
.

CI and tests for β1

A CI for β1 is given b1 ± tcritSEb1 , where the standard error of b1 under the model is

SEb1 =
sY |X√∑

i(Xi −X)2
,

and where tcrit is the appropriate critical value for the desired CI level from a t−distribution with
df =Res df .

To test H0 : β1 = β1,0 (a given value) against HA : β1 6= β1,0, reject H0 if |ts| ≥ tcrit, where

ts =
b1 − β1,0

SEb1

,

and tcrit is the t−critical value for a two-sided test, with the desired size and df =Res df . Alterna-
tively, you can evaluate a p-value in the usual manner to make a decision about H0.
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The parameter estimates table in Minitab gives the standard error, t−statistic, and p-value for
testing H0 : β1 = 0. Analogous summaries are given for the intercept, but these are typically of
less interest.

Testing β1 = 0

Assuming the mean relationship is linear, consider testing H0 : β1 = 0 against HA : β1 6= 0. This
test can be conducted using a t-statistic, as outlined above, or with an ANOVA F−test, as outlined
below.

For the analysis of variance (ANOVA) F -test, compute

Fs =
Reg MS
Res MS

and reject H0 when Fs exceeds the critical value (for the desired size test) from an F−table with
numerator df = 1 and denominator df = n − 2; see SW, page 654. The hypothesis of zero slope
(or no relationship) is rejected when Fs is large, which happens when a significant portion of the
variation in Y is explained by the linear relationship with X. Minitab gives the F−statistic and
p-value with the ANOVA table output.

The p-values from the t−test and the F−test are always equal. Furthermore this p-value is
equal to the p-value for testing no correlation between Y and X, using the t−test described earlier.
Is this important, obvious, or disconcerting?

A CI for the population regression line

I can not overemphasize the power of the regression model. The model allows you to estimate the
mean response at any X value in the range for which the model is reasonable, even if little or no
data is observed at that location.

We estimate the mean population response among individuals with X = Xp

µp = β0 + β1Xp,

with the fitted value, or the value of the least squares line at Xp:

Ŷp = b0 + b1Xp.

Xp is not necessarily one of the observed Xis in the data. To get a CI for µp, use Ŷp ± tcritSE(Ŷp),
where the standard error of Ŷp is

SE(Ŷp) = sY |X

√
1
n

+
(Xp −X)2∑
i(Xi −X)2

.

The t−critical value is identical to that used in the subsection on CI for β1.

CI for predictions

Suppose a future individual (i.e. someone not used to compute the LS line) has X = Xp. The best
prediction for the response Y of this individual is the value of the least squares line at Xp:

Ŷp = b0 + b1Xp.
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11 CORRELATION AND REGRESSION

To get a CI (prediction interval) for an individual response, use Ŷp ± tcritSEpred(Ŷp), where

SEpred(Ŷp) = sY |X

√
1 +

1
n

+
(Xp −X)2∑
i(Xi −X)2

,

and tcrit is identical to the critical value used for a CI on β1.
For example, in the blood loss problem you may want to estimates the blood loss for an 50kg

individual, and to get a CI for this prediction. This problem is different from computing a CI for
the mean blood loss of all 50kg individuals!

Comments

1. The prediction interval is wider than the CI for the mean response. This is reasonable
because you are less confident in predicting an individual response than the mean response
for all individuals.

2. The CI for the mean response and the prediction interval for an individual response become
wider as Xp moves away from X. That is, you get a more sensitive CI and prediction interval
for Xps near the center of the data.

3. In Stat > Regression > Fitted Line Plot Minitab will plot a band of 95% confidence
intervals and a band of 95% prediction intervals on the data plot, along with the fitted LS
line.

A further look at the blood loss data (Minitab Output)

• The LS line is: Predicted Blood Loss = 552.442 - 1.30 Weight.

• The R2 is .597 (i.e. 59.7%).

• The F−statistic for testing H0 : β1 = 0 is Fobs = 8.88 with a p − value = .025. The Error
MS is s2

Y |X = 136.0; see ANOVA table.

• The Parameter Estimates table gives b0 and b1, their standard errors, and t−statistics and
p-values for testing H0 : β0 = 0 and H0 : β1 = 0. The t−test and F− test p-values for testing
that the slope is zero are identical. We could calculate a 95% CI for β0 and β1. If we did
so (using the t critical value) we find we are 95% confident that the slope of the population
regression line is between -2.37 and -.23.

• Suppose we are interested in estimating the average blood loss among all 50kg individuals.
The estimated mean blood loss is 552.442 − 1.30033 ∗ 50 = 487.43. Reading off the plot, we
are 95% confident that the mean blood loss of all 50kg individuals is between (approximately)
477 and 498 ml. A 95% prediction interval for the blood loss of a single 50 kg person is less
precise (about 457 to 518 ml).

As a summary we might say that weight is important for explaining the variation in blood loss.
In particular, the estimated slope of the least squares line (Predicted Blood loss = 552.442 - 1.30
Weight) is significantly different from zero (p-value = .0247), with weight explaining approximately
60% (59.7%) of the variation in blood loss for this sample of 8 thyroid operation patients.
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11 CORRELATION AND REGRESSION

Checking the regression model

A regression analysis is never complete until the assumptions of the model have been checked.
In addition, you need to evaluate whether individual observations, or groups of observations, are
unduly influencing the analysis. A first step in any analysis is to plot the data. The plot provides
information on the linearity and constant variance assumption. For example, the data plot below
shows a linear relationship with roughly constant variance.

In addition to plotting the data, a variety of methods for assessing model adequacy are based
on plots of the residuals, ei = Yi − Ŷi (i.e. Observed − Fitted values). For example, an option
in Minitab is to plot the ei against the fitted values Ŷi, as given below. This residual plot should
exhibit no systematic dependence of the sign or the magnitude of the residuals on the fitted values.

•

•

•

•

•

•

•

••

•

••

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

••

•

•
•

• •

•

•
•

•

••

•

•

•

•

•

•

•

•
•

X

Y

3 4 5 6 7

10
15

20
25

•

•

•

•

•

•
•

••

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

•

•
•

•

•

•

•

• •

•

•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

Fitted

R
es

id
s

10 15 20 25

-2
-1

0
1

2

The real power of this plot is with multiple predictor problems (multiple regression). For
simple linear regression, the information in this plot is similar to the information in the original
data plot, except that the residual plot eliminates the effect of the trend on your perceptions of
model adequacy.

The following plots show how inadequacies in the data plot appear in a residual plot. The
first plot shows a roughly linear relationship between Y and X with non-constant variance. The
residual plot shows a megaphone shape rather than the ideal horizontal band. A possible remedy
is a weighted least squares analysis to handle the non-constant variance, or to transform Y to
stabilize the variance. Transforming the data may destroy the linearity.

The second plot shows a nonlinear relationship between Y and X. The residual plot shows
a systematic dependence of the sign of the residual on the fitted value. A possible remedy is to
transform the data.

The last plot shows an outlier. This point has a large residual. A sensible approach is to refit
the model after deleting the case and see if any conclusions change.
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11 CORRELATION AND REGRESSION

Checking normality

The normality assumption can be evaluated with a boxplot or a normal quantile plot of the residuals.
A formal test of normality using the residuals can be computed as discussed earlier this semester.

Checking independence

Diagnosing dependence among observations usually requires some understanding of the mechanism
that generated the data. There are a variety of graphical and inferential tools for checking inde-
pendence for data collected over time (called a time series). The easiest thing to do is plot the ri

against time index and look for any suggestive patterns.

Outliers

Outliers are observations that are poorly fitted by the regression model. The response for an outlier
is far from the fitted line, so outliers have large positive or negative values of the residual ei.

What do you do with outliers? Outliers may be due to incorrect recordings of the data or
failure of the measuring device, or indications or a change in the mean or variance structure for
one or more cases. Incorrect recordings should be fixed if possible, but otherwise deleted from the
analysis.

Routine deletion of outliers from the analysis is not recommended. This practice can have a
dramatic effect on the fit of the model and the perceived precision of parameter estimates and
predictions. Analysts who routinely omit outliers without cause tend to overstate the significance
of their findings and get a false sense of precision in their estimates and predictions. At the very
least, a data analyst should repeat the analysis with and without the outliers to see whether any
substantive conclusions are changed.

Influential observations

Certain data points can play a very important role in determining the position of the LS line. These
data points may or may not be outliers. For example, the observation with Y > 45 in the first
plot below is an outlier relative to the LS fit. The extreme observation in the second plot has a
very small ei. Both points are highly influential observations - the LS line changes dramatically
when these observations are deleted. The influential observation in the second plot is not an outlier
because its presence in the analysis determines that the LS line will essentially pass through it! In
these plots the solid line is the LS line from the full data set, whereas the dashed line is the LS line
after omitting the unusual point.
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There are well defined measures of the influence that individual cases have on the LS line, and
they are available in Minitab. On the separate output I calculated Cook’s D (labelled COOK1) –
large values indicate influential values. Which observations are most influential according to this
measure? For simple linear regression most influential cases can be easily spotted by carefully
looking at the data plot. If you identify cases that you suspect might be influential, you should
hold them out (individually) and see if any important conclusions change. If so, you need to think
hard about whether the cases should be included or excluded from the analysis.

128



12 INTRODUCTION TO MULTIPLE LINEAR REGRESSION

12 Introduction to Multiple Linear Regression

In multiple linear regression, a linear combination of two or more predictor variables is used to
explain the variation in a response. In essence, the additional predictors are used to explain the
variation in the response not explained by a simple linear regression fit.

It can be a lot more interesting than that sounds, however, since predictors can operate much
differently together than alone. Fitting multiple predictors adjusts the estimated effects of a predic-
tor for the other predictors. An apparently important predictor can have little effect if adjusted for
other variables, or an apparently insignificant predictor can appear very important after adjusting
for other variables. The upshot is that the simple linear regression models we worked with last
week are inadequate in many circumstances (though they are the basis for what we will see in this
section).

As an illustration, I will consider the following problem. Anthropologists conducted a study
to determine the long-term effects of an environmental change on systolic blood pressure. They
measured the blood pressure and several other characteristics (weight, age, years since migration,
pulse rate, skin fold measures) of 39 Indians who migrated from a very primitive environment high
in the Andes into the mainstream of Peruvian society at a lower altitude. All of the Indians were
males at least 21 years of age, and were born at a high altitude.

A question we consider concerns the long term effects of an environmental change on the systolic
blood pressure. In particular, is there a relationship between the systolic blood pressure and how
long the Indians lived in their new environment as measured by the fraction of their life spent in
the new environment? (fraction = years since migration/age)

A plot of systolic blood pressure against fraction (see the scatterplot in the separate Minitab
output) suggests at best a weak linear relationship. Nonetheless, consider fitting the regression
model

sys bp = β0 + β1 fraction + ε.

The least squares line is given by

̂sys bp = 133− 15.8 fraction,

and suggests that average systolic blood pressure decreases as the fraction of life spent in modern
society increases (if half of life is spent in modern society then that should account for almost an 8
point drop in systolic blood pressure). However, the t−test of H0 : β1 = 0 is not significant at the
5% level (p-value=.089). That is, the weak linear relationship observed in the data is not atypical of
a population where there is no linear relationship between systolic blood pressure and the fraction
of life spent in a modern society (and if we constructed a 95% CI for β1 it would contain 0).

Even if this test were significant, the small value of R2 = 7.6% suggests that fraction does
not explain a substantial amount of the variation in the systolic blood pressures. If we omit the
individual with the highest blood pressure (see the plot) then the relationship would be weaker still.
Minitab identifies two unusual observations, one of which is that individual. We should identify
the other one too, and see if the fit changes much with those two observations removed. I will show
you how to do that later in this section, and Erik will help you with it in lab.
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12 INTRODUCTION TO MULTIPLE LINEAR REGRESSION

Taking Weight into Consideration

At best, there is a weak relationship between systolic blood pressure and fraction alone. However,
it is usually accepted that systolic blood pressure and weight are related; see the scatterplot matrix
for confirmation. A natural way to take weight into consideration is to include weight and fraction
both as predictors of systolic blood pressure in the multiple regression model:

sys bp = β0 + β1 fraction + β2 weight + ε.

As in simple linear regression, the model is written in the form:

Response = Mean of Response + Residual,

so the model implies that that average systolic blood pressure is a linear combination of fraction and
weight. As in simple linear regression, the standard multiple regression analysis assumes that the
responses are normally distributed with a constant variance σ2

Y |X . The parameters of the regression
model β0, β1, β2 and σ2

Y |X are estimated by LS.
Minitab output from fitting the multiple regression model is given at the end of the handout.

Important Points to Notice About the Regression Output

1. (Parameter Estimates ) The LS estimates of the intercept and the regression coefficient for
fraction, and their standard errors, change from the simple linear model to the multiple
regression model. For the simple linear regression

̂sys bp = 133− 15.8 fraction.

For the multiple regression model

̂sys bp = 60.9− 26.8 fraction + 1.22 weight.

2. (ANOVA Table) Comparing the simple linear regression and the multiple regression models
we see that the Regression (model) df has increased to 2 from 1 (2=number of predictor
variables) and the Residual (error) df has decreased from 37 to 36 (=n − 1- number of
predictors). Adding a predictor increases the Regression df by 1 and decreases the Residual
df by 1.

3. (ANOVA Table) The Residual SS decreases by 6033.4 - 3441.4 = 2592.0 upon adding the
weight term. The Regression SS increased by 2592.0 upon adding the weight term term to
the model. The Total SS does not depend on the number of predictors so it stays the same.
The Residual SS, or the part of the variation in the response unexplained by the regression
model never increases when new predictors are added.

4. The proportion of variation in the response explained by the regression model:

R2 = Regression SS / Total SS
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12 INTRODUCTION TO MULTIPLE LINEAR REGRESSION

never decreases when new predictors are added to a model. The R2 for the simple linear
regression with fraction as the only predictor was 7.6%, whereas R2 = 47.3% for the multiple
regression model. Adding the weight variable to the model increases R2 by 40%. That is,
weight explains an additional 40% of the variation in systolic blood pressure not already
explained by fraction alone.

This is not as simple as it sounds. If you use weight as the only predictor, then R2 = 27.2%
(confirm this), so adding fraction to that model gives R2 = 47.3% and fraction can be seen as
explaining an additional 20% of variation in systolic blood pressure not already explained by
weight alone. This is far more than explained by fraction alone! The two variables together
act in a much more interesting manner than a simple sum of individual behavior.

5. (ANOVA table) The estimated variability about the regression line

√
Residual MS = sY |X

decreased dramatically after adding the weight effect. For the simple linear regression model
(fraction alone) sY |X = 12.77, whereas sY |X = 9.78 for the multiple regression model. This
suggests that an important predictor has been added to model.

6. (ANOVA table) The F-statistic for the multiple regression model

Fobs = Regression MS / Residual MS = 16.16

(which is compared to a F-table with 2 and 36 df) tests H0 : β1 = β2 = 0 against HA : not H0.
This is a test of no relationship between the average systolic blood pressure and fraction and
weight, assuming the relationship is linear. If this test is significant than either fraction or
weight, or both, are important for explaining the variation in systolic blood pressure. The
p-value for this test is 0.

7. (Parameter Estimates Table) Given the model

sys bp = β0 + β1 fraction + β2 weight + ε,

one interest is testing H0 : β2 = 0 against HA : β2 6= 0. The t-statistic for this test

tobs =
b2 − 0
SE(b2)

=
1.2169
.2337

= 5.21

is compared to a t−critical value with Residual df = 36. Minitab gives a p-value of .000,
which suggests β2 6= 0. The t-test of H0 : β2 = 0 in the multiple regression model tests
whether adding weight to the simple linear regression model explains a significant part of the
variation in systolic blood pressure not explained by fraction. In some sense, the t−test of
H0 : β2 = 0 will be significant if the increase in R2 (or decrease in Residual SS) obtained by
adding weight to this simple linear regression model is substantial. We saw a big increase in
R2, which is deemed significant by the t−test. A similar interpretation is given to the t−test
for H0 : β1 = 0.
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8. The t−tests for β0 = 0 and β1 = 0 are conducted, assessed, and interpreted in the same
manner. The p-value for testing H0 : β0 = 0 is .000, whereas the p-value for testing H0 : β1 = 0
is .001. This implies that fraction is important in explaining the variation in systolic blood
pressure after weight is taken into consideration (by including weight in the model as a
predictor).

9. (Seq SS Table) I wish Minitab gave you p-values here. The t-tests above do not depend
upon what order terms are entered into the model. This table shows how much of the total
SS is accounted for in a sequential manner. If fraction alone is entered into the model, the
regression SS is 498.1 (also seen in the simple linear regression model). If weight then is
added, an additional 2592.0 is accounted for (as calculated above). These also are known as
SAS Type I SS. An F-test is constructed by dividing the sequential SS by residual MS (MSE
= 95.96), and the critical value for each test is an F with numerator degrees of freedom 1 and
denominator degrees of freedom 36 (residual df). Minitab gives you a value of Fcrit = 4.11317.
Those test statistics are Fs = 498.1

95.6 = 5.033 and Fs = 2592.0
95.6 = 27.11 for fraction and weight,

respectively. Both are significant. It seems contradictory that fraction is significant here
but not in the simple linear regression. The difference is that MSE is much smaller in the
2-predictor model.

10. We could compute CIs for the regression parameters in the usual way: bi + tcritSE(bi), where
tcrit is the t−critical value for the corresponding CI level with df = Residual df .

11. Residual plots show no striking problems.

12. Minitab does flag 3 unusual observations (outliers in some sense).

Understanding the Model

The t−test for H0 : β1 = 0 is highly significant (p-value=.0007), which implies that fraction
is important in explaining the variation in systolic blood pressure after weight is taken into
consideration (by including weight in the model as a predictor). Weight is called a suppressor
variable. Ignoring weight suppresses the relationship between systolic blood pressure and fraction.

The implications of this analysis are enormous! Essentially, the correlation between a predictor
and a response says very little about the importance of the predictor in a regression model with
one or more additional predictors. This conclusion also holds in situations where the correlation is
high, in the sense that a predictor that is highly correlated with the response may be unimportant
in a multiple regression model once other predictors are included in the model.

Another issue that I wish to address concerns the interpretation of the regression coefficients
in a multiple regression model. For our problem, let us first focus on the fraction coefficient in the
fitted model ̂sys bp = 60.89− 26.76 fraction + 1.21 weight.

The negative coefficient indicates that the predicted systolic blood pressure decreases as fraction
increases holding weight constant. In particular, the predicted systolic blood pressure decreases
by 26.76 for each unit increase in fraction, holding weight constant at any value. Similarly, the
predicted systolic blood pressure increases by 1.21 for each unit increase in weight, holding fraction
constant at any level.
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Considering the effect of unusual observations

Minitab has warned us about a large residual and two influential values, observations 1, 8, and 39.
We should make certain that these few values are not driving our entire analysis. I created a new
variable named flag, where I assigned a value of 0 to those three observations and a value of 1 to
the others. Next I constructed a matrix plot with groups where flag is the group variable. This
plots the three special points separately. You can see from the plots that these correspond to the
most extreme values of weight and systol.

Under regression options you can enter a variable of weights. I constructed flag with this in
mind. A weight of 0 throws the observation out of the analysis, while a weight of 1 keeps it in
normally. There other possibilities we will not consider this semester. Using flag as the weight
variable throws those three unusual observations out of the analysis, so we can see how much effect
they really have.

The values of coefficients are a little different with these values out of the analysis, with an
indication that both fraction and weight have smaller effects (though still significant) than before.
Most striking is the drop in R2 from 47.3% to 27.3%. The effects of both fraction and weight are
still pronounced, but the three observations are making a big difference in total variability.

Another Multiple Regression Example

The data below are selected from a larger collection of data referring to candidates for the General
Certificate of Education (GCE) who were being considered for a special award. Here, Total denotes
the candidate’s Total mark, out of 1000, in the GCE exam, while Comp is the candidate’s score
in the compulsory part of the exam, which has a maximum score of 200 of the 1000 points on the
exam. SCEL denotes the candidate’s score, out of 100, in a School Certificate English Language
paper taken on a previous occasion.

Data Display
Row Total Comp SCEL

1 476 111 68
2 457 92 46
3 540 90 50
4 551 107 59
5 575 98 50
6 698 150 66
7 545 118 54
8 574 110 51
9 645 117 59
10 690 114 80
11 634 130 57
12 637 118 51
13 390 91 44
14 562 118 61
15 560 109 66

A goal here is to compute a multiple regression of the Total score on Comp and SCEL, and
make the necessary tests to enable you to comment intelligently on the extent to which current
performance in the compulsory test (Comp) may be used to predict aggregate Total performance
on the GCE exam. You also want to know whether previous performance in the School Certificate
English Language (SCEL) has any predictive value independently of what has already emerged
from the current performance in the compulsory papers.

I will lead you through a number of steps to help you answer this question. Let us answer the
following straightforward questions based on the Minitab output.
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1. Plot Total against Comp and SCEL individually, and comment on the form (i.e. linear,
non-linear, logarithmic, etc.), strength, and direction of the relationships.

2. Plot Comp against SCEL and comment on the form, strength, and direction of the rela-
tionship.

3. Compute the correlation between all pairs of variables. Do the correlation values appear
reasonable, given the plots?

In parts 4 through 9, ignore the possibility that Total, Comp or SCEL might ideally need to be
transformed.

4. Which of Comp and SCEL explains a larger proportion of the variation in Total? Which
would appear to be a better predictor of Total? (Explain).

5. Consider 2 simple linear regression models for predicting Total one with Comp as a
predictor, and the other with SCEL as the predictor. Do Comp and SCEL individually
appear to be important for explaining the variation in Total (i.e. test that the slopes of the
regression lines are zero). Which, if any, of the output, support, or contradicts, your answer
to the previous question?

6. Fit the multiple regression model

Total = β0 + β1 Comp + β2 SCEL + ε.

