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10 Discrete Data Analysis

SW Chapter 10
Earlier this semester we discussed inference for a single proportion problem. In this section we

will generalize those methods in two directions. First we consider single sample problems involving
categorical variables with multiple categories. Second, we consider problems with two or more
samples.

Goodness-of-Fit Tests

Example The following data set was used as evidence in a court case. The data represent a
sample of 1336 individuals from the jury pool of a large municipal court district for the years 1975-
1977. The fairness of the representation of various age groups on juries was being contested. The
strategy for doing this was to challenge the representativeness of the pool of individuals from which
the juries are drawn. This was done by comparing the age group distribution within the jury pool
against the age distribution in the district as a whole, which was available from census figures.

Age group (yrs) Obs. Counts Obs. Prop. Census Prop.
18-19 23 .017 .061
20-24 96 .072 .150
25-29 134 .100 .135
30-39 293 .219 .217
40-49 297 .222 .153
50-64 380 .284 .182
65-99 113 .085 .102

A statistical question here is whether the jury pool population proportions are equal to the
census proportions across the age categories. This comparison can be formulated as a goodness-
of-fit test, which generalizes the large sample test on a single proportion to a categorical variable
(here age) with r > 2 levels. For r = 2 categories, the goodness-of-fit test and large sample test
on a single proportion are identical. Although this problem compares two populations, only one
sample is involved because the census data is a population summary!

In general, suppose each individual in a population is categorized into one and only one of
r levels or categories. Let p1, p2, ..., pr be the population proportions in the r categories, where
each pi ≥ 0 and p1 + p2 + · · · + pr = 1. The hypotheses of interest in a goodness-of-fit problem
are H0 : p1 = p0

1, p2 = p0
2, ..., pr = p0

r and HA : not H0, where p0
1, p0

2, ..., p
0
r are given category

proportions.
The plausibility of H0 is evaluated by comparing the hypothesized category proportions to

estimated (i.e. observed) category proportions p̂1, p̂2, ..., p̂r from a random or representative
sample of n individuals selected from the population. The discrepancy between the hypothesized
and observed proportions is measured by the Pearson chi-squared statistic:

χ2
s =

r∑
i=1

(Oi − Ei)2

Ei
,
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where Oi is the observed number in the sample that fall into the ith category (Oi = np̂i), and
Ei = np0

i is the number of individuals expected to be in the ith category when H0 is true.
The Pearson statistic can also be computed as the sum of the squared residuals:

χ2
s =

r∑
i=1

Z2
i ,

where Zi = (Oi − Ei)/
√

Ei, or in terms of the observed and hypothesized category proportions

χ2
s = n

r∑
i=1

(p̂i − p0
i )

2

p0
i

.

The Pearson statistic χ2
s is “small” when all of the observed counts (proportions) are close to

the expected counts (proportions). The Pearson χ2 is “large” when one or more observed counts
(proportions) differs noticeably from what is expected when H0 is true. Put another way, large
values of χ2

s suggest that H0 is false.
The critical value χ2

crit for the test is obtained from a chi-squared probability table with r − 1
degrees of freedom. A chi-squared table is given on page 686 of SW. The picture below shows
the form of the rejection region. For example, if r = 5 and α = .05, then you reject H0 when
χ2

s ≥ χ2
crit = 9.49. The p-value for the test is the area under the chi-squared curve with df = r− 1

to the right of the observed χ2
s value.

0 5 10 15
χCrit

2

α = .05 (fixed)

Reject H0 for χS
2 here

χ2 with 4 degrees of freedom

0 5 10 15
χCrit

2 χS
2

p − value (random)

χ2 with 4 degrees of freedom

χS
2 significant

Example (Jury pool problem) Let p18 be the proportion in the jury pool population between
ages 18 and 19. Define p20, p25, p30, p40, p50 and p65 analogously. You are interested in testing
H0 : p18 = .061, p20 = .150, p25 = .135, p30 = .217, p40 = .153, p50 = .182 and p65 = .102 against
HA : not H0, using the sample of 1336 from the jury pool.

