13 LOGISTIC REGRESSION

13 Logistic Regression

The data below are from a study conducted by Milicer and Szczotka on pre-teen and teenage
girls in Warsaw. The subjects were classified into 25 age categories. The number of girls in each
group (sample size) and the number that reached menarche (# RM) at the time of the study were
recorded. The age for a group corresponds to the midpoint for the age interval.

Sample size # RM  Age | Sample size # RM  Age
376 0 9.21 200 0 10.21
93 0 10.58 106 67 13.33
120 2 10.83 105 81 13.58
90 2 11.08 117 88 13.83
88 5 11.33 98 79 14.08
105 10 11.58 97 90 14.33
111 17 11.83 120 113 14.58
100 16 12.08 102 95 14.83
93 29 12.33 122 117 15.08
100 39 12.58 111 107 15.33
108 51 12.83 94 92 15.58
99 47 13.08 114 112 15.83

1049 1049  17.58

The researchers were interested in whether the proportion of girls that reached menarche ( #
RM/ sample size ) varied with age. One could perform a test of homogeneity by arranging the data
as a 2 by 25 contingency table with columns indexed by age and two rows: ROW1 = # RM and
ROW2 = # that have not RM = sample size — # RM. A more powerful approach treats these
as regression data, using the proportion of girls reaching menarche as the “response” and age as a
predictor.

A plot of the observed proportion of girls that have reached menarche (labelled Proportion on
page 1 of the Minitab output) shows that the proportion increases as age increases, but that the
relationship is nonlinear. This is reinforced by the Lowess smoother superimposed on the data
plot. The plot and smoother are described in the output.

The observed proportions, which are bounded between zero and one, have a lazy S-shape (a
sigmoidal function) when plotted against age. The change in the observed proportions for a
given change in age is much smaller when the proportion is near 0 or 1 than when the proportion
is near 1/2. This phenomenon is common with regression data where the response is a proportion.

The trend is nonlinear so linear regression is inappropriate. A sensible alternative might be to
transform the response or the predictor to achieve near linearity. A better approach is to use a
non-linear model for the proportions. A common choice is the logistic regression model.

The Simple Logistic Regression Model

The simple logistic regression model expresses the population proportion p of individuals with a
given attribute (called a success) as a function of a single predictor variable X. The model assumes
that p is related to X through

log <1fp> =a+ X (1)
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or, equivalently, as
_ expla+ BX)
1+ exp(a+ BX)

The logistic regression model is a binary response model, where the response for each case
falls into one of 2 exclusive and exhaustive categories, often called success (cases with the attribute
of interest) and failure (cases without the attribute of interest). In many biostatistical applications,
the success category is presence of a disease, or death from a disease.

I will often write p as p(X) to emphasize that p is the proportion of all individuals with score
X that have the attribute of interest. In the menarche data, p = p(X) is the population proportion
of girls at age X that have reached menarche.

The odds of success are p/(1 — p). For example, the odds of success are 1 (or 1 to 1) when
p = 1/2. The odds of success are 9 (or 9 to 1) when p = .9. The logistic model assumes that the
log-odds of success is linearly related to X. Graphs of the logistic model relating p to X are given
below. The sign of the slope refers to the sign of 5. A corresponding plot for the menarche data
appears in the Minitab output.
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There are a variety of other binary response models that are used in practice. The probit
regression model or the complementary log-log regression model might be appropriate when the
logistic model does not fit the data.

Data for Simple Logistic Regression

For the formulas below, I assume that the data is given in summarized or aggregate form:
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X n D
X1 ni d1
X2 no d2
X nm  dn

where d; is the number of individuals with the attribute of interest (number of diseased) among n;
randomly selected or representative individuals with predictor variable value X;. The subscripts
identify the group of cases in the data set. In many situations, the sample size is 1 in each group,
and for this situation d; is 0 or 1. There are four different forms in which Minitab accepts this type
of data - I discuss this in the separate Minitab output. The preceding format is the one used in
the analysis.

Estimating Regression Coefficients

The principle of maximum likelihood is commonly used to estimate the two unknown parameters
in the logistic model:

log (p) =a+ [X.
L=p

The maximum likelihood estimates (MLE) of the regression coefficients are estimated itera-
tively by maximizing the so-called Binomial likelihood function for the responses, or equivalently,
by minimizing the deviance function (also called the likelihood ratio LR chi-squared statistic)

£ =23 o (25 o o () )

i=1 nipi — NiPi

over all possible values of a and 3, where the p;s satisfy

log< Pi > = o+ 8X;.
L—pi
The ML method also gives standard errors and significance tests for the regression estimates.

The deviance is an analog of the residual sums of squares in linear regression. The choices for
« and @ that minimize the deviance are the parameter values that make the observed and fitted
proportions as close together as possible in a “likelihood sense”.

Suppose that & and B are the MLEs of a and 3. The deviance evaluated at the MLEs:

n di n; —di
LR=2 d;1 - i —d;)l — | ¢
;{ o8 (nzpz) *n log (nz_n1p1>}

where the fitted probabilities p; satisfy

is used to test the adequacy of the model. The deviance is small when the data fits the model, that
is, when the observed and fitted proportions are close together. Large values of LR occur when
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one or more of the observed and fitted proportions are far apart, which suggests that the model is
inappropriate.

If the logistic model holds, then LR has a chi-squared distribution with m —r degrees of freedom,
where m is the number of groups and r (here 2) is the number of estimated regression parameters.
A p-value for the deviance is given by the area under the chi-squared curve to the right of LR. A
small p-value indicates that the data does not fit the model.

Age at Menarche Data: Minitab Implementation

A logistic model for these data implies that the probability p of reaching menarche is related to age
through

log (p) = a + SAGE.
I—p

If the model holds, then a slope of § = 0 implies that p does not depend on AGE, i.e. the proportion
of girls that have reached menarche is identical across age groups. However, the power of the logistic
regression model is that if the model holds, and if the proportions change with age, then you have
a way to quantify the effect of age on the proportion reaching menarche. This is more appealing
and useful than just testing homogeneity across age groups.

A logistic regression model is fit by following the path Stat > Regression > Binary Logistic
Regression. I discuss the various options for entering the data on the separate Minitab output.
Minitab is a lot more flexible about structuring the data for this procedure than are most packages.
There also are available ordinal and nominal logistic regression to handle cases with more than two
response categories.

The Logistic Regression Table gives the MLEs of the parameters: & = —21.23 and B = 1.63.
Thus, the fitted or predicted probabilities satisfy:

log (Z’N) — —21.23 + 1.63AGE
I=p
or

~ exp(—21.23 + 1.63AGE)
AGE) = .
PAGE) = 4 (C21.93 + 1.63AGE)

The p-value for testing Hy : § = 0 (i.e. the slope for the regression model is zero) based upon
the Z-test in the Logistic Regression Table is 0 (the area outside £27.68 in a standard normal
distribution is 0), which leads to rejecting Hy at any of the usual test levels. Thus, the proportion
of girls that have reached menarche is not constant across age groups.

The Goodness-of-Fit Tests table gives the deviance chi-square statistic as 26.70 on 23 df,
with a p-value of .269. The large p-value suggests no gross deficiencies with the logistic model. The
Pearson and Hosmer-Lemeshow tests are also checks on model fit.

The Test that all slopes are zero gives the logistic regression analog of the F-test for the
model in multiple regression. In general, the chi-squared statistic provided here is used to test
the hypothesis that the regression coefficients are zero for each predictor in the model. There is a
single predictor here, AGE, so this test and the test for the AGE effect in the Logistic Regression
Table are both testing Hp : 8 = 0. This test is not just the square of the Z-test for Age, however.

Probably the most commonly reported part of the output is the odds ratio in the Logistic
Regression Table. In order to understand that we need to review some properties of logs and
exponentials.
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1. If y = log z (natural log) then e¥ = z, i.e. €°2(®) = z where e = 2.71828.. . ..
2. logeY =y.

3. e%b = et

4. z—z = e b,

5. log (ab) = log (a) 4 log (b) and log (§) = log(a) — log(b)

Now consider the odds of reaching menarche for a given value of Age (any given value) vs. one
year older (Age + 1). Minitab’s estimated log odds of reaching menarche at the given value of Age

is log (1375) = —21.23 + 1.63AGE. The estimated log odds at Age + 1 then is
—21.23 + 1.63(AGE + 1). Now the estimated log of the odds ratio at Age + 1 vs. Age is

Odds at Age+1
log ( Odds ot iegg ) = log (Odds at Age+1) —log (Odds at Age) = {—21.23+ 1.63(AGE+ 1)} —

{—21.23+1.63(AGE)} = 1.63. If the log of the odds ratio is 1.63, then the odds ratio is e!-63 = 5.11,
which is the value reported in Logistic Regression Table. The estimated odds of RM for a 15-
year old is 5.11 that of a 14-year old, that for a 16-year old 5.11 that of a 15-year old, etc. If 3
is the estimate of a coefficient in the logit scale, then the odds ratio for a one unit change in the

associated predictor variable is eB. The 95% CI reported by Minitab is obtained by first computing
[£41.96 SE and exponentiating the endpoints. The odds for a 2 unit change is 5.112, by an identical
derivation.

Logistic Regression with Two Effects: Leukemia Data

Feigl and Zelen reported the survival time in weeks and the white cell blood count (WBC) at time
of diagnosis for 33 patients who eventually died of acute leukemia. FEach person was classified
as AG+ or AG- (coded as TAG = 1 and 0, respectively), indicating the presence or absence of a
certain morphological characteristic in the white cells. The researchers are interested in modelling
the probability p of surviving at least one year as a function of WBC and IAG. They believe that
WBC should be transformed to a log scale, given the skewness in the WBC values.

As an initial step in the analysis, consider the following model:

log <1p> = a + 1 LWBC + (2IAG,
—-p
where LWBC = log WBC. This is a logistic regression model with 2 effects both of which must
be entered in the model portion of the dialog box. The parameters «, 1 and (2 are estimated by
maximum likelihood.
The model is best understood by separating the AG+ and AG- cases. For AG- individuals,
TAG=0 so the model reduces to
log (17”) = o+ BILWBC + 5 % 0 = o + 3 LWBC.

-p

For AG+ individuals, IAG=1 and the model implies

log (ﬂp) = a + HLWBC + By * 1 = (a + B2) + /LWBC.
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The model without IAG (i.e. §2 = 0) is a simple logistic model where the log-odds of surviving
one year is linearly related to LWBC, and is independent of AG. The reduced model with 85 =0
implies that there is no effect of the AG level on the survival probability once LWBC has been
taken into account.

Including the binary predictor TAG in the model implies that there is a linear relationship
between the log-odds of surviving one year and LWBC, with a constant slope for the two AG
levels. This model includes an effect for the AG morphological factor, but more general models
are possible. Thinking of IAG as a factor, the proposed model is a logistic regression analog of
ANCOVA.

The parameters are easily interpreted: o and o + 35 are intercepts for the population logistic
regression lines for AG- and AG+, respectively. The lines have a common slope, ;. The (o
coefficient for the IAG indicator is the difference between intercepts for the AG+ and AG- regression
lines. A picture of the assumed relationship is given below for §; < 0. The population regression
lines are parallel on the logit (i.e. log odds ) scale only, but the order between IAG groups is
preserved on the probability scale.
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The Minitab worksheet contains raw data for individual cases. There are four columns: the
binary or indicator variable TAG (with value 1 for AG+, 0 for AG-), WBC (continuous), LIVE
(with value 1 if the patient lived at least 1 year and 0 if not), and Log WBC (natural log of
WBC). Note that a frequency column is not needed with raw data and that the success category
corresponds to surviving at least 1 year.

Before looking at output for the equal slopes model, note that the data set has 30 distinct
IAG and LWBC combinations, or 30 “groups” or samples that could be constructed from the 33
individual cases. Only two samples have more than 1 observation. The majority of the observed
proportions surviving at least one year (number surviving > 1 year/ group sample size) are 0
(i.e. 0/1) or 1 (i.e. 1/1). This sparseness of the data makes it difficult to graphically assess the
suitability of the logistic model (Why?). Although significance tests on the regression coefficients
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do not require large group sizes, the chi-squared approximation to the deviance is suspect in sparse
data settings. With small group sizes as we have here, most researchers would not interpret the
p-values for the deviance literally. Instead, they would use the p-values to informally check the fit
of the model. Diagnostics would be used to highlight problems with the model.

The large p-value (.684) for the lack-of-fit chi-square (i.e. the deviance) indicates that there are
no gross deficiencies with the model. Given that the model fits reasonably well, a test of Hy : o =0
might be a primary interest here. This checks whether the regression lines are identical for the two
AG levels, which is a test for whether AG affects the survival probability, after taking LWBC into
account. The p-value for this test is .021. The test is rejected at any of the usual significance levels,
suggesting that the AG level affects the survival probability (assuming a very specific model).

The estimated survival probabilities satisfy

log (1]’) — 5.54 — 1.IILWBC + 2.52IAC.
—p

For AG- individuals with IAG=0, this reduces to

log (1 P ) — 5.54 — 1.11LWBC,
- D

or equivalently,

exp(5.54 — 1.11LWBC)
1+ exp(5.54 — 1.1ILWBC)’

ﬁ =
For AG+ individuals with IAG=1,

log <ﬁ> =5.54 — 1.11LWBC + 2.52 % (1) = 8.06 — 1.11LWBC,
-p
or
_ exp(8.06 — 1.11LWBC)
P exp(8.06 — 1.1ILWBC)

Using the logit scale, the difference between AG+ and AG- individuals in the estimated log-
odds of surviving at least one year, at a fixed but arbitrary LWBC, is the estimated IAG regression
coefficient:

(8.06 — 1.11ILWBC) — (5.54 — 1.11LWBC) = 2.52.

Using properties of exponential functions, the odds that an AG+ patient lives at least one year is
exp(2.52) = 12.42 times larger than the odds that an AG- patient lives at least one year, regardless
of LWBC.

Although the equal slopes model appears to fit well, a more general model might fit better. A
natural generalization here would be to add an interaction, or product term, IAG x* LWBC to the
model. The logistic model with an IAG effect and the IAG x LWBC interaction is equivalent to
fitting separate logistic regression lines to the two AG groups. This interaction model provides an
easy way to test whether the slopes are equal across AG levels. I will note that the interaction
term is not needed here.
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