Test H0 : β1 = β2 = 0 at the 5% level. Describe in words what this test is doing, and what
the results mean here.

7. In the multiple regression model, test H0 : β1 = 0 and H0 : β2 = 0 individually. Describe
in words what these tests are doing, and what the results mean here.

8. How does the R2 from the multiple regression model compare to the R2 from the individual
simple linear regressions? Is what you are seeing here appear reasonable, given the tests on
the individual coefficients?

9. Do your best to answer the question posed above, in the paragraph on page 117 that
begins “A goal .... ”. Provide an equation (LS) for predicting Total.

Comments on the GCE Analysis

I will give you my thoughts on these data, and how I would attack this problem, keeping the
ultimate goal in mind. As a first step, I plot the data and check whether transformations are
needed. The plot of Total against COMP is fairly linear, but the trend in the plot of Total against
SCEL is less clear. You might see a non-linear trend here, but the relationship is not very strong.
When I assess plots I try to not allow a few observations affect my perception of trend, and with
this in mind, I do not see any strong evidence at this point to transform any of the variables.

One difficulty that we must face when building a multiple regression model is that these two-
dimensional (2D) plots of a response against individual predictors may have little information about
the appropriate scales for a multiple regression analysis. In particular, the 2D plots only tell us
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whether we need to transform the data in a simple linear regression analysis. If a 2D plot shows a
strong non-linear trend, I would do an analysis using the suggested transformations, including any
other effects that are important. However, it might be that no variables need to be transformed in
the multiple regression model.

Although SCEL appears to be useful as a predictor of Total on its own, the multiple regression
output indicates that SCEL does not explain a significant amount of the variation in Total, once the
effect of Comp has been taken into account. In particular, the SCEL effect in the multiple regression
model is far from significant (p-value=.30). Hence, previous performance in the SCEL exam has
little predictive value independently of what has already emerged from the current performance in
the compulsory papers (Comp).

What are my conclusions? Given that SCEL is not a useful predictor in the multiple regression
model, I would propose a simple linear regression model to predict Total from Comp:

Predicted Total = 128.5 + 3.95Comp.

Output from the fitted model was given earlier. A residual analysis of the model showed no serious
deficiencies.
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13 Logistic Regression

The data below are from a study conducted by Milicer and Szczotka on pre-teen and teenage
girls in Warsaw. The subjects were classified into 25 age categories. The number of girls in each
group (sample size) and the number that reached menarche (# RM) at the time of the study were
recorded. The age for a group corresponds to the midpoint for the age interval.

Sample size # RM Age Sample size # RM Age
376 0 9.21 200 0 10.21
93 0 10.58 106 67 13.33
120 2 10.83 105 81 13.58
90 2 11.08 117 88 13.83
88 5 11.33 98 79 14.08
105 10 11.58 97 90 14.33
111 17 11.83 120 113 14.58
100 16 12.08 102 95 14.83
93 29 12.33 122 117 15.08
100 39 12.58 111 107 15.33
108 51 12.83 94 92 15.58
99 47 13.08 114 112 15.83

1049 1049 17.58

The researchers were interested in whether the proportion of girls that reached menarche ( #
RM/ sample size ) varied with age. One could perform a test of homogeneity by arranging the data
as a 2 by 25 contingency table with columns indexed by age and two rows: ROW1 = # RM and
ROW2 = # that have not RM = sample size − # RM. A more powerful approach treats these
as regression data, using the proportion of girls reaching menarche as the “response” and age as a
predictor.

A plot of the observed proportion of girls that have reached menarche (labelled Proportion on
page 1 of the Minitab output) shows that the proportion increases as age increases, but that the
relationship is nonlinear. This is reinforced by the Lowess smoother superimposed on the data
plot. The plot and smoother are described in the output.

The observed proportions, which are bounded between zero and one, have a lazy S-shape (a
sigmoidal function) when plotted against age. The change in the observed proportions for a
given change in age is much smaller when the proportion is near 0 or 1 than when the proportion
is near 1/2. This phenomenon is common with regression data where the response is a proportion.

The trend is nonlinear so linear regression is inappropriate. A sensible alternative might be to
transform the response or the predictor to achieve near linearity. A better approach is to use a
non-linear model for the proportions. A common choice is the logistic regression model.

The Simple Logistic Regression Model

The simple logistic regression model expresses the population proportion p of individuals with a
given attribute (called a success) as a function of a single predictor variable X. The model assumes
that p is related to X through

log
(

p

1− p

)
= α + βX (1)
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or, equivalently, as

p =
exp(α + βX)

1 + exp(α + βX)
.

The logistic regression model is a binary response model, where the response for each case
falls into one of 2 exclusive and exhaustive categories, often called success (cases with the attribute
of interest) and failure (cases without the attribute of interest). In many biostatistical applications,
the success category is presence of a disease, or death from a disease.

I will often write p as p(X) to emphasize that p is the proportion of all individuals with score
X that have the attribute of interest. In the menarche data, p = p(X) is the population proportion
of girls at age X that have reached menarche.

The odds of success are p/(1 − p). For example, the odds of success are 1 (or 1 to 1) when
p = 1/2. The odds of success are 9 (or 9 to 1) when p = .9. The logistic model assumes that the
log-odds of success is linearly related to X. Graphs of the logistic model relating p to X are given
below. The sign of the slope refers to the sign of β. A corresponding plot for the menarche data
appears in the Minitab output.
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There are a variety of other binary response models that are used in practice. The probit
regression model or the complementary log-log regression model might be appropriate when the
logistic model does not fit the data.

Data for Simple Logistic Regression

For the formulas below, I assume that the data is given in summarized or aggregate form:
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X n D

X1 n1 d1

X2 n2 d2

. . .

. . .
Xm nm dm

where di is the number of individuals with the attribute of interest (number of diseased) among ni

randomly selected or representative individuals with predictor variable value Xi. The subscripts
identify the group of cases in the data set. In many situations, the sample size is 1 in each group,
and for this situation di is 0 or 1. There are four different forms in which Minitab accepts this type
of data - I discuss this in the separate Minitab output. The preceding format is the one used in
the analysis.

Estimating Regression Coefficients

The principle of maximum likelihood is commonly used to estimate the two unknown parameters
in the logistic model:

log
(

p

1− p

)
= α + βX.

The maximum likelihood estimates (MLE) of the regression coefficients are estimated itera-
tively by maximizing the so-called Binomial likelihood function for the responses, or equivalently,
by minimizing the deviance function (also called the likelihood ratio LR chi-squared statistic)

LR = 2
m∑

i=1

{
dilog

(
di

nipi

)
+ (ni − di)log

(
ni − di

ni − nipi

)}

over all possible values of α and β, where the pis satisfy

log
(

pi

1− pi

)
= α + βXi.

The ML method also gives standard errors and significance tests for the regression estimates.
The deviance is an analog of the residual sums of squares in linear regression. The choices for

α and β that minimize the deviance are the parameter values that make the observed and fitted
proportions as close together as possible in a “likelihood sense”.

Suppose that α̂ and β̂ are the MLEs of α and β. The deviance evaluated at the MLEs:

LR = 2
m∑

i=1

{
dilog

(
di

nip̃i

)
+ (ni − di)log

(
ni − di

ni − nip̃i

)}
,

where the fitted probabilities p̃i satisfy

log
(

p̃i

1− p̃i

)
= α̂ + β̂Xi,

is used to test the adequacy of the model. The deviance is small when the data fits the model, that
is, when the observed and fitted proportions are close together. Large values of LR occur when
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one or more of the observed and fitted proportions are far apart, which suggests that the model is
inappropriate.

If the logistic model holds, then LR has a chi-squared distribution with m−r degrees of freedom,
where m is the number of groups and r (here 2) is the number of estimated regression parameters.
A p-value for the deviance is given by the area under the chi-squared curve to the right of LR. A
small p-value indicates that the data does not fit the model.

Age at Menarche Data: Minitab Implementation

A logistic model for these data implies that the probability p of reaching menarche is related to age
through

log
(

p

1− p

)
= α + βAGE.

If the model holds, then a slope of β = 0 implies that p does not depend on AGE, i.e. the proportion
of girls that have reached menarche is identical across age groups. However, the power of the logistic
regression model is that if the model holds, and if the proportions change with age, then you have
a way to quantify the effect of age on the proportion reaching menarche. This is more appealing
and useful than just testing homogeneity across age groups.

A logistic regression model is fit by following the path Stat > Regression > Binary Logistic
Regression. I discuss the various options for entering the data on the separate Minitab output.
Minitab is a lot more flexible about structuring the data for this procedure than are most packages.
There also are available ordinal and nominal logistic regression to handle cases with more than two
response categories.

The Logistic Regression Table gives the MLEs of the parameters: α̂ = −21.23 and β̂ = 1.63.
Thus, the fitted or predicted probabilities satisfy:

log
(

p̃

1− p̃

)
= −21.23 + 1.63AGE

or
p̃(AGE) =

exp(−21.23 + 1.63AGE)
1 + exp(−21.23 + 1.63AGE)

.

The p-value for testing H0 : β = 0 (i.e. the slope for the regression model is zero) based upon
the Z-test in the Logistic Regression Table is 0 (the area outside ±27.68 in a standard normal
distribution is 0), which leads to rejecting H0 at any of the usual test levels. Thus, the proportion
of girls that have reached menarche is not constant across age groups.

The Goodness-of-Fit Tests table gives the deviance chi-square statistic as 26.70 on 23 df,
with a p-value of .269. The large p-value suggests no gross deficiencies with the logistic model. The
Pearson and Hosmer-Lemeshow tests are also checks on model fit.

The Test that all slopes are zero gives the logistic regression analog of the F-test for the
model in multiple regression. In general, the chi-squared statistic provided here is used to test
the hypothesis that the regression coefficients are zero for each predictor in the model. There is a
single predictor here, AGE, so this test and the test for the AGE effect in the Logistic Regression
Table are both testing H0 : β = 0. This test is not just the square of the Z-test for Age, however.

Probably the most commonly reported part of the output is the odds ratio in the Logistic
Regression Table. In order to understand that we need to review some properties of logs and
exponentials.
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1. If y = log x (natural log) then ey = x, i.e. elog (x) = x where e = 2.71828 . . ..

2. log ey = y.

3. eaeb = ea+b.

4. ea

eb = ea−b.

5. log (ab) = log (a) + log (b) and log
(

a
b

)
= log(a)− log(b)

Now consider the odds of reaching menarche for a given value of Age (any given value) vs. one
year older (Age + 1). Minitab’s estimated log odds of reaching menarche at the given value of Age
is log

(
p̃

1−p̃

)
= −21.23 + 1.63AGE. The estimated log odds at Age + 1 then is

−21.23 + 1.63(AGE + 1). Now the estimated log of the odds ratio at Age + 1 vs. Age is

log
(

Odds at Age+1
Odds at Age

)
= log (Odds at Age+1)− log (Odds at Age) = {−21.23 + 1.63(AGE + 1)}−

{−21.23+1.63(AGE)} = 1.63. If the log of the odds ratio is 1.63, then the odds ratio is e1.63 = 5.11,
which is the value reported in Logistic Regression Table. The estimated odds of RM for a 15-
year old is 5.11 that of a 14-year old, that for a 16-year old 5.11 that of a 15-year old, etc. If β̂
is the estimate of a coefficient in the logit scale, then the odds ratio for a one unit change in the
associated predictor variable is eβ̂ . The 95% CI reported by Minitab is obtained by first computing
β̂±1.96 SE and exponentiating the endpoints. The odds for a 2 unit change is 5.112, by an identical
derivation.

Logistic Regression with Two Effects: Leukemia Data

Feigl and Zelen reported the survival time in weeks and the white cell blood count (WBC) at time
of diagnosis for 33 patients who eventually died of acute leukemia. Each person was classified
as AG+ or AG- (coded as IAG = 1 and 0, respectively), indicating the presence or absence of a
certain morphological characteristic in the white cells. The researchers are interested in modelling
the probability p of surviving at least one year as a function of WBC and IAG. They believe that
WBC should be transformed to a log scale, given the skewness in the WBC values.

As an initial step in the analysis, consider the following model:

log
(

p

1− p

)
= α + β1LWBC + β2IAG,

where LWBC = log WBC. This is a logistic regression model with 2 effects both of which must
be entered in the model portion of the dialog box. The parameters α, β1 and β2 are estimated by
maximum likelihood.

The model is best understood by separating the AG+ and AG- cases. For AG- individuals,
IAG=0 so the model reduces to

log
(

p

1− p

)
= α + β1LWBC + β2 ∗ 0 = α + β1LWBC.

For AG+ individuals, IAG=1 and the model implies

log
(

p

1− p

)
= α + β1LWBC + β2 ∗ 1 = (α + β2) + β1LWBC.
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The model without IAG (i.e. β2 = 0) is a simple logistic model where the log-odds of surviving
one year is linearly related to LWBC, and is independent of AG. The reduced model with β2 = 0
implies that there is no effect of the AG level on the survival probability once LWBC has been
taken into account.

Including the binary predictor IAG in the model implies that there is a linear relationship
between the log-odds of surviving one year and LWBC, with a constant slope for the two AG
levels. This model includes an effect for the AG morphological factor, but more general models
are possible. Thinking of IAG as a factor, the proposed model is a logistic regression analog of
ANCOVA.

The parameters are easily interpreted: α and α + β2 are intercepts for the population logistic
regression lines for AG- and AG+, respectively. The lines have a common slope, β1. The β2

coefficient for the IAG indicator is the difference between intercepts for the AG+ and AG- regression
lines. A picture of the assumed relationship is given below for β1 < 0. The population regression
lines are parallel on the logit (i.e. log odds ) scale only, but the order between IAG groups is
preserved on the probability scale.
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The Minitab worksheet contains raw data for individual cases. There are four columns: the
binary or indicator variable IAG (with value 1 for AG+, 0 for AG-), WBC (continuous), LIVE
(with value 1 if the patient lived at least 1 year and 0 if not), and Log WBC (natural log of
WBC). Note that a frequency column is not needed with raw data and that the success category
corresponds to surviving at least 1 year.

Before looking at output for the equal slopes model, note that the data set has 30 distinct
IAG and LWBC combinations, or 30 “groups” or samples that could be constructed from the 33
individual cases. Only two samples have more than 1 observation. The majority of the observed
proportions surviving at least one year (number surviving ≥ 1 year/ group sample size) are 0
(i.e. 0/1) or 1 (i.e. 1/1). This sparseness of the data makes it difficult to graphically assess the
suitability of the logistic model (Why?). Although significance tests on the regression coefficients

141



13 LOGISTIC REGRESSION

do not require large group sizes, the chi-squared approximation to the deviance is suspect in sparse
data settings. With small group sizes as we have here, most researchers would not interpret the
p-values for the deviance literally. Instead, they would use the p-values to informally check the fit
of the model. Diagnostics would be used to highlight problems with the model.

The large p-value (.684) for the lack-of-fit chi-square (i.e. the deviance) indicates that there are
no gross deficiencies with the model. Given that the model fits reasonably well, a test of H0 : β2 = 0
might be a primary interest here. This checks whether the regression lines are identical for the two
AG levels, which is a test for whether AG affects the survival probability, after taking LWBC into
account. The p-value for this test is .021. The test is rejected at any of the usual significance levels,
suggesting that the AG level affects the survival probability (assuming a very specific model).

The estimated survival probabilities satisfy

log
(

p̃

1− p̃

)
= 5.54− 1.11LWBC + 2.52IAG.

For AG- individuals with IAG=0, this reduces to

log
(

p̃

1− p̃

)
= 5.54− 1.11LWBC,

or equivalently,

p̃ =
exp(5.54− 1.11LWBC)

1 + exp(5.54− 1.11LWBC)
.

For AG+ individuals with IAG=1,

log
(

p̃

1− p̃

)
= 5.54− 1.11LWBC + 2.52 ∗ (1) = 8.06− 1.11LWBC,

or
p̃ =

exp(8.06− 1.11LWBC)
1 + exp(8.06− 1.11LWBC)

.

Using the logit scale, the difference between AG+ and AG- individuals in the estimated log-
odds of surviving at least one year, at a fixed but arbitrary LWBC, is the estimated IAG regression
coefficient:

(8.06− 1.11LWBC)− (5.54− 1.11LWBC) = 2.52.

Using properties of exponential functions, the odds that an AG+ patient lives at least one year is
exp(2.52) = 12.42 times larger than the odds that an AG- patient lives at least one year, regardless
of LWBC.

Although the equal slopes model appears to fit well, a more general model might fit better. A
natural generalization here would be to add an interaction, or product term, IAG ∗LWBC to the
model. The logistic model with an IAG effect and the IAG ∗ LWBC interaction is equivalent to
fitting separate logistic regression lines to the two AG groups. This interaction model provides an
easy way to test whether the slopes are equal across AG levels. I will note that the interaction
term is not needed here.
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14 Introduction to Survival Analysis

In many biomedical studies, the outcome variable is a survival time, or more generally a time to
an event. We will describe some of the standard tools for analyzing survival data.

Most studies of survival last a few years, and at completion many subjects may still be alive.
For those individuals, the actual survival time is not known – all we know is how long they survived
from their entry in the study. Similarly, certain individuals may drop out from the study or be lost
to follow-up. Each of these cases is said to be censored, and the recorded time for such individuals
is their time until the censoring event.

Example: HPA staining for breast cancer survival

We consider data from a retrospective study of 45 women who had surgery for breast cancer. Tumor
cells, surgically removed from each woman, were classified according to the results of staining on
a marker taken from the Roman snail, the Helix pomatia agglutinin (HPA). The marker binds to
cancer cells associated with metastasis to nearby lymph nodes. Upon microscopic examination, the
cancer cells stained with HPA are classified as positive, corresponding to a tumor with the potential
for metastasis, or negative. It is of interest to determine the relationship of HPA staining and the
survival of women with breast cancer.

The survival times in months Ti and staining results (xi = 0 for negative and xi = 1 for
positive) for the 45 women are presented in the following table. Also included is a censoring
indicator di. Contrary to the normal definition of an indicator variable, the censoring indicator is
zero if the observation is right-censored, and one if the observation is uncensored. So it’s really a
non-censoring indicator! A woman’s survival time was right censored if the woman was alive at
the end of the study or if the woman died of causes unrelated to breast cancer.

T x d T x d T x d T x d T x d T x d T x d T x d T x d T x d
-------------------------------------------------------------------------------
23 0 1 47 0 1 69 0 1 70 0 0 71 0 0 100 0 0 101 0 0 148 0 1 181 0 1 198 0 0
208 0 0 212 0 0 224 0 0 5 1 1 8 1 1 10 1 1 13 1 1 18 1 1 24 1 1 26 1 1
26 1 1 31 1 1 35 1 1 40 1 1 41 1 1 48 1 1 50 1 1 59 1 1 61 1 1 68 1 1
71 1 1 76 1 0 105 1 0 107 1 0 109 1 0 113 1 1 116 1 0 118 1 1 143 1 1
154 1 0 162 1 0 188 1 0 212 1 0 217 1 0 225 1 0

This is the general format the data should be in to work with it in packages like Minitab and
Stata, though Minitab is flexible about the actual censoring indicator you use. Succinctly, the
sorted survival times for the negative stained women are

23, 47, 69, 70∗, 71∗, 100∗, 101∗, 148, 181, 198∗, 208∗, 212∗, 224∗,

where ∗ denotes a right-censored observation. The survival times for the positive stained group are

5, 8, 10, 13, 18, 24, 26, 26, 31, 35, 40, 41, 48, 50, 59, 61, 68, 71, 76∗, 105∗,

107∗, 109∗, 113, 116∗, 118, 143, 154∗, 162∗, 188∗, 212∗, 217∗, 225∗.

In the breast cancer study, 8 individuals in the negative stained group, and 11 in the positive
stained group are censored. Although it is common for studies to have right-censored cases, such
as we have here, left-censoring and interval-censoring are found in other clinical studies.
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Survival Curves

A first step in survival analysis is often to estimate the survival curve, or survival time distribution.
Suppose we are considering a single (homogeneous) population. Let T be the survival time (from
some reference point) for a randomly selected individual from the population. Where t is any
arbitrary positive value, the survival time distribution is defined to be

S(t) = Pr(T ≥ t)
= probability randomly selected individual survives at least until time t

= proportion of population that survives at least until time t.

The function might look like Figure 1.

Figure 1: S(t) versus t; median survival time for population is 5.

Estimating the Survival Curve

Case I: No censoring

If we have a random sample from the population, we use the empirical survival function:

Ŝ(t) = sample proportion that survive at least until time t

to estimate S(t). This is easy to compute and plot as a function of t.
Suppose we have a sample of 5 survival times (in days): 5, 8, 20, 30, and 33. Ŝ(t) has “jumps”

of size 1/5 (i.e. 1 divided by the sample size) at each survival time; see Figure 2.
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Figure 2: Empirical survival function Ŝ(t) for the data 5, 8, 20, 30, and 33.

Case II: Right censoring

Recall the data on the survival of women with breast cancer whose cells were negatively stained
with HPA:

23, 47, 69, 70∗, 71∗, 100∗, 101∗, 148, 181, 198∗, 208∗, 212∗, 224∗,

where the ∗ superscript identifies a right-censored observation.
The following algorithm describes the Kaplan-Meier (KM) method for estimating the survival

curve (Kaplan-Meier product-limit estimate).

1. Identify times for non-censored cases 0 = t0 < t1 < t2 < · · · < tr. That is, t1 is the smallest
non-censored survival time, t2 is the second smallest, et cetera. For the example r = 5 and
t0 = 0, t1 = 23, t2 = 47, t3 = 69, t4 = 148, and t5 = 181.