The observed counts, the expected counts, and the category residuals are given in the table
below. For example, E18 = 1336 ∗ (.061) = 81.5 and Z18 = (23− 81.5)/

√
81.5 = −6.48 in the 18-19

year category.
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The Pearson statistic is

χ2
s = (−6.48)2 + (−7.38)2 + (−3.45)2 + .182 + 6.482 + 8.782 + (−1.99)2 = 231.26

on r − 1 = 7 − 1 = 6 degrees of freedom. Here χ2
crit = 12.59 at α = .05. The p-value for the

goodness-of-fit test is less than .001, which suggests that H0 is false.

Age group (yrs) Obs. Counts Exp. Counts Residual
18-19 23 81.5 -6.48
20-24 96 200.4 -7.38
25-29 134 180.4 -3.45
30-39 293 289.9 0.18
40-49 297 204.4 6.48
50-64 380 243.2 8.78
65-99 113 136.3 -1.99

Adequacy of the Goodness-of-Fit Test

The chi-squared goodness-of-fit test is a large sample test. A conservative rule of thumb is that the
test is suitable when each expected count is at least five. This holds in the jury pool example.
There is no widely available alternative method for testing goodness-of-fit with smaller sample sizes.
There is evidence, however, that the chi-squared test is slightly conservative (the p-values are
too large, on average) when the expected counts are smaller. Some statisticians recommend that
the chi-squared approximation be used when the minimum expected count is at least one, provided
the expected counts are not too variable.

Minitab Implementation

Minitab will do a chi-squared goodness-of-fit test in the by following the menu path Stat > Tables
> Chi-Square Goodness-of-Fit Test (One Variable). Unlike the method we used for a single
proportion of entering summarized data from a dialog box, the summarized data need to be entered
into the worksheet (having counts for categories is summarized data). Following is the Minitab
output for the jury pool problem:

Data Display

Row Age Count CensusProp
1 18-19 23 0.061
2 20-24 96 0.150
3 25-29 134 0.135
4 30-39 293 0.217
5 40-49 297 0.153
6 50-64 380 0.182
7 65-99 113 0.102
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Chi-Square Goodness-of-Fit Test for Observed Counts in Variable: Count

Using category names in Age

Test Contribution
Category Observed Proportion Expected to Chi-Sq
18-19 23 0.061 81.496 41.9871
20-24 96 0.150 200.400 54.3880
25-29 134 0.135 180.360 11.9164
30-39 293 0.217 289.912 0.0329
40-49 297 0.153 204.408 41.9420
50-64 380 0.182 243.152 77.0192
65-99 113 0.102 136.272 3.9743

N DF Chi-Sq P-Value
1336 6 231.260 0.000

The term “Contribution to Chi-Square” refers to the values of (O−E)2

E for each category. χ2
s is the

sum of those contributions.

Comparing Two Proportions: Independent Samples

The New Mexico state legislature is interested in how the proportion of registered voters that
support Indian gaming differs between New Mexico and Colorado. Assuming neither population
proportion is known, the state’s statistician might recommend that the state conduct a survey
of registered voters sampled independently from the two states, followed by a comparison of the
sample proportions in favor of Indian gaming.

Statistical methods for comparing two proportions using independent samples can be formulated
as follows. Let p1 and p2 be the proportion of populations 1 and 2, respectively, with the attribute
of interest. Let p̂1 and p̂2 be the corresponding sample proportions, based on independent random
or representative samples of size n1 and n2 from the two populations.

Large Sample CI and Tests for p1 − p2

A large sample CI for p1 − p2 is (p̂1 − p̂2)± zcritSECI(p̂1 − p̂2), where zcrit is the standard normal
critical value for the desired confidence level, and

SECI(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)
n2
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is the CI standard error.
A large sample p-value for a test of the null hypothesis H0 : p1 − p2 = 0 against the two-sided

alternative HA : p1 − p2 6= 0 is evaluated using tail areas of the standard normal distribution
(identical to 1 sample evaluation) in conjunction with the test statistic

zs =
p̂1 − p̂2

SEtest(p̂1 − p̂2)
,

where

SEtest(p̂1 − p̂2) =

√
p̄(1− p̄)

n1
+

p̄(1− p̄)
n2

=

√
p̄(1− p̄)

(
1
n1

+
1
n2

)
is the test standard error for p̂1 − p̂2. The pooled proportion

p̄ =
n1p̂1 + n2p̂2

n1 + n2

is the proportion of successes in the two samples combined. The test standard error has the same
functional form as the CI standard error, with p̄ replacing the individual sample proportions.

