
12 INTRODUCTION TO MULTIPLE LINEAR REGRESSION

12 Introduction to Multiple Linear Regression

In multiple linear regression, a linear combination of two or more predictor variables is used to
explain the variation in a response. In essence, the additional predictors are used to explain the
variation in the response not explained by a simple linear regression fit.

It can be a lot more interesting than that sounds, however, since predictors can operate much
differently together than alone. Fitting multiple predictors adjusts the estimated effects of a predic-
tor for the other predictors. An apparently important predictor can have little effect if adjusted for
other variables, or an apparently insignificant predictor can appear very important after adjusting
for other variables. The upshot is that the simple linear regression models we worked with last
week are inadequate in many circumstances (though they are the basis for what we will see in this
section).

As an illustration, I will consider the following problem. Anthropologists conducted a study
to determine the long-term effects of an environmental change on systolic blood pressure. They
measured the blood pressure and several other characteristics (weight, age, years since migration,
pulse rate, skin fold measures) of 39 Indians who migrated from a very primitive environment high
in the Andes into the mainstream of Peruvian society at a lower altitude. All of the Indians were
males at least 21 years of age, and were born at a high altitude.

A question we consider concerns the long term effects of an environmental change on the systolic
blood pressure. In particular, is there a relationship between the systolic blood pressure and how
long the Indians lived in their new environment as measured by the fraction of their life spent in
the new environment? (fraction = years since migration/age)

A plot of systolic blood pressure against fraction (see the scatterplot in the separate Minitab
output) suggests at best a weak linear relationship. Nonetheless, consider fitting the regression
model

sys bp = β0 + β1 fraction + ε.

The least squares line is given by

̂sys bp = 133− 15.8 fraction,

and suggests that average systolic blood pressure decreases as the fraction of life spent in modern
society increases (if half of life is spent in modern society then that should account for almost an 8
point drop in systolic blood pressure). However, the t−test of H0 : β1 = 0 is not significant at the
5% level (p-value=.089). That is, the weak linear relationship observed in the data is not atypical of
a population where there is no linear relationship between systolic blood pressure and the fraction
of life spent in a modern society (and if we constructed a 95% CI for β1 it would contain 0).

Even if this test were significant, the small value of R2 = 7.6% suggests that fraction does
not explain a substantial amount of the variation in the systolic blood pressures. If we omit the
individual with the highest blood pressure (see the plot) then the relationship would be weaker still.
Minitab identifies two unusual observations, one of which is that individual. We should identify
the other one too, and see if the fit changes much with those two observations removed. I will show
you how to do that later in this section, and Erik will help you with it in lab.
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12 INTRODUCTION TO MULTIPLE LINEAR REGRESSION

Taking Weight into Consideration

At best, there is a weak relationship between systolic blood pressure and fraction alone. However,
it is usually accepted that systolic blood pressure and weight are related; see the scatterplot matrix
for confirmation. A natural way to take weight into consideration is to include weight and fraction
both as predictors of systolic blood pressure in the multiple regression model:

sys bp = β0 + β1 fraction + β2 weight + ε.

As in simple linear regression, the model is written in the form:

Response = Mean of Response + Residual,

so the model implies that that average systolic blood pressure is a linear combination of fraction and
weight. As in simple linear regression, the standard multiple regression analysis assumes that the
responses are normally distributed with a constant variance σ2

Y |X . The parameters of the regression
model β0, β1, β2 and σ2

Y |X are estimated by LS.
Minitab output from fitting the multiple regression model is given at the end of the handout.

Important Points to Notice About the Regression Output

1. (Parameter Estimates ) The LS estimates of the intercept and the regression coefficient for
fraction, and their standard errors, change from the simple linear model to the multiple
regression model. For the simple linear regression

̂sys bp = 133− 15.8 fraction.

For the multiple regression model

̂sys bp = 60.9− 26.8 fraction + 1.22 weight.

2. (ANOVA Table) Comparing the simple linear regression and the multiple regression models
we see that the Regression (model) df has increased to 2 from 1 (2=number of predictor
variables) and the Residual (error) df has decreased from 37 to 36 (=n − 1- number of
predictors). Adding a predictor increases the Regression df by 1 and decreases the Residual
df by 1.

3. (ANOVA Table) The Residual SS decreases by 6033.4 - 3441.4 = 2592.0 upon adding the
weight term. The Regression SS increased by 2592.0 upon adding the weight term term to
the model. The Total SS does not depend on the number of predictors so it stays the same.
The Residual SS, or the part of the variation in the response unexplained by the regression
model never increases when new predictors are added.

4. The proportion of variation in the response explained by the regression model:

R2 = Regression SS / Total SS
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never decreases when new predictors are added to a model. The R2 for the simple linear
regression with fraction as the only predictor was 7.6%, whereas R2 = 47.3% for the multiple
regression model. Adding the weight variable to the model increases R2 by 40%. That is,
weight explains an additional 40% of the variation in systolic blood pressure not already
explained by fraction alone.

This is not as simple as it sounds. If you use weight as the only predictor, then R2 = 27.2%
(confirm this), so adding fraction to that model gives R2 = 47.3% and fraction can be seen as
explaining an additional 20% of variation in systolic blood pressure not already explained by
weight alone. This is far more than explained by fraction alone! The two variables together
act in a much more interesting manner than a simple sum of individual behavior.

5. (ANOVA table) The estimated variability about the regression line

√
Residual MS = sY |X

decreased dramatically after adding the weight effect. For the simple linear regression model
(fraction alone) sY |X = 12.77, whereas sY |X = 9.78 for the multiple regression model. This
suggests that an important predictor has been added to model.

6. (ANOVA table) The F-statistic for the multiple regression model

Fobs = Regression MS / Residual MS = 16.16

(which is compared to a F-table with 2 and 36 df) tests H0 : β1 = β2 = 0 against HA : not H0.
This is a test of no relationship between the average systolic blood pressure and fraction and
weight, assuming the relationship is linear. If this test is significant than either fraction or
weight, or both, are important for explaining the variation in systolic blood pressure. The
p-value for this test is 0.

7. (Parameter Estimates Table) Given the model

sys bp = β0 + β1 fraction + β2 weight + ε,

one interest is testing H0 : β2 = 0 against HA : β2 6= 0. The t-statistic for this test

tobs =
b2 − 0
SE(b2)

=
1.2169
.2337

= 5.21

is compared to a t−critical value with Residual df = 36. Minitab gives a p-value of .000,
which suggests β2 6= 0. The t-test of H0 : β2 = 0 in the multiple regression model tests
whether adding weight to the simple linear regression model explains a significant part of the
variation in systolic blood pressure not explained by fraction. In some sense, the t−test of
H0 : β2 = 0 will be significant if the increase in R2 (or decrease in Residual SS) obtained by
adding weight to this simple linear regression model is substantial. We saw a big increase in
R2, which is deemed significant by the t−test. A similar interpretation is given to the t−test
for H0 : β1 = 0.
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8. The t−tests for β0 = 0 and β1 = 0 are conducted, assessed, and interpreted in the same
manner. The p-value for testing H0 : β0 = 0 is .000, whereas the p-value for testing H0 : β1 = 0
is .001. This implies that fraction is important in explaining the variation in systolic blood
pressure after weight is taken into consideration (by including weight in the model as a
predictor).

9. (Seq SS Table) I wish Minitab gave you p-values here. The t-tests above do not depend
upon what order terms are entered into the model. This table shows how much of the total
SS is accounted for in a sequential manner. If fraction alone is entered into the model, the
regression SS is 498.1 (also seen in the simple linear regression model). If weight then is
added, an additional 2592.0 is accounted for (as calculated above). These also are known as
SAS Type I SS. An F-test is constructed by dividing the sequential SS by residual MS (MSE
= 95.96), and the critical value for each test is an F with numerator degrees of freedom 1 and
denominator degrees of freedom 36 (residual df). Minitab gives you a value of Fcrit = 4.11317.
Those test statistics are Fs = 498.1

95.6 = 5.033 and Fs = 2592.0
95.6 = 27.11 for fraction and weight,

respectively. Both are significant. It seems contradictory that fraction is significant here
but not in the simple linear regression. The difference is that MSE is much smaller in the
2-predictor model.

10. We could compute CIs for the regression parameters in the usual way: bi + tcritSE(bi), where
tcrit is the t−critical value for the corresponding CI level with df = Residual df .

11. Residual plots show no striking problems.

12. Minitab does flag 3 unusual observations (outliers in some sense).

Understanding the Model

The t−test for H0 : β1 = 0 is highly significant (p-value=.0007), which implies that fraction
is important in explaining the variation in systolic blood pressure after weight is taken into
consideration (by including weight in the model as a predictor). Weight is called a suppressor
variable. Ignoring weight suppresses the relationship between systolic blood pressure and fraction.

The implications of this analysis are enormous! Essentially, the correlation between a predictor
and a response says very little about the importance of the predictor in a regression model with
one or more additional predictors. This conclusion also holds in situations where the correlation is
high, in the sense that a predictor that is highly correlated with the response may be unimportant
in a multiple regression model once other predictors are included in the model.

Another issue that I wish to address concerns the interpretation of the regression coefficients
in a multiple regression model. For our problem, let us first focus on the fraction coefficient in the
fitted model ̂sys bp = 60.89− 26.76 fraction + 1.21 weight.

The negative coefficient indicates that the predicted systolic blood pressure decreases as fraction
increases holding weight constant. In particular, the predicted systolic blood pressure decreases
by 26.76 for each unit increase in fraction, holding weight constant at any value. Similarly, the
predicted systolic blood pressure increases by 1.21 for each unit increase in weight, holding fraction
constant at any level.
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Considering the effect of unusual observations

Minitab has warned us about a large residual and two influential values, observations 1, 8, and 39.
We should make certain that these few values are not driving our entire analysis. I created a new
variable named flag, where I assigned a value of 0 to those three observations and a value of 1 to
the others. Next I constructed a matrix plot with groups where flag is the group variable. This
plots the three special points separately. You can see from the plots that these correspond to the
most extreme values of weight and systol.

Under regression options you can enter a variable of weights. I constructed flag with this in
mind. A weight of 0 throws the observation out of the analysis, while a weight of 1 keeps it in
normally. There other possibilities we will not consider this semester. Using flag as the weight
variable throws those three unusual observations out of the analysis, so we can see how much effect
they really have.

The values of coefficients are a little different with these values out of the analysis, with an
indication that both fraction and weight have smaller effects (though still significant) than before.
Most striking is the drop in R2 from 47.3% to 27.3%. The effects of both fraction and weight are
still pronounced, but the three observations are making a big difference in total variability.

Another Multiple Regression Example

The data below are selected from a larger collection of data referring to candidates for the General
Certificate of Education (GCE) who were being considered for a special award. Here, Total denotes
the candidate’s Total mark, out of 1000, in the GCE exam, while Comp is the candidate’s score
in the compulsory part of the exam, which has a maximum score of 200 of the 1000 points on the
exam. SCEL denotes the candidate’s score, out of 100, in a School Certificate English Language
paper taken on a previous occasion.

Data Display
Row Total Comp SCEL

1 476 111 68
2 457 92 46
3 540 90 50
4 551 107 59
5 575 98 50
6 698 150 66
7 545 118 54
8 574 110 51
9 645 117 59
10 690 114 80
11 634 130 57
12 637 118 51
13 390 91 44
14 562 118 61
15 560 109 66

A goal here is to compute a multiple regression of the Total score on Comp and SCEL, and
make the necessary tests to enable you to comment intelligently on the extent to which current
performance in the compulsory test (Comp) may be used to predict aggregate Total performance
on the GCE exam. You also want to know whether previous performance in the School Certificate
English Language (SCEL) has any predictive value independently of what has already emerged
from the current performance in the compulsory papers.

I will lead you through a number of steps to help you answer this question. Let us answer the
following straightforward questions based on the Minitab output.
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1. Plot Total against Comp and SCEL individually, and comment on the form (i.e. linear,
non-linear, logarithmic, etc.), strength, and direction of the relationships.

2. Plot Comp against SCEL and comment on the form, strength, and direction of the rela-
tionship.

3. Compute the correlation between all pairs of variables. Do the correlation values appear
reasonable, given the plots?

In parts 4 through 9, ignore the possibility that Total, Comp or SCEL might ideally need to be
transformed.

4. Which of Comp and SCEL explains a larger proportion of the variation in Total? Which
would appear to be a better predictor of Total? (Explain).

5. Consider 2 simple linear regression models for predicting Total one with Comp as a
predictor, and the other with SCEL as the predictor. Do Comp and SCEL individually
appear to be important for explaining the variation in Total (i.e. test that the slopes of the
regression lines are zero). Which, if any, of the output, support, or contradicts, your answer
to the previous question?

6. Fit the multiple regression model

Total = β0 + β1 Comp + β2 SCEL + ε.

Test H0 : β1 = β2 = 0 at the 5% level. Describe in words what this test is doing, and what
the results mean here.

7. In the multiple regression model, test H0 : β1 = 0 and H0 : β2 = 0 individually. Describe
in words what these tests are doing, and what the results mean here.

8. How does the R2 from the multiple regression model compare to the R2 from the individual
simple linear regressions? Is what you are seeing here appear reasonable, given the tests on
the individual coefficients?

9. Do your best to answer the question posed above, in the paragraph on page 117 that
begins “A goal .... ”. Provide an equation (LS) for predicting Total.

Comments on the GCE Analysis

I will give you my thoughts on these data, and how I would attack this problem, keeping the
ultimate goal in mind. As a first step, I plot the data and check whether transformations are
needed. The plot of Total against COMP is fairly linear, but the trend in the plot of Total against
SCEL is less clear. You might see a non-linear trend here, but the relationship is not very strong.
When I assess plots I try to not allow a few observations affect my perception of trend, and with
this in mind, I do not see any strong evidence at this point to transform any of the variables.

One difficulty that we must face when building a multiple regression model is that these two-
dimensional (2D) plots of a response against individual predictors may have little information about
the appropriate scales for a multiple regression analysis. In particular, the 2D plots only tell us
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whether we need to transform the data in a simple linear regression analysis. If a 2D plot shows a
strong non-linear trend, I would do an analysis using the suggested transformations, including any
other effects that are important. However, it might be that no variables need to be transformed in
the multiple regression model.

Although SCEL appears to be useful as a predictor of Total on its own, the multiple regression
output indicates that SCEL does not explain a significant amount of the variation in Total, once the
effect of Comp has been taken into account. In particular, the SCEL effect in the multiple regression
model is far from significant (p-value=.30). Hence, previous performance in the SCEL exam has
little predictive value independently of what has already emerged from the current performance in
the compulsory papers (Comp).

What are my conclusions? Given that SCEL is not a useful predictor in the multiple regression
model, I would propose a simple linear regression model to predict Total from Comp:

Predicted Total = 128.5 + 3.95Comp.

Output from the fitted model was given earlier. A residual analysis of the model showed no serious
deficiencies.
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