
14 INTRODUCTION TO SURVIVAL ANALYSIS

14 Introduction to Survival Analysis

In many biomedical studies, the outcome variable is a survival time, or more generally a time to
an event. We will describe some of the standard tools for analyzing survival data.

Most studies of survival last a few years, and at completion many subjects may still be alive.
For those individuals, the actual survival time is not known – all we know is how long they survived
from their entry in the study. Similarly, certain individuals may drop out from the study or be lost
to follow-up. Each of these cases is said to be censored, and the recorded time for such individuals
is their time until the censoring event.

Example: HPA staining for breast cancer survival

We consider data from a retrospective study of 45 women who had surgery for breast cancer. Tumor
cells, surgically removed from each woman, were classified according to the results of staining on
a marker taken from the Roman snail, the Helix pomatia agglutinin (HPA). The marker binds to
cancer cells associated with metastasis to nearby lymph nodes. Upon microscopic examination, the
cancer cells stained with HPA are classified as positive, corresponding to a tumor with the potential
for metastasis, or negative. It is of interest to determine the relationship of HPA staining and the
survival of women with breast cancer.

The survival times in months Ti and staining results (xi = 0 for negative and xi = 1 for
positive) for the 45 women are presented in the following table. Also included is a censoring
indicator di. Contrary to the normal definition of an indicator variable, the censoring indicator is
zero if the observation is right-censored, and one if the observation is uncensored. So it’s really a
non-censoring indicator! A woman’s survival time was right censored if the woman was alive at
the end of the study or if the woman died of causes unrelated to breast cancer.

T x d T x d T x d T x d T x d T x d T x d T x d T x d T x d
-------------------------------------------------------------------------------
23 0 1 47 0 1 69 0 1 70 0 0 71 0 0 100 0 0 101 0 0 148 0 1 181 0 1 198 0 0
208 0 0 212 0 0 224 0 0 5 1 1 8 1 1 10 1 1 13 1 1 18 1 1 24 1 1 26 1 1
26 1 1 31 1 1 35 1 1 40 1 1 41 1 1 48 1 1 50 1 1 59 1 1 61 1 1 68 1 1
71 1 1 76 1 0 105 1 0 107 1 0 109 1 0 113 1 1 116 1 0 118 1 1 143 1 1
154 1 0 162 1 0 188 1 0 212 1 0 217 1 0 225 1 0

This is the general format the data should be in to work with it in packages like Minitab and
Stata, though Minitab is flexible about the actual censoring indicator you use. Succinctly, the
sorted survival times for the negative stained women are

23, 47, 69, 70∗, 71∗, 100∗, 101∗, 148, 181, 198∗, 208∗, 212∗, 224∗,

where ∗ denotes a right-censored observation. The survival times for the positive stained group are

5, 8, 10, 13, 18, 24, 26, 26, 31, 35, 40, 41, 48, 50, 59, 61, 68, 71, 76∗, 105∗,

107∗, 109∗, 113, 116∗, 118, 143, 154∗, 162∗, 188∗, 212∗, 217∗, 225∗.

In the breast cancer study, 8 individuals in the negative stained group, and 11 in the positive
stained group are censored. Although it is common for studies to have right-censored cases, such
as we have here, left-censoring and interval-censoring are found in other clinical studies.
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14 INTRODUCTION TO SURVIVAL ANALYSIS

Survival Curves

A first step in survival analysis is often to estimate the survival curve, or survival time distribution.
Suppose we are considering a single (homogeneous) population. Let T be the survival time (from
some reference point) for a randomly selected individual from the population. Where t is any
arbitrary positive value, the survival time distribution is defined to be

S(t) = Pr(T ≥ t)
= probability randomly selected individual survives at least until time t

= proportion of population that survives at least until time t.

The function might look like Figure 1.

Figure 1: S(t) versus t; median survival time for population is 5.

Estimating the Survival Curve

Case I: No censoring

If we have a random sample from the population, we use the empirical survival function:

Ŝ(t) = sample proportion that survive at least until time t

to estimate S(t). This is easy to compute and plot as a function of t.
Suppose we have a sample of 5 survival times (in days): 5, 8, 20, 30, and 33. Ŝ(t) has “jumps”

of size 1/5 (i.e. 1 divided by the sample size) at each survival time; see Figure 2.
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Figure 2: Empirical survival function Ŝ(t) for the data 5, 8, 20, 30, and 33.

Case II: Right censoring

Recall the data on the survival of women with breast cancer whose cells were negatively stained
with HPA:

23, 47, 69, 70∗, 71∗, 100∗, 101∗, 148, 181, 198∗, 208∗, 212∗, 224∗,

where the ∗ superscript identifies a right-censored observation.
The following algorithm describes the Kaplan-Meier (KM) method for estimating the survival

curve (Kaplan-Meier product-limit estimate).

1. Identify times for non-censored cases 0 = t0 < t1 < t2 < · · · < tr. That is, t1 is the smallest
non-censored survival time, t2 is the second smallest, et cetera. For the example r = 5 and
t0 = 0, t1 = 23, t2 = 47, t3 = 69, t4 = 148, and t5 = 181.

2. For the jth interval, where tj−1 ≤ t < tj , evaluate

nj = number at risk (of dying) at beginning of interval,
dj = number of deaths in interval,

nj − dj

nj
= estimated probability of surviving past tj−1,

given you are at risk at time tj−1

= P̂ (T ≥ tj−1|T ≥ tj−2).
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3. For tj−1 ≤ t < tj ,

Ŝ(t) = P̂ (T ≥ t)
= P̂ (T ≥ tj−1|T ≥ tj−2)×

P̂ (T ≥ tj−2|T ≥ tj−3)× · · · ×
P̂ (T ≥ t1|T ≥ t0)

=
nj − dj

nj
× nj−1 − dj−1

nj−1
× · · · × n1 − d1

n1
.

Remark: Censored observations are taken into account by being treated as cases at risk at the
beginning of the interval in which they fail.

To illustrate the calculation for our data, consider the table:

j Interval nj dj
nj − dj

nj
Ŝ(t)

1 0 ≤ t < 23 13 0
13− 0

13
= 1 1.0

2 23 ≤ t < 47 13 1
13− 1

13
=

12
13

•= 0.923 1.0× 0.923 = 0.923

3 47 ≤ t < 69 12 1
12− 1

12
=

11
12

•= 0.917 0.923× 0.917 = 0.846

4 69 ≤ t < 148 11 1
10
11

•= 0.909 0.846× 0.909 = 0.769

5 148 ≤ t < 181 6 1
5
6

•= 0.833 0.769× 0.833 = 0.641

6 181 ≤ t 5 1
4
5

= 0.8 0.641× 0.8 = 0.513

To obtain the KM estimate in Minitab, follow the path Stat > Reliability/Survival >
Distribution Analysis (Right Censoring) > Nonparametric Distribution Analysis. En-
ter the failure time variable in Variables, check the By variable and enter group, click on Censor
and enter the censoring variable and value, on Estimate enter Kaplan-Meier, on Graphs check Sur-
vival Plot, and ask for full results. In Figure 3 we have a picture of Ŝ(t) from the negatively stained
group as well as the estimate from the positively stained group. Note that the negatively stained
group tends to live longer, as we would expect. Output follows. We will discuss this in class.

Distribution Analysis: time by group

Variable: time
group = 0

Censoring Information Count
Uncensored value 5
Right censored value 8

Censoring value: cens = 0

Nonparametric Estimates
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Figure 3: KM survival curves for positively and negatively stained groups.

Characteristics of Variable

Standard 95.0% Normal CI
Mean(MTTF) Error Lower Upper

145.692 17.6423 111.114 180.271

Median = * IQR = * Q1 = 148 Q3 = *

Kaplan-Meier Estimates

Number
at Number Survival Standard 95.0% Normal CI

Time Risk Failed Probability Error Lower Upper
23 13 1 0.923077 0.073905 0.778225 1.00000
47 12 1 0.846154 0.100068 0.650024 1.00000
69 11 1 0.769231 0.116855 0.540200 0.99826

148 6 1 0.641026 0.152249 0.342623 0.93943
181 5 1 0.512821 0.167285 0.184948 0.84069

Empirical Hazard Function

Hazard
Time Estimates

23 0.076923
47 0.083333
69 0.090909

148 0.166667
181 0.200000

Distribution Analysis: time by group
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Variable: time group = 1

Censoring Information Count
Uncensored value 21
Right censored value 11

Censoring value: cens = 0

Nonparametric Estimates

Characteristics of Variable

Standard 95.0% Normal CI
Mean(MTTF) Error Lower Upper

79.8320 9.70863 60.8035 98.8606

Median = 61 IQR = * Q1 = 26 Q3 = *

Kaplan-Meier Estimates

Number
at Number Survival Standard 95.0% Normal CI

Time Risk Failed Probability Error Lower Upper
5 32 1 0.968750 0.0307578 0.908466 1.00000
8 31 1 0.937500 0.0427908 0.853632 1.00000
10 30 1 0.906250 0.0515270 0.805259 1.00000
13 29 1 0.875000 0.0584634 0.760414 0.98959
18 28 1 0.843750 0.0641862 0.717947 0.96955
24 27 1 0.812500 0.0689981 0.677266 0.94773
26 26 2 0.750000 0.0765466 0.599972 0.90003
31 24 1 0.718750 0.0794804 0.562971 0.87453
35 23 1 0.687500 0.0819382 0.526904 0.84810
40 22 1 0.656250 0.0839617 0.491688 0.82081
41 21 1 0.625000 0.0855816 0.457263 0.79274
48 20 1 0.593750 0.0868207 0.423584 0.76392
50 19 1 0.562500 0.0876951 0.390621 0.73438
59 18 1 0.531250 0.0882155 0.358351 0.70415
61 17 1 0.500000 0.0883883 0.326762 0.67324
68 16 1 0.468750 0.0882155 0.295851 0.64165
71 15 1 0.437500 0.0876951 0.265621 0.60938

113 10 1 0.393750 0.0891735 0.218973 0.56853
118 8 1 0.344531 0.0905972 0.166964 0.52210
143 7 1 0.295313 0.0900371 0.118843 0.47178

Empirical Hazard Function

Hazard
Time Estimates

5 0.031250
8 0.032258
10 0.033333
13 0.034483
18 0.035714
24 0.037037
26 0.040000
31 0.041667
35 0.043478
40 0.045455
41 0.047619
48 0.050000
50 0.052632
59 0.055556
61 0.058824
68 0.062500
71 0.066667
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113 0.100000
118 0.125000
143 0.142857

Distribution Analysis: time by group

Comparison of Survival Curves

Log-Rank Statistic

Variable 1 2
-4.56513 4.56513

Variance/Covariance of Log-Rank Statistic

Variable 1 2
1 5.92900 -5.92900
2 -5.92900 5.92900

Wilcoxon Statistic

Variable 1 2
-159 159

Variance/Covariance of Wilcoxon Statistic

Variable 1 2
1 6048.14 -6048.14
2 -6048.14 6048.14

Test Statistics

Method Chi-Square DF P-Value
Log-Rank 3.51499 1 0.061
Wilcoxon 4.17997 1 0.041

Some remarks:

• The estimated survival curve “drops to zero” only if the last case is not censored.

• The KM curve allows us to estimate percentiles of the survival distribution, with a primary
interest being the median survival time (50th percentile). In the example above, the 90th

percentile is approximately 47 months (i.e. we estimate that 90% of the population will
survive at least 47 months). The median cannot be estimated here – all we can say is that
we estimate the median to be at least 181 months.

• The KM estimate is the usual empirical estimate if no cases are censored.

• Statistical methods are available to

– Estimate the mean survival time.

– Get a C.I. for the survival curve.

– Compare survival curves across groups – you can think of this as the censored data
analogue of (non-parametric) ANOVA.
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The Cox Proportional Hazards Model

Note: Minitab does not do this. I have included old notes from Stata. This is a way to use regression
methods similar to those used in logistic regression. Minitab includes methods more common in
engineering; proportional hazards methods are more common in biostatistics.

The risk of failing at time t is defined to be the probability of an individual dying in the “next
instant” (e.g. in a time frame of length ∆) given this individual has survived at least until time t:

P (t ≤ T < t + ∆|t ≤ T ).

We define the hazard function h(t) such that for small enough ∆,

P (t ≤ T < t + ∆|t ≤ T ) = h(t)∆.

The hazard function is proportional to the instantaneous “risk of failing” at any time t, given that
an individual has lived at least to time t.

Now consider two individuals, 1 and 2, each with their own hazard functions h1(t) and h2(t). If
we assume that one individual’s instantaneous rate of failing is a constant multiple of the other’s, i.e.
h2(t) = ah1(t) for some constant a, then these two individuals have proportional hazard functions.
Figure 4 shows an example of this phenomenon where the hazard ratio is 1/2.

Figure 4: An example of proportional hazard functions; here the constant of proportionality is 0.5.

Proportional hazards may or may not be a reasonable assumption to make. For example,
consider two people, roughly the same age and demographic except that at the age of 20, person
2 takes up smoking while person 1 does not. You will hopefully agree with me that initially, the
smoker and the non-smoker will most likely have identical hazards. As the years roll by, and
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smoking takes its toll, we would think that the smoker’s instantaneous rate of failing, which is
proportional to the probability of dying in the next minute, say, will increase relative to the hazard
for the non-smoker. In this example proportional hazards probably is an unreasonable assumption.

The proportional hazards model generalizes the above concept for n individuals, each with their
own covariate value xi or set of p covariate values xi = (xi1, xi2, . . . , xip). In the case where the
n individuals only have one covariate, the model stipulates for individuals i and j, with a hazard
functions hi(t) and hj(t) respectively, that

hi(t)e−βxi = hj(t)e−βxj .

Note that this implies
hi(t)
hj(t)

=
eβxi

eβxj
= eβ(xi−xj).

Here, eβ(xi−xj) is the relative risk of instantaneous failure at any time t for individuals i and
j. That is the power of the proportional hazards assumption: the relative risk of dying for two
individuals is a simple function of the model parameters and holds for all t, independent of the
value of t. If individual i has covariate value x + 1 and individual j has covariate value x, i.e. their
covariate values only differ by 1 unit on the covariate measurement scale, then

hi(t)
hj(t)

=
eβ(x+1)

eβx
= eβ.

Thus, eβ is the relative risk of failing in the next instant when we increase the covariate by one
unit. Note that if xi is a simple zero/one variable denoting which group individual i falls into, then
eβ is the relative risk of failing in the next instant for the group denoted by xi = 1 versus xi = 0.

The breast cancer data are loaded with the commands infile time group cens using c:/breast.txt
and the Cox PH model is fit via cox time group, dead(cens). The survival time, followed by
the predictor variable(s) is specified. The non-censoring indicator is included in the subcommand
dead. We obtain the following output:
------------------------------------------------------------------------
time |
cens | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------+----------------------------------------------------------------
group | .9080157 .5009228 1.81 0.070 -.0737749 1.889806
------------------------------------------------------------------------

We have an estimate of β̂ = 0.908 and the estimated relative risk is eβ̂ = e0.908 •= 2.5. That
is, those with positive staining are estimated to have a risk of dying in the next instant about 2.5
times as great as those with negative staining. Note that the p-value for H0 : β = 0 is small but not
significant at the 5% level. There is definitely some indication that staining affects survival, with
positive staining decreasing survival. A 95% C.I. for the risk may be obtained by exponentiating the
endpoints for the C.I. for β. Here, we estimate the relative risk of expiring (for positive compared
to negative staining) to be within (e−0.073, e1.89) = (0.93, 6.62) with 95% confidence.

Remark: The hazard function for individual i can be defined to be a scale multiple exiβ of a
baseline hazard function denoted h0(t). The model may be recast as hi(t) = h(t|xi) = exiβh0(t).
This baseline hazard function h0(t) and β thus completely determine the model. The baseline
hazard h0(t) may be estimated from the data as well as survival curves, median and mean
survival, et cetera, for any covariate value x. These sorts of inferences are quite easy to get out of
Stata but a bit beyond what is comfortable to cover in this class.
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A final example

We examine a data set consisting of the time spent running on a treadmill for 14 people aged 15
and older. Each subject’s gender and age were recorded. It is of interest to the experimenter how
age and gender affects ones endurance.

We define a numeric indicator variable for the gender variable by taking g to be 0 for a male
subject and 1 for a female subject. When fitting the PH model with gender and age as main effects,

h(t|age, g) = eageβ1+gβ2h0(t),

the baseline group (i.e. those with covariates age = 0 and g = 0, and thus a hazard function of
e0β1+0β2 = e0h0(t) = h0(t)) consists of males of age zero, which is not interpretable in this context.
Observations were censored due to a subject having to leave the treadmill for reasons other than
being tired. The data follow:

Obs gender age minutes cens weight g
-------------------------------------------------------

1 male 34 16 1 215 0
2 male 15 35 0 135 0
3 female 22 55 0 145 1
4 female 18 95 1 97 1
5 male 18 55 0 225 0
6 female 32 55 1 185 1
7 female 37 25 1 155 1
8 female 67 15 1 142 1
9 female 55 22 1 132 1

10 male 55 13 1 183 0
11 male 62 13 1 168 0
12 female 33 57 0 132 1
13 female 17 52 0 112 1
14 male 24 54 1 175 0

The fit of the model with only gender h(t|g) = egβ1h0(t):
------------------------------------------------------------------------------

minutes | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

g | -.6786811 .7161483 -0.95 0.343 -2.082306 .7249439
------------------------------------------------------------------------------

The test for a gender effect yields a p-value of 0.343. We would accept at any reasonable
significance level that there is not a gender effect. The estimate of β1 is β̂1 = −0.679 so the
fitted model is h(t|g) = e−0.678gh0(t) implying that h(t|g = 1) = 0.507h(t|g = 0) and finally
h(t|g = 1)/h(t|g = 0) = 0.507 for all t. That is, the probability of a randomly picked woman failing
(stepping off the treadmill) in the next second is estimated be half the probability of a randomly
picked male.

Rephrased, we see that, assuming proportional hazards is reasonable, females are about half
(the hazard ratio is e−0.679 = 0.507) as likely to step off the treadmill at any instant versus males.
We obtain an approximate 95% C.I. for this ratio by first considering the 95% C.I. for the regression
effect: (-2.08, 0.72). Exponentiate both endpoints to obtain a 95% C.I. for the hazard ratio: (0.12,
2.07). The hazard ratio interval includes one (no difference in the hazard functions for males and
females) because the regression effect interval includes zero.

Let’s look at the model fit with only age h(t|age) = eageβ1h0(t):

------------------------------------------------------------------------------
minutes | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
age | .1116606 .0385688 2.90 0.004 .0360672 .187254

------------------------------------------------------------------------------
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A year from now, a randomly selected individual will be e0.1117 = 1.118 times as likely to
step off the treadmill after 15 minutes (or any amount of time) than now. In ten years it will be
1.11810 = 3.05 times as likely. When we fit the model with both of these predictors h(t|age, g) =
eageβ1+gβ2h0(t) = eageβ1egβ2h0(t) we see that estimated regression effects, and therefore model
interpretation, change somewhat:

------------------------------------------------------------------------------
minutes | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
g | -3.551859 1.57856 -2.25 0.024 -6.645779 -.4579388

age | .2186267 .0855601 2.56 0.011 .050932 .3863214
------------------------------------------------------------------------------

At a given age, a random male running alongside a random female is about 1/e−3.55 = 1/0.029 =
35 times as likely to step off the treadmill at any time. A woman 20 years older than another woman
is about e0.218×20 = 80 times as likely to step off compared to the younger woman. Note that in the
presence of age, gender is now significant, although marginally, gender is not a significant factor.
In this case age is said to be a suppressor variable. The Stata commands for this analysis are:

infile age minutes cens weight g1 using c:/running.txt
cox minutes g1, dead(cens)
cox minutes age, dead(cens)
cox minutes g1 age, dead(cens)

In the model fit that included an interaction between age and gender, the interaction term was not
significant.
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