2. For the jth interval, where tj−1 ≤ t < tj , evaluate

nj = number at risk (of dying) at beginning of interval,
dj = number of deaths in interval,

nj − dj

nj
= estimated probability of surviving past tj−1,

given you are at risk at time tj−1

= P̂ (T ≥ tj−1|T ≥ tj−2).
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3. For tj−1 ≤ t < tj ,

Ŝ(t) = P̂ (T ≥ t)
= P̂ (T ≥ tj−1|T ≥ tj−2)×

P̂ (T ≥ tj−2|T ≥ tj−3)× · · · ×
P̂ (T ≥ t1|T ≥ t0)

=
nj − dj

nj
× nj−1 − dj−1

nj−1
× · · · × n1 − d1

n1
.

Remark: Censored observations are taken into account by being treated as cases at risk at the
beginning of the interval in which they fail.

To illustrate the calculation for our data, consider the table:

j Interval nj dj
nj − dj

nj
Ŝ(t)

1 0 ≤ t < 23 13 0
13− 0

13
= 1 1.0

2 23 ≤ t < 47 13 1
13− 1

13
=

12
13

•= 0.923 1.0× 0.923 = 0.923

3 47 ≤ t < 69 12 1
12− 1

12
=

11
12

•= 0.917 0.923× 0.917 = 0.846

4 69 ≤ t < 148 11 1
10
11

•= 0.909 0.846× 0.909 = 0.769

5 148 ≤ t < 181 6 1
5
6

•= 0.833 0.769× 0.833 = 0.641

6 181 ≤ t 5 1
4
5

= 0.8 0.641× 0.8 = 0.513

To obtain the KM estimate in Minitab, follow the path Stat > Reliability/Survival >
Distribution Analysis (Right Censoring) > Nonparametric Distribution Analysis. En-
ter the failure time variable in Variables, check the By variable and enter group, click on Censor
and enter the censoring variable and value, on Estimate enter Kaplan-Meier, on Graphs check Sur-
vival Plot, and ask for full results. In Figure 3 we have a picture of Ŝ(t) from the negatively stained
group as well as the estimate from the positively stained group. Note that the negatively stained
group tends to live longer, as we would expect. Output follows. We will discuss this in class.

Distribution Analysis: time by group

Variable: time
group = 0

Censoring Information Count
Uncensored value 5
Right censored value 8

Censoring value: cens = 0

Nonparametric Estimates

145



14 INTRODUCTION TO SURVIVAL ANALYSIS

Figure 3: KM survival curves for positively and negatively stained groups.

Characteristics of Variable

Standard 95.0% Normal CI
Mean(MTTF) Error Lower Upper

145.692 17.6423 111.114 180.271

Median = * IQR = * Q1 = 148 Q3 = *

Kaplan-Meier Estimates

Number
at Number Survival Standard 95.0% Normal CI

Time Risk Failed Probability Error Lower Upper
23 13 1 0.923077 0.073905 0.778225 1.00000
47 12 1 0.846154 0.100068 0.650024 1.00000
69 11 1 0.769231 0.116855 0.540200 0.99826

148 6 1 0.641026 0.152249 0.342623 0.93943
181 5 1 0.512821 0.167285 0.184948 0.84069

Empirical Hazard Function

Hazard
Time Estimates

23 0.076923
47 0.083333
69 0.090909

148 0.166667
181 0.200000

Distribution Analysis: time by group
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Variable: time group = 1

Censoring Information Count
Uncensored value 21
Right censored value 11

Censoring value: cens = 0

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI
Mean(MTTF) Error Lower Upper

79.8320 9.70863 60.8035 98.8606

Median = 61 IQR = * Q1 = 26 Q3 = *

Kaplan-Meier Estimates

Number
at Number Survival Standard 95.0% Normal CI

Time Risk Failed Probability Error Lower Upper
5 32 1 0.968750 0.0307578 0.908466 1.00000
8 31 1 0.937500 0.0427908 0.853632 1.00000
10 30 1 0.906250 0.0515270 0.805259 1.00000
13 29 1 0.875000 0.0584634 0.760414 0.98959
18 28 1 0.843750 0.0641862 0.717947 0.96955
24 27 1 0.812500 0.0689981 0.677266 0.94773
26 26 2 0.750000 0.0765466 0.599972 0.90003
31 24 1 0.718750 0.0794804 0.562971 0.87453
35 23 1 0.687500 0.0819382 0.526904 0.84810
40 22 1 0.656250 0.0839617 0.491688 0.82081
41 21 1 0.625000 0.0855816 0.457263 0.79274
48 20 1 0.593750 0.0868207 0.423584 0.76392
50 19 1 0.562500 0.0876951 0.390621 0.73438
59 18 1 0.531250 0.0882155 0.358351 0.70415
61 17 1 0.500000 0.0883883 0.326762 0.67324
68 16 1 0.468750 0.0882155 0.295851 0.64165
71 15 1 0.437500 0.0876951 0.265621 0.60938

113 10 1 0.393750 0.0891735 0.218973 0.56853
118 8 1 0.344531 0.0905972 0.166964 0.52210
143 7 1 0.295313 0.0900371 0.118843 0.47178

Empirical Hazard Function

Hazard
Time Estimates

5 0.031250
8 0.032258
10 0.033333
13 0.034483
18 0.035714
24 0.037037
26 0.040000
31 0.041667
35 0.043478
40 0.045455
41 0.047619
48 0.050000
50 0.052632
59 0.055556
61 0.058824
68 0.062500
71 0.066667
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113 0.100000
118 0.125000
143 0.142857

Distribution Analysis: time by group

Comparison of Survival Curves

Log-Rank Statistic

Variable 1 2
-4.56513 4.56513

Variance/Covariance of Log-Rank Statistic

Variable 1 2
1 5.92900 -5.92900
2 -5.92900 5.92900

Wilcoxon Statistic

Variable 1 2
-159 159

Variance/Covariance of Wilcoxon Statistic

Variable 1 2
1 6048.14 -6048.14
2 -6048.14 6048.14

Test Statistics

Method Chi-Square DF P-Value
Log-Rank 3.51499 1 0.061
Wilcoxon 4.17997 1 0.041

Some remarks:

• The estimated survival curve “drops to zero” only if the last case is not censored.

• The KM curve allows us to estimate percentiles of the survival distribution, with a primary
interest being the median survival time (50th percentile). In the example above, the 90th

percentile is approximately 47 months (i.e. we estimate that 90% of the population will
survive at least 47 months). The median cannot be estimated here – all we can say is that
we estimate the median to be at least 181 months.

• The KM estimate is the usual empirical estimate if no cases are censored.

• Statistical methods are available to

– Estimate the mean survival time.

– Get a C.I. for the survival curve.

– Compare survival curves across groups – you can think of this as the censored data
analogue of (non-parametric) ANOVA.
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The Cox Proportional Hazards Model

Note: Minitab does not do this. I have included old notes from Stata. This is a way to use regression
methods similar to those used in logistic regression. Minitab includes methods more common in
engineering; proportional hazards methods are more common in biostatistics.

The risk of failing at time t is defined to be the probability of an individual dying in the “next
instant” (e.g. in a time frame of length ∆) given this individual has survived at least until time t:

P (t ≤ T < t + ∆|t ≤ T ).

We define the hazard function h(t) such that for small enough ∆,

P (t ≤ T < t + ∆|t ≤ T ) = h(t)∆.

The hazard function is proportional to the instantaneous “risk of failing” at any time t, given that
an individual has lived at least to time t.

Now consider two individuals, 1 and 2, each with their own hazard functions h1(t) and h2(t). If
we assume that one individual’s instantaneous rate of failing is a constant multiple of the other’s, i.e.
h2(t) = ah1(t) for some constant a, then these two individuals have proportional hazard functions.
Figure 4 shows an example of this phenomenon where the hazard ratio is 1/2.

Figure 4: An example of proportional hazard functions; here the constant of proportionality is 0.5.

Proportional hazards may or may not be a reasonable assumption to make. For example,
consider two people, roughly the same age and demographic except that at the age of 20, person
2 takes up smoking while person 1 does not. You will hopefully agree with me that initially, the
smoker and the non-smoker will most likely have identical hazards. As the years roll by, and
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smoking takes its toll, we would think that the smoker’s instantaneous rate of failing, which is
proportional to the probability of dying in the next minute, say, will increase relative to the hazard
for the non-smoker. In this example proportional hazards probably is an unreasonable assumption.

The proportional hazards model generalizes the above concept for n individuals, each with their
own covariate value xi or set of p covariate values xi = (xi1, xi2, . . . , xip). In the case where the
n individuals only have one covariate, the model stipulates for individuals i and j, with a hazard
functions hi(t) and hj(t) respectively, that

hi(t)e−βxi = hj(t)e−βxj .

Note that this implies
hi(t)
hj(t)

=
eβxi

eβxj
= eβ(xi−xj).

Here, eβ(xi−xj) is the relative risk of instantaneous failure at any time t for individuals i and
j. That is the power of the proportional hazards assumption: the relative risk of dying for two
individuals is a simple function of the model parameters and holds for all t, independent of the
value of t. If individual i has covariate value x + 1 and individual j has covariate value x, i.e. their
covariate values only differ by 1 unit on the covariate measurement scale, then

hi(t)
hj(t)

=
eβ(x+1)

eβx
= eβ.

Thus, eβ is the relative risk of failing in the next instant when we increase the covariate by one
unit. Note that if xi is a simple zero/one variable denoting which group individual i falls into, then
eβ is the relative risk of failing in the next instant for the group denoted by xi = 1 versus xi = 0.

The breast cancer data are loaded with the commands infile time group cens using c:/breast.txt
and the Cox PH model is fit via cox time group, dead(cens). The survival time, followed by
the predictor variable(s) is specified. The non-censoring indicator is included in the subcommand
dead. We obtain the following output:
------------------------------------------------------------------------
time |
cens | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------+----------------------------------------------------------------
group | .9080157 .5009228 1.81 0.070 -.0737749 1.889806
------------------------------------------------------------------------

We have an estimate of β̂ = 0.908 and the estimated relative risk is eβ̂ = e0.908 •= 2.5. That
is, those with positive staining are estimated to have a risk of dying in the next instant about 2.5
times as great as those with negative staining. Note that the p-value for H0 : β = 0 is small but not
significant at the 5% level. There is definitely some indication that staining affects survival, with
positive staining decreasing survival. A 95% C.I. for the risk may be obtained by exponentiating the
endpoints for the C.I. for β. Here, we estimate the relative risk of expiring (for positive compared
to negative staining) to be within (e−0.073, e1.89) = (0.93, 6.62) with 95% confidence.

Remark: The hazard function for individual i can be defined to be a scale multiple exiβ of a
baseline hazard function denoted h0(t). The model may be recast as hi(t) = h(t|xi) = exiβh0(t).
This baseline hazard function h0(t) and β thus completely determine the model. The baseline
hazard h0(t) may be estimated from the data as well as survival curves, median and mean
survival, et cetera, for any covariate value x. These sorts of inferences are quite easy to get out of
Stata but a bit beyond what is comfortable to cover in this class.
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A final example

We examine a data set consisting of the time spent running on a treadmill for 14 people aged 15
and older. Each subject’s gender and age were recorded. It is of interest to the experimenter how
age and gender affects ones endurance.

We define a numeric indicator variable for the gender variable by taking g to be 0 for a male
subject and 1 for a female subject. When fitting the PH model with gender and age as main effects,

h(t|age, g) = eageβ1+gβ2h0(t),

the baseline group (i.e. those with covariates age = 0 and g = 0, and thus a hazard function of
e0β1+0β2 = e0h0(t) = h0(t)) consists of males of age zero, which is not interpretable in this context.
Observations were censored due to a subject having to leave the treadmill for reasons other than
being tired. The data follow:

Obs gender age minutes cens weight g
-------------------------------------------------------

1 male 34 16 1 215 0
2 male 15 35 0 135 0
3 female 22 55 0 145 1
4 female 18 95 1 97 1
5 male 18 55 0 225 0
6 female 32 55 1 185 1
7 female 37 25 1 155 1
8 female 67 15 1 142 1
9 female 55 22 1 132 1

10 male 55 13 1 183 0
11 male 62 13 1 168 0
12 female 33 57 0 132 1
13 female 17 52 0 112 1
14 male 24 54 1 175 0

The fit of the model with only gender h(t|g) = egβ1h0(t):
------------------------------------------------------------------------------

minutes | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

g | -.6786811 .7161483 -0.95 0.343 -2.082306 .7249439
------------------------------------------------------------------------------

The test for a gender effect yields a p-value of 0.343. We would accept at any reasonable
significance level that there is not a gender effect. The estimate of β1 is β̂1 = −0.679 so the
fitted model is h(t|g) = e−0.678gh0(t) implying that h(t|g = 1) = 0.507h(t|g = 0) and finally
h(t|g = 1)/h(t|g = 0) = 0.507 for all t. That is, the probability of a randomly picked woman failing
(stepping off the treadmill) in the next second is estimated be half the probability of a randomly
picked male.

Rephrased, we see that, assuming proportional hazards is reasonable, females are about half
(the hazard ratio is e−0.679 = 0.507) as likely to step off the treadmill at any instant versus males.
We obtain an approximate 95% C.I. for this ratio by first considering the 95% C.I. for the regression
effect: (-2.08, 0.72). Exponentiate both endpoints to obtain a 95% C.I. for the hazard ratio: (0.12,
2.07). The hazard ratio interval includes one (no difference in the hazard functions for males and
females) because the regression effect interval includes zero.

Let’s look at the model fit with only age h(t|age) = eageβ1h0(t):

------------------------------------------------------------------------------
minutes | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | .1116606 .0385688 2.90 0.004 .0360672 .187254

------------------------------------------------------------------------------
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A year from now, a randomly selected individual will be e0.1117 = 1.118 times as likely to
step off the treadmill after 15 minutes (or any amount of time) than now. In ten years it will be
1.11810 = 3.05 times as likely. When we fit the model with both of these predictors h(t|age, g) =
eageβ1+gβ2h0(t) = eageβ1egβ2h0(t) we see that estimated regression effects, and therefore model
interpretation, change somewhat:

------------------------------------------------------------------------------
minutes | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
g | -3.551859 1.57856 -2.25 0.024 -6.645779 -.4579388

age | .2186267 .0855601 2.56 0.011 .050932 .3863214
------------------------------------------------------------------------------

At a given age, a random male running alongside a random female is about 1/e−3.55 = 1/0.029 =
35 times as likely to step off the treadmill at any time. A woman 20 years older than another woman
is about e0.218×20 = 80 times as likely to step off compared to the younger woman. Note that in the
presence of age, gender is now significant, although marginally, gender is not a significant factor.
In this case age is said to be a suppressor variable. The Stata commands for this analysis are:

infile age minutes cens weight g1 using c:/running.txt
cox minutes g1, dead(cens)
cox minutes age, dead(cens)
cox minutes g1 age, dead(cens)

In the model fit that included an interaction between age and gender, the interaction term was not
significant.
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