
8 TWO-SAMPLE INFERENCES FOR MEANS

8 Two-Sample Inferences for Means

SW Chapters 7 and 9

Comparing Two Sets of Measurements

Suppose you have collected data on one variable from two (independent) samples and you are
interested in “comparing” the samples. What tools are good to use?

Example: Head Breadths
In this analysis, we will compare a physical feature of modern day Englishmen with the corre-

sponding feature of some of their ancient countrymen. The Celts were a vigorous race of people
who once populated parts of England. It is not entirely clear whether they simply died out or
merged with other people who were the ancestors of those who live in England today. A goal of
this study might be to shed some light on possible genetic links between the two groups.

The study is based on the comparison of maximum head breadths (in millimeters) made on
unearthed Celtic skulls and on a number of skulls of modern-day Englishmen. The data are given
below. We have a sample of 18 Englishmen and an independent sample of 16 Celtic skulls.

Row ENGLISH CELTS

1 141 133
2 148 138
3 132 130
4 138 138
5 154 134
6 142 127
7 150 128
8 146 138
9 155 136

10 158 131
11 150 126
12 140 120
13 147 124
14 148 132
15 144 132
16 150 125
17 149
18 145

What features of these data would we likely be interested in comparing? The centers of the
distributions, the spreads within each distribution, the distributional shapes, etc.

These data can be analyzed in Minitab as either STACKED data (1 column containing both
samples, with a separate column of labels or subscripts to distinguish the samples) or UN-
STACKED (2 columns, 1 for each sample). The form of subsequent Minitab commands will depend
on which data mode is used. It is often more natural to enter UNSTACKED data, but with large
data bases STACKED data is the norm (for reasons that I will explain verbally). It is easy to
create STACKED data from UNSTACKED data and vice-versa. Graphical comparisons usually
require the plots for the two groups to have the same scale, which is easiest to control when the
data are STACKED.
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8 TWO-SAMPLE INFERENCES FOR MEANS

The head breadth data was entered as two separate columns, c1 and c2 (i.e. UNSTACKED).
To STACK the data, follow: Data > Stack > Columns. In the dialog box, specify that you wish
to stack the English and Celt columns, putting the results in c3, and storing the subscripts in c4.
The output below shows the data in the worksheet after stacking the two columns.

Data Display

Head
Row ENGLISH CELTS Bread Group

1 141 133 141 ENGLISH
2 148 138 148 ENGLISH
3 132 130 132 ENGLISH
4 138 138 138 ENGLISH
5 154 134 154 ENGLISH
6 142 127 142 ENGLISH
7 150 128 150 ENGLISH
8 146 138 146 ENGLISH
9 155 136 155 ENGLISH
10 158 131 158 ENGLISH
11 150 126 150 ENGLISH
12 140 120 140 ENGLISH
13 147 124 147 ENGLISH
14 148 132 148 ENGLISH
15 144 132 144 ENGLISH
16 150 125 150 ENGLISH
17 149 149 ENGLISH
18 145 145 ENGLISH
19 133 CELTS
20 138 CELTS
21 130 CELTS
22 138 CELTS
23 134 CELTS
24 127 CELTS
25 128 CELTS
26 138 CELTS
27 136 CELTS
28 131 CELTS
29 126 CELTS
30 120 CELTS
31 124 CELTS
32 132 CELTS
33 132 CELTS
34 125 CELTS

Plotting head breadth data:

1. A dotplot with the same scale for both samples is obtained from the UNSTACKED data by
selecting Multiple Y’s with the Simple option, and then choosing C1 and C2 to plot. For the
STACKED data, choose One Y With Groups, select c3 as the plotting variable and c4 as the
Categorical variable for grouping. There are minor differences in the display generated – I
prefer the Stacked data form. In the following, the Unstacked form is on the left, the stacked
form on the right.
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8 TWO-SAMPLE INFERENCES FOR MEANS

2. Histograms are hard to compare unless you make the scale and actual bins the same for both.
Click on Multiple Graphs and check In separate panels of the same graph. That puts the two
graphs next to each other. The left graph below is the unstacked form with only that option.
Next check Same X, including same bins so you have some basis of comparison. The right
graph below uses that option. Why is that one clearly preferable?

The stacked form is more straightforward (left graph below). Click on Multiple Graphs and
define a By Variable. The Histogram With Outline and Groups is an interesting variant (right
graph below).
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3. Stem-and-leaf displays in unstacked data can be pretty useless. The stems are not forced
to match (just like with histograms). It is pretty hard to make quick comparisons with the
following:

Stem-and-Leaf Display: ENGLISH, CELTS

Stem-and-leaf of ENGLISH N = 18
Leaf Unit = 1.0

1 13 2
2 13 8
6 14 0124
(6) 14 567889
6 15 0004
2 15 58

Stem-and-leaf of CELTS N = 16
Leaf Unