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SW Chapter 6

Standard Errors and the t−Distribution

We need to add one more small complication to the sampling distribution of Y . What we saw last
time, and in SW Chapter 5, is that if Y1, Y2, ..., Yn is a random sample from a normal population
and that population has mean µ and standard deviation σ, then Y looks like it is a single number
randomly selected from a normal distribution also with mean µY = µ but with standard deviation

σY = σ√
n
. We get from this that Y−µ

σ
Y

= Y−µ
σ/
√

n
= Z is a standard normal random variable, and we

can use the table on the inside front cover of SW to compute probabilities involving Y .
Unfortunately, in the context in which we need to use this result, we would need to know σ in

order to apply the result. We are sampling from a population in order to find out something about
it, so almost certainly we do not know what σ is. What works well is to estimate the population
standard deviation σ with sample standard deviation S calculated from the random sample. Our
best guesses of the population mean and standard deviation µ and σ are the corresponding sample
values Y and S. While µ and σ are constants (we do not know the actual values, but they are
constants), Y and S depend upon the actual sample randomly selected from the population. If
we repeated the experiment and drew a second random sample of n observations, we would get
different values for Y and S, which is to say Y and S are random variables.

If we are going to estimate σ with S, then of course we would estimate σY = σ√
n

with S√
n
.

That is exactly what we do, and we give this quantity the name Standard Error of Y , SEY .

Instead of standardizing Y with the expression Y−µ
σ

Y
we use the new expression Y−µ

SE
Y

. Using SEY in
the denominator introduces extra variability, though, so this no longer looks like a random number
that came from a Z distribution. Provided our assumptions are correct (random sampling from a
normally distributed population), then Y−µ

SE
Y

looks like a single random number randomly selected
from a Student’s t−distribution with n−1 degrees of freedom (df). The amount of extra variability
introduced depends upon the sample size n; if n is very small it is a lot, but by the time n is 30
or so, there is very little difference from a Z, and in fact df =∞ makes the t− and Z distributions
the same. SW on p. 187 show how the distribution compares to the normal – it doesn’t look like
a big difference, but the probability statements we can make are different enough to matter.

Table 4 p. 677 in SW is a standard table of the t−distribution. It is organized differently from
the Normal Table, since it gives areas under the curve across the top and lets you look up the
“critical” values that generate those areas, while the Z table gives you critical values across the
side and top and lets you look up areas. We will go through some examples of reading this table
during the lecture.

Inference for a Population Mean

Suppose that you have identified a population of interest where individuals are measured on a
single quantitative characteristic, say, weight, height or IQ. You select a random or representative
sample from the population with the goal of estimating the (unknown) population mean value,
identified by µ.
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6 ESTIMATION IN THE ONE-SAMPLE SITUATION

This is a standard problem in statistical inference, and the first inferential problem that we will
tackle. For notational convenience, identify the measurements on the sample as Y1, Y2, ..., Yn,
where n is the sample size. Given the data, our best guess, or estimate, of µ is the sample mean:

Ȳ =
∑

i
Yi

n = Y1+Y2+···+Yn
n .

Population
Huge set of values
Can see very little

Sample

Mean µ
Standard Deviation σ

µ and σ unknown

Y1, Y2, …, Yn

Inference

There are two main methods that are used for inferences on µ: confidence intervals (CI) and
hypothesis tests. The standard CI and test procedures are based on the sample mean and the
sample standard deviation, denoted by s. We will consider CIs in this lecture, and hypothesis tests
in the next lecture.

Let’s apply the results of the preceding section, and then lay out the mechanics of the procedure.
The main idea behind a CI is this: Y should be a pretty good guess as to what µ is, but while µ is
a constant (we don’t know the value, though), Y is a random variable (every possible sample gives
a different value), so most assuredly Y 6= µ. Still, Y should not be too far from µ, but how far
away from µ do we think Y could be? As a specific example, suppose we randomly sample n = 9
values from a normal population and get Y = 22 and S = 6. What could µ be?

To answer such a question, apply the t−distribution. Y−µ
SE

Y
looks like a single random number

sampled from a t−distribution with 8 df, so it should have come out somewhere in the middle
of that distribution. The middle 95% of that distribution is between -2.306 and 2.306 (from the
table). So, we had a 95% chance that Y−µ

SE
Y

would fall in that range. Substituting the actual values

of Y and S we obtained, we are 95% confident that 22−µ

6/
√

9
= 22−µ

2 is between -2.306 and 2.306, or
equivalently we are 95% confident that 22−µ is between -4.612 and 4.612. This says that µ should
be within 4.612 of 22, or in the range 22− 4.612 to 22 + 4.612, i.e. between 17.388 and 26.612. We
still do not know what µ is, but to have gotten data like this µ must be somewhere between 17.388
and 26.612.

The interval 17.388 ≤ µ ≤ 26.612 is referred to as a 95% confidence interval for µ. It is improper
to say there is a 95% chance that µ is in that range: If it is in that range, say 25, there is a 100%
chance it is in that range, while if it is not in that range, say 30, there is a 0% chance it is in that
range. The 95% refers to how often using this technique works (like a lifetime batting average) -
this interval either worked in capturing µ or it did not work, and we cannot know which is true.
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6 ESTIMATION IN THE ONE-SAMPLE SITUATION

Mechanics of a CI for µ

A CI for µ is a range of plausible values for the unknown population mean µ, based on the observed
data. To compute a CI for µ:

1. Specify the confidence coefficient, which is a number between 0 and 100%, in the form
100(1− α)%. Solve for α.

2. Compute the t−critical value: tcrit = t.5α such that the area under the t− curve (df = n− 1)
to the right of tcrit is .5α.

3. The desired CI has lower and upper endpoints given by L = Ȳ − tcritSEY and U = Ȳ +
tcritSEY , respectively, where SEY = s/

√
n is the standard error of the sample mean. The CI

is often written in the form Ȳ ± tcritSEY .

In practice, the confidence coefficient is large, say 95% or 99%, which correspond to α = .05
and .01, respectively. The value of α expressed as a percent is known as the error rate of the CI.

The CI is determined once the confidence coefficient is specified and the data are collected. Prior
to collecting the data, the interval is unknown and is viewed as random because it will depend on
the actual sample selected. Different samples give different CIs. The “confidence” in, say, the
95% CI (which has a 5% error rate) can be interpreted as follows. If you repeatedly sample the
population and construct 95% CIs for µ, then 95% of the intervals will contain µ, whereas 5% will
not. The interval you construct from your data will either cover µ, or it will not.

The length of the CI
U − L = 2tcritSEY

depends on the accuracy of our estimate Y of µ, as measured by SEY = s/
√

n the standard error
of Y . Less precise estimates of µ lead to wider intervals for a given level of confidence.

Assumptions for Procedures

I described the classical CI. The procedure is based on the assumptions that the data are a random
sample from the population of interest, and that the population frequency curve is normal. The
population frequency curve can be viewed as a “smoothed histogram” created from the population
data.

The normality assumption can be checked using a stem-and-leaf display, a boxplot, or a normal
scores plot of the sample data (probably the more the better).

Example

Let us go through a hand-calculation of a CI, using Minitab to generate summary data. I will then
show you how the CI is generated automatically in Minitab. The ages (in years) at first transplant
for a sample of 11 heart transplant patients are as follows: 54 42 51 54 49 56 33 58 54 64 49.

Data Display

AgeTran
54 42 51 54 49 56 33 58 54 64 49

Stem-and-Leaf Display: AgeTran
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6 ESTIMATION IN THE ONE-SAMPLE SITUATION

Stem-and-leaf of AgeTran N = 11
Leaf Unit = 1.0

1 3 3
1 3
2 4 2
4 4 99
(4) 5 1444
3 5 68
1 6 4

Descriptive Statistics: AgeTran

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
AgeTran 11 0 51.27 2.49 8.26 33.00 49.00 54.00 56.00 64.00

The summaries for the data are: n = 11, Y = 51.27, and s = 8.26 so that SEY = 8.26/
√

11 =
2.4904. The degrees of freedom are df = 11− 1 = 10.

A necessary first step in every problem is to define the population parameter in
question. Here, let

µ = mean age at time of first transplant for population of patients.

Let us calculate a 95% CI for µ. The degrees of freedom are df = 11 − 1 = 10. For a 95% CI
α = .05, so we need to find tcrit = t.025 = 2.228.

Now tcritSEY = 2.228 ∗ 2.4904 = 5.55. The lower limit on the CI is L = 51.27− 5.55 = 45.72.
The upper endpoint is U = 51.27 + 5.55 = 56.82.

I insist that the results of every CI be summarized in words. For example, I am 95%
confident that the population mean age at first transplant is between 45.7 and 56.8 years (rounding
off to 1 decimal place).

Minitab does all this very easily. Follow the menu path Stat > Basic Statistics > 1-Sample
t (be careful that you don’t select the 1-Sample Z — it will treat S as if it is actually σ and give
you incorrect bounds). Under Options... select Confidence Level of 95 (the default) and Alterna-
tive: not equal (we will understand that next week). Under Graphs check Boxplot. Do not check
Summarized data or Perform hypothesis test. You get the following results:

One-Sample T: AgeTran

Variable N Mean StDev SE Mean 95% CI
AgeTran 11 51.2727 8.2594 2.4903 (45.7240, 56.8215)

We might be a little concerned about the outlier and the possible skewness indicated in the boxplot
below, since that could be evidence we did not sample from a normal distribution. It will be
worth trying one of the nonparametric procedures we will learn about later, since the assumption
of normality is not made there.
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6 ESTIMATION IN THE ONE-SAMPLE SITUATION

The Effect of α on a Two-Sided CI

A two-sided 100(1−α)% CI for µ is given by Y ± tcrits/
√

n. The CI is centered at Y and has length
2tcrits/

√
n. The confidence coefficient 100(1 − α)% is increased by decreasing α, which increases

tcrit. That is, increasing the confidence coefficient makes the CI wider. This is sensible: to increase
your confidence that the interval captures µ you must pinpoint µ with less precision by making the
CI wider. For example, a 95% CI is wider than a 90% CI.

SW Example 6.9 page 192: Let us compute a 90% and a 95% CI by hand.

Note: For large n the Central Limit Theorem gives us the ability to treat Y−µ
σ

Y
as a Z random

variable even without sampling from a normal distribution. Some texts would suggest using the
1-Sample Z procedure in this case (although that still begs the issue of not knowing σ). In practice
what we do about large n is to worry a little less about lack of normality in the population we
sampled from (outliers and extreme skewness are still problems, just slightly different ones), but
continue to use the t-procedures. Remember for large n we get large df, and for large df there is
little difference between Z and t.

Inference for a Population Proportion

Assume that you are interested in estimating the proportion p of individuals in a population with
a certain characteristic or attribute based on a random or representative sample of size n from the
population. The sample proportion p̂ =(# with attribute in the sample)/n is the best guess for
p based on the data.

This is the simplest categorical data problem. Each response falls into one of two exclusive
and exhaustive categories, called success and failure. Individuals with the attribute of interest are
in the success category. The rest fall into the failure category. Knowledge of the population pro-
portion p of successes characterizes the distribution across both categories because the population
proportion of failures is 1− p.

As an aside, note that the probability that a randomly selected individual has the attribute of
interest is the population proportion p with the attribute, so the terms population proportion and
probability can be used interchangeably with random sampling.
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6 ESTIMATION IN THE ONE-SAMPLE SITUATION

The diagram of this is very similar to the earlier one. Note that a random sample of size n now
becomes just a set of S’s and F’s.

Population
Huge set of S’s and F’s

Can see very little

Sample

Proportion of S is p
p is unknown

p̂ = 
#S in Sample

n

Inference

A CI for p

The derivation of the CI follows the same basic ideas as before, except we do not have the idea of
df since we are considering n as large (np ≥ 5 and n(1− p) ≥ 5). p̂ is a random variable (it almost
surely is not p), and it looks like a single number randomly selected from a normal distribution

with mean µp̂ = p and standard deviation σp̂ =
√

p(1−p)
n , so p̂−p

σp̂
looks like a Z. We have the same

problem as before – to use this as we wish, we need to compute the denominator, but we need to
know p to compute it. We estimate it instead, and call the estimated standard deviation of p̂ the

standard error of p̂, SEp̂ =
√

p̂(1−p̂)
n . Everything proceeds as before.

A two-sided CI for p is a range of plausible values for the unknown population proportion p,
based on the observed data. To compute a two-sided CI for p:

1. Specify the confidence level as the percent 100(1− α)% and solve for the error rate α of the
CI.

2. Compute zcrit = z.5α (i.e. area under the standard normal curve to the right of zcrit is .5α.)

3. The 100(1− α)% CI for p has endpoints L = p̂− zcritSE and U = p̂ + zcritSE, respectively,
where the “CI standard error” is

SE =

√
p̂(1− p̂)

n
.

The CI is often written as p̂± zcritSE.

The CI is determined once the confidence level is specified and the data are collected. Prior
to collecting data, the CI is unknown and can be viewed as random because it will depend on the
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6 ESTIMATION IN THE ONE-SAMPLE SITUATION

actual sample selected. Different samples give different CIs. The “confidence” in, say, the 95%
CI (which has a .05 or 5% error rate) can be interpreted as follows. If you repeatedly sample the
population and construct 95% CIs for p, then 95% of the intervals will contain p, whereas 5% (the
error rate) will not. The CI you get from your data either covers p, or it does not.

The length of the CI
U − L = 2zcritSE

depends on the accuracy of the estimate p̂, as measured by the standard error SE. For a given
p̂, this standard error decreases as the sample size n increases, yielding a narrower CI. For a fixed
sample size, this standard error is maximized at p̂ = .5, and decreases as p̂ moves towards either
0 or 1. In essence, sample proportions near 0 or 1 give narrower CIs for p. However, the normal
approximation used in the CI construction is less reliable for extreme values of p̂.

Example:
The 1983 Tylenol poisoning episode highlighted the desirability of using tamper-resistant pack-

aging. The article “Tamper Resistant Packaging: Is it Really?” (Packaging Engineering, June
1983) reported the results of a survey on consumer attitudes towards tamper-resistant packaging.
A sample of 270 consumers was asked the question: “Would you be willing to pay extra for tam-
per resistant packaging?” The number of yes respondents was 189. Construct a 95% CI for the
proportion p of all consumers who were willing in 1983 to pay extra for such packaging.

Here n = 270 and p̂ = 189/270 = .700. The critical value for a 95% CI for p is z.025 = 1.96.
The CI standard error is given by

SE =
√

.7 ∗ .3
270

= .028,

so zcritSE = 1.96 ∗ .028 = .055. The 95% CI for p is .700 ± .055. You are 95% confident that the
proportion of consumers willing to pay extra for better packaging is between .645 and .755. (How
much extra?).

Appropriateness of the CI

The standard CI is based on a large sample standard normal approximation to

z =
p̂− p

SE
.

A simple rule of thumb requires np ≥ 5 and n(1 − p) ≥ 5 for the method to be suitable. The
population proportion p is unknown so you should use p̂ in these formulae to check the suitability
of the CI. Given that np̂ and n(1− p̂) are the observed numbers of successes and failures, you should
have at least 5 of each to apply the large sample CI.

In the packaging example, np̂ = 270∗(.700) = 189 (the number who support the new packaging)
and n(1−p̂) = 270∗(.300) = 81 (the number who oppose) both exceed 5. The normal approximation
is appropriate here.
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More Accurate Confidence Intervals

Large sample CIs for p should be interpreted with caution in small sized samples because the true
error rate usually exceeds the assumed (nominal) value. For example, an assumed 95% CI, with a
nominal error rate of 5%, may be only an 80% CI, with a 20% error rate. The large sample CIs
are usually overly optimistic (i.e. too narrow) when the sample size is too small to use the normal
approximation.

SW use the following method, originally suggested by Alan Agresti, for a 95% CI. The standard
method computes the sample proportion as p̂ = y/n where y is the number of individuals in the
sample with the characteristic of interest, and n is the sample size. Agresti suggested estimating
the proportion with p̃ = (y + 2)/(n + 4), with a standard error of

SE =

√
p̃(1− p̃)
n + 4

,

and using the “usual interval” with these new summaries: p̃± 1.96SE. This appears odd, but just
amounts to adding two successes and two failures to the observed data, and then computing the
standard CI.

This adjustment has little effect when n is large and p̂ is not close to either 0 or 1, as in the
Tylenol example. Let us do examples using SW’s proposed CI.

SW Examples 6.16 and 6.17, page 208-9

Minitab Implementation

A CI for p can be obtained in Minitab from summary data from the menu path Stat > Basic
Statistics > 1 Proportion, check Summarized data, enter Number of trials (n) and Number
of events (# Successes), click Options, enter Confidence level in percent (95.0 usually), ignore
Test proportion for now, select Alternative: not equal, and check Use test and interval
based on normal distribution.

The above choices produce a CI based upon p̂. In order to use SW’s CI based on p̃, add 4 to n
and 2 to # Successes. Finally, to get the best interval (arguably the correct one), do not check Use
test and interval based on normal distribution. This third choice produces what is known
as an exact interval – it is a lot harder to explain how we get it (I’ll indicate where it comes from
next week), but the confidence level and error rate are correct and not subject to approximation
like the other two intervals. Minitab is a little unique in providing this. Let us examine Minitab
results from two examples:
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The Tylenol Example:

Using p̂:

Sample X N Sample p 95% CI Z-Value P-Value
1 189 270 0.700000 (0.645339, 0.754661) 6.57 0.000

Using p̃:

Sample X N Sample p 95% CI Z-Value P-Value
1 191 274 0.697080 (0.642670, 0.751490) 6.52 0.000

Using exact interval:

Exact
Sample X N Sample p 95% CI P-Value
1 189 270 0.700000 (0.641500, 0.754047) 0.000

Ignore the Z-Value and P-Value entries for now. You can see that the intervals all agree for any
practical interpretation.

Example 6.17 p. 209 of SW

Using p̂:

Sample X N Sample p CI Z-Value P-Value
1 0 11 0.000000 (*, *) -3.32 0.001

* NOTE * The normal approximation may be inaccurate for small samples.

Using p̃:

Sample X N Sample p 95% CI Z-Value P-Value
1 2 15 0.133333 (0.000000, 0.305361) -2.84 0.005

* NOTE * The normal approximation may be inaccurate for small samples.

Using exact interval:

Exact
Sample X N Sample p 95% CI P-Value
1 0 11 0.000000 (0.000000, 0.238404) 0.001

The only one of these I would trust is the exact one. The one based on p̃ is surprisingly informative,
though. Minitab’s warning on the other two should not be ignored.
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