The pooled proportion is the best guess at the common population proportion when H0 : p1 = p2

is true. The test standard error estimates the standard deviation of p̂1 − p̂2 assuming H0 is true.

Example Two hundred and seventy nine French skiers were studied during two one-week periods
in 1961. One group of 140 skiers receiving a placebo each day, and the other 139 receiving 1
gram of ascorbic acid (Vitamin C) per day. The study was double blind - neither the subjects
nor the researchers knew who received what treatment. Let p1 be the probability that a member
of the ascorbic acid group contracts a cold during the study period, and p2 be the corresponding
probability for the placebo group. Linus Pauling and I are interested in testing whether p1 = p2.
The data are summarized below as a two-by-two table of counts (a contingency table)

Outcome Ascorbic Acid Placebo
# with cold 17 31

# with no cold 122 109
Totals 139 140

The sample sizes are n1 = 139 and n2 = 140. The sample proportion of skiers developing colds
in the placebo and treatment groups are p̂2 = 31/140 = .221 and p̂1 = 17/139 = .122, respectively.
The pooled proportion is the number of skiers that developed colds divided by the number of skiers
in the study: p̄ = 48/279 = .172.

The test standard error is:

SEtest(p̂1 − p̂2) =

√
.172 ∗ (1− .172)

(
1

139
+

1
140

)
= .0452.

The test statistic is
zs =

.122− .221
.0452

= −2.19.

The p-value for a two-sided test is twice the area under the standard normal curve to the right of
2.19 (or twice the area to the left of -2.19), which is 2 ∗ (.014) = .028 At the 5% level, we reject the
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hypothesis that the probability of contracting a cold is the same whether you are given a placebo
or Vitamin C.

A CI for p1 − p2 provides a measure of the size of the treatment effect. For a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
.221 ∗ (1− .221)

140
+

.122 ∗ (1− .122)
139

= 1.96 ∗ (.04472) = .088.

The 95% CI for p1 − p2 is (.122 − .221) ± .088, or (−.187,−.011). We are 95% confident that p2

exceeds p1 by at least .011 but not by more than .187.
On the surface, we would conclude that a daily dose of Vitamin C decreases a French skier’s

chance of developing a cold by between .011 and .187 (with 95% confidence). This conclusion was
somewhat controversial. Several reviews of the study felt that the experimenter’s evaluations of
cold symptoms were unreliable. Many other studies refute the benefit of Vitamin C as a treatment
for the common cold.

Example A case-control study was designed to examine risk factors for cervical dysplasia (Becker
et al. 1994). All the women in the study were patients at UNM clinics. The 175 cases were women,
aged 18-40, who had cervical dysplasia. The 308 controls were women aged 18-40 who did not have
cervical dysplasia. Each women was classified as positive or negative, depending on the presence
of HPV (human papilloma virus).

The data are summarized below.

HPV Outcome Cases Controls
Positive 164 130
Negative 11 178

Sample size 175 308

Let p1 be the probability that a case is HPV positive and let p2 be the probability that a control
is HPV positive. The sample sizes are n1 = 175 and n2 = 308. The sample proportions of positive
cases and controls are p̂1 = 164/175 = .937 and p̂2 = 130/308 = .422.

For a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
.937 ∗ (1− .937)

175
+

.422 ∗ (1− .422)
308

= 1.96 ∗ (.03336) = .0659.

A 95% CI for p1− p2 is (.937− .422)± .066, or .515± .066, or (.449, .581). I am 95% confident that
p1 exceeds p2 by at least .45 but not by more than .58.

Not surprisingly, a two-sided test at the 5% level would reject H0 : p1 = p2. In this problem
one might wish to do a one-sided test, instead of a two-sided test. Let us carry out this test, as a
refresher on how to conduct one-sided tests.

Appropriateness of Large Sample Test and CI

The standard two sample CI and test used above are appropriate when each sample is large. A rule
of thumb suggests a minimum of at least five successes (i.e. observations with the characteristic of
interest) and failures (i.e. observations without the characteristic of interest) in each sample before
using these methods. This condition is satisfied in our two examples.
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Minitab Implementation

For the Vitamin C example, in order to get Minitab to do all the calculations as presented, it is
easiest to follow the menu path Stat > Basic Statistics > 2 Proportions and enter summary
data as follows (you need to check the box for pooled estimate of p for test).

Test and CI for Two Proportions

Sample X N Sample p
1 17 139 0.122302
2 31 140 0.221429

Difference = p (1) - p (2)
Estimate for difference: -0.0991264
95% CI for difference: (-0.186859, -0.0113937)
Test for difference = 0 (vs not = 0): Z = -2.19 P-Value = 0.028

For the cervical dysplasia example, Minitab results are as follows:

Test and CI for Two Proportions

Sample X N Sample p
1 164 175 0.937143
2 130 308 0.422078

Difference = p (1) - p (2)
Estimate for difference: 0.515065
95% CI for difference: (0.449221, 0.580909)
Test for difference = 0 (vs not = 0): Z = 11.15 P-Value = 0.000

The above analyses are not the most common way to see data like this presented. The ability
to get a confidence interval is particularly nice, and I do recommend including such an analysis.
Usually, though, we present such data as a two-by-two contingency table. We need this structure
in the rest of this section, so let us do that for these two examples.

The basic structure of data entry (it must be in the worksheet) is similar to our earlier use of
stacked data. This is how SAS, Stata, and most other packages want it as well. For the Vitamin
C example, the data are entered as follows:
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Data Display

Row Cold Group Count
1 1Yes 1Vit C 17
2 1Yes 2Placebo 31
3 2No 1Vit C 122
4 2No 2Placebo 109

The values for Cold could be entered as just Yes and No, but then Minitab alphabetizes in the
presentation. What I have done is one way to get Minitab to present the table in the order we want
it. Now we follow the menu path Stat > Tables > Cross Tabulation and Chi-Square and fill
in the following box appropriately:

The various Display options and Other Stats are reflected in the following output. I structured
this to present what I usually get out of SAS by default.

Tabulated statistics: Cold, Group

Using frequencies in Count

Rows: Cold Columns: Group

1Vit C 2Placebo All

1Yes 17 31 48
35.42 64.58 100.00
12.23 22.14 17.20
6.09 11.11 17.20
23.9 24.1 48.0

1.9990 1.9847 *

2No 122 109 231
52.81 47.19 100.00
87.77 77.86 82.80
43.73 39.07 82.80
115.1 115.9 231.0

0.4154 0.4124 *

All 139 140 279
49.82 50.18 100.00
100.00 100.00 100.00
49.82 50.18 100.00
139.0 140.0 279.0
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* * *

Cell Contents: Count
% of Row
% of Column
% of Total
Expected count
Contribution to Chi-square

Pearson Chi-Square = 4.811, DF = 1, P-Value = 0.028
Likelihood Ratio Chi-Square = 4.872, DF = 1, P-Value = 0.027

Fisher’s exact test: P-Value = 0.0384925

The Pearson χ2
s = 4.811 is just the square of Zs = −2.19, so for this case it’s really an identical

test (only for the two-sided hypothesis, though). The Likelihood Ratio Chi-Square is another
large-sample test. Fisher’s Exact test is another test that does not need large samples - I use
it in practice very frequently. Minitab only performs this test for two-by-two tables — for more
complicated tables, this is can be a very hard test to compute. SAS and Stata will at least try to
compute it for arbitrary tables, though they do not always succeed. Let us examine the output to
see what all these terms mean.

For the cervical dysplasia data, the results are:

Data Display

Row HPV Group Count
1 1Pos Case 164
2 1Pos Control 130
3 2Neg Case 11
4 2Neg Control 178

Tabulated statistics: HPV, Group

Using frequencies in Count

Rows: HPV Columns: Group

Case Control All

1Pos 164 130 294
55.78 44.22 100.00
93.71 42.21 60.87
33.95 26.92 60.87
106.5 187.5 294.0
31.01 17.62 *

2Neg 11 178 189
5.82 94.18 100.00
6.29 57.79 39.13
2.28 36.85 39.13
68.5 120.5 189.0
48.25 27.41 *

All 175 308 483
36.23 63.77 100.00
100.00 100.00 100.00
36.23 63.77 100.00
175.0 308.0 483.0
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* * *

Cell Contents: Count
% of Row
% of Column
% of Total
Expected count
Contribution to Chi-square

Pearson Chi-Square = 124.294, DF = 1, P-Value = 0.000
Likelihood Ratio Chi-Square = 144.938, DF = 1, P-Value = 0.000

Fisher’s exact test: P-Value = 0.0000000

Effect Measures in Two-by-Two Tables

Consider a study of a particular disease, where each individual is either exposed or not-exposed to
a risk factor. Let p1 be the proportion diseased among the individuals in the exposed population,
and p2 be the proportion diseased among the non-exposed population. This population information
can be summarized as a two-by-two table of population proportions:

Outcome Exposed population Non-Exposed population
Diseased p1 p2

Non-Diseased 1− p1 1− p2

A standard measure of the difference between the exposed and non-exposed populations is the
absolute difference: p1 − p2. We have discussed statistical methods for assessing this difference.

In many epidemiological and biostatistical settings, other measures of the difference between
populations are considered. For example, the relative risk

RR =
p1

p2

is commonly reported when the individual risks p1 and p2 are small. The odds ratio

OR =
p1/(1− p1)
p2/(1− p2)

is another standard measure. Here p1/(1− p1) is the odds of being diseased in the exposed group,
whereas p2/(1− p2) is the odds of being diseased in the non-exposed group.

We will discuss these measures more completely next semester. At this time I will note that
each of these measures can be easily estimated from data, using the sample proportions as estimates
of the unknown population proportions. For example, in the vitamin C study:

Outcome Ascorbic Acid Placebo
# with cold 17 31

# with no cold 122 109
Totals 139 140
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the proportion with colds in the placebo group is p̂2 = 31/140 = .221. The proportion with colds
in the vitamin C group is p̂1 = 17/139 = .122.

The estimated absolute difference in risk is p̂1 − p̂2 = .122− .221 = −.099. The estimated risk
ratio and odds ratio are

R̂R =
.122
.221

= .55

and
ÔR =

.122/(1− .122)

.221/(1− .221)
= .49,

respectively.

Testing for Homogeneity of Proportions

Example The following two-way table of counts summarizes the location of death and age at
death from a study of 2989 cancer deaths (Public Health Reports, 1983):

(Obs Counts) Location of death
Age Home Acute Care Chronic care Row Total

15-54 94 418 23 535
55-64 116 524 34 674
65-74 156 581 109 846
75+ 138 558 238 934

Col Total 504 2081 404 2989

The researchers want to compare the age distributions across locations. A one-way ANOVA
would be ideal if the actual ages were given. Because the ages are grouped, the data should be
treated as categorical. Given the differences in numbers that died at the three types of facilities, a
comparison of proportions or percentages in the age groups is appropriate. A comparison of counts
is not.

The table below summarizes the proportion in the four age groups at each location. For example,
in the acute care facility 418/2081 = .201 and 558/2081 = .268. The pooled proportions are the
Row Totals divided by the total sample size of 2989. The pooled summary gives the proportions
in the four age categories, ignoring location of death.

The age distributions for home and for the acute care facilities are similar, but are very different
from the age distribution at chronic care facilities.

To formally compare the observed proportions, one might view the data as representative sample
of ages at death from the three locations. Assuming independent samples from the three locations
(populations), a chi-squared statistic is used to test whether the population proportions of ages at
death are identical (homogeneous) across locations. The chi-squared test for homogeneity of
population proportions can be defined in terms of proportions, but is traditionally defined in terms
of counts.
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(Proportions) Location of death
Age Home Acute Care Chronic care Pooled

15-54 .187 .201 .057 .179
55-64 .230 .252 .084 .226
65-74 .310 .279 .270 .283
75+ .273 .268 .589 .312
Total 1.000 1.000 1.000 1.000

In general, assume that the data are independent samples from c populations (strata, groups,
sub-populations), and that each individual is placed into one of r levels of a categorical variable.
The raw data will be summarized as a r × c contingency table of counts, where the columns
correspond to the samples, and the rows are the levels of the categorical variable. In the age
distribution problem, r = 4 and c = 3. (SW uses k to identify the number of columns.)

To implement the test:

1. Compute the (estimated) expected count for each cell in the table as follows:

E =
Row Total ∗ Column Total

Total Sample Size
.

2. Compute the Pearson test statistic

χ2
s =

∑
all cells

(O − E)2

E
,

where O is the observed count.

3. For a size α test, reject the hypothesis of homogeneity if χ2
s ≥ χ2

crit, where χ2
crit is the upper

α critical value from the chi-squared distribution with df = (r − 1)(c− 1).

The p-value for the chi-squared test of homogeneity is equal to the area under the chi-squared curve
to the right of X2; see the picture on page 98.

For a two-by-two table of counts, the chi-squared test of homogeneity of proportions
is identical to the two-sample proportion test we discussed earlier.

Minitab Analysis

Enter data as follows (just as for the two-by-two table):

Data Display

Row Age Care Count
1 15-54 1Home 94
2 15-54 Acute 418
3 15-54 Chronic 23
4 55-64 1Home 116
5 55-64 Acute 524
6 55-64 Chronic 34
7 65-74 1Home 156
8 65-74 Acute 581
9 65-74 Chronic 109

10 75+ 1Home 138
11 75+ Acute 558
12 75+ Chronic 238
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Follow the same path Stat > Tables > Cross Tabulation and Chi-Square with these results:

Tabulated statistics: Age, Care

Using frequencies in Count

* NOTE * Fisher’s exact test available only for 2 x 2 tables.

Rows: Age Columns: Care

1Home Acute Chronic All

15-54 94 418 23 535
17.57 78.13 4.30 100.00
18.65 20.09 5.69 17.90
3.14 13.98 0.77 17.90
90.2 372.5 72.3 535.0
0.159 5.564 33.627 *

55-64 116 524 34 674
17.21 77.74 5.04 100.00
23.02 25.18 8.42 22.55
3.88 17.53 1.14 22.55
113.6 469.3 91.1 674.0
0.049 6.388 35.789 *

65-74 156 581 109 846
18.44 68.68 12.88 100.00
30.95 27.92 26.98 28.30
5.22 19.44 3.65 28.30
142.7 589.0 114.3 846.0
1.249 0.109 0.250 *

75+ 138 558 238 934
14.78 59.74 25.48 100.00
27.38 26.81 58.91 31.25
4.62 18.67 7.96 31.25
157.5 650.3 126.2 934.0
2.412 13.092 98.937 *

All 504 2081 404 2989
16.86 69.62 13.52 100.00
100.00 100.00 100.00 100.00
16.86 69.62 13.52 100.00
504.0 2081.0 404.0 2989.0

* * * *

Cell Contents: Count
% of Row
% of Column
% of Total
Expected count
Contribution to Chi-square

Pearson Chi-Square = 197.624, DF = 6, P-Value = 0.000
Likelihood Ratio Chi-Square = 200.972, DF = 6, P-Value = 0.000

The Pearson statistic and the likelihood ratio statistic, which is an alternative statistic for
testing homogeneity, both report a p-value of 0 to three places. The data strongly suggest that
there are differences in the age distributions among locations. The likelihood ratio statistic leads to
the same conclusion. The various summaries help us to explain what is the nature of the differences.
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Testing for Homogeneity in Cross-Sectional and Stratified Studies

Two-way tables of counts are often collected either by stratified sampling or by cross-sectional
sampling.

In a stratified design, distinct groups, strata, or sub-populations are identified. Independent
samples are selected from each group, and the sampled individuals are classified into categories.
The HPV study is an illustration of a stratified design (and a case-control study). Stratified
designs provide estimates for the strata (population) proportion in each of the categories. A test
for homogeneity of proportions is used to compare the strata.

In a cross-sectional design, individuals are randomly selected from a population and classified
by the levels of two categorical variables. With cross-sectional samples you can test homogeneity
of proportions by comparing either the row proportions or by comparing the column proportions.

Example The following data (The Journal of Advertising, 1983, p. 34-42) are from a cross-sectional
study that involved soliciting opinions on anti-smoking advertisements. Each subject was asked
whether they smoked and their reaction (on a five-point ordinal scale) to the ad. The data are
summarized as a two-way table of counts, given below:

Str. Dislike Dislike Neutral Like Str. Like Row Tot
Smoker 8 14 35 21 19 97

Non-smoker 31 42 78 61 69 281
Col Total 39 56 113 82 88 378

The row proportions are

(Row Prop) Str. Dislike Dislike Neutral Like Str. Like Row Tot
Smoker .082 .144 .361 .216 .196 1.000

Non-smoker .110 .149 .278 .217 .245 1.000

For example, the entry for the (Smoker, Str. Dislike ) cell is: 8/97 = .082.

Similarly, the column proportions are

(Col Prop) Str. Dislike Dislike Neutral Like Str. Like
Smoker .205 .250 .310 .256 .216

Non-smoker .795 .750 .690 .744 .784
Total 1.000 1.000 1.000 1.000 1.000

Although it may be more natural to compare the smoker and non-smoker row proportions, the
column proportions can be compared across ad responses. There is no advantage to comparing
“rows” instead of “columns” in a formal test of homogeneity of proportions with cross-sectional
data. The Pearson chi-squared test (and the likelihood ratio test) treats the rows and columns
interchangeably, so you get the same result regardless of how you view the comparison. However,
one of the two comparisons may be more natural to interpret.
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Note that checking for homogeneity of proportions is meaningful in stratified stud-
ies only when the comparison is across strata! Further, if the strata correspond to columns of
the table, then the column proportions or percentages are meaningful whereas the row proportions
are not.
Question: How do these ideas apply to the age distribution problem?

Testing for Independence in a Two-Way Contingency Table

The row and column classifications for a population where each individual is cross-classified by two
categorical variables are said to be independent if each population cell proportion in the two-way
table is the product of the proportion in a given row and the proportion in a given column. One can
show that independence is equivalent to homogeneity of proportions. In particular, the two-way
table of population cell proportions satisfies independence if and only if the population column
proportions are homogeneous. If the population column proportions are homogeneous then so are
the population row proportions.

This suggests that a test for independence or no association between two variables based on a
cross-sectional study can be implemented using the chi-squared test for homogeneity of proportions.
This suggestion is correct. If independence is not plausible, I tend to interpret the dependence as
a deviation from homogeneity, using the classification for which the interpretation is most natural.

Example

Data Display

Row Smoker Opinion Count
1 1Yes 1 Str. Dislike 8
2 1Yes 2 Dislike 14
3 1Yes 3 Neutral 35
4 1Yes 4 Like 21
5 1Yes 5 Str. Like 19
6 No 1 Str. Dislike 31
7 No 2 Dislike 42
8 No 3 Neutral 78
9 No 4 Like 61

10 No 5 Str. Like 69

Tabulated statistics: Smoker, Opinion

Using frequencies in Count

* NOTE * Fisher’s exact test available only for 2 x 2 tables.

Rows: Smoker Columns: Opinion

1 Str.
Dislike 2 Dislike 3 Neutral 4 Like 5 Str. Like All

1Yes 8 14 35 21 19 97
8.25 14.43 36.08 21.65 19.59 100.00

20.51 25.00 30.97 25.61 21.59 25.66
2.12 3.70 9.26 5.56 5.03 25.66
10.01 14.37 29.00 21.04 22.58 97.00

0.40286 0.00955 1.24259 0.00009 0.56819 *

No 31 42 78 61 69 281
11.03 14.95 27.76 21.71 24.56 100.00
79.49 75.00 69.03 74.39 78.41 74.34
8.20 11.11 20.63 16.14 18.25 74.34
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28.99 41.63 84.00 60.96 65.42 281.00
0.13907 0.00330 0.42894 0.00003 0.19614 *

All 39 56 113 82 88 378
10.32 14.81 29.89 21.69 23.28 100.00
100.00 100.00 100.00 100.00 100.00 100.00
10.32 14.81 29.89 21.69 23.28 100.00
39.00 56.00 113.00 82.00 88.00 378.00

* * * * * *

Cell Contents: Count
% of Row
% of Column
% of Total
Expected count
Contribution to Chi-square

Pearson Chi-Square = 2.991, DF = 4, P-Value = 0.559
Likelihood Ratio Chi-Square = 2.980, DF = 4, P-Value = 0.561

The Pearson chi-squared test is not significant (p-value = .561). The observed association
between smoking status and the ad reaction is not significant. This suggests, for example, that
the smoker’s reactions to the ad were not statistically significantly different from the non-smoker’s
reactions, which is consistent with the smokers and non-smokers attitudes being fairly similar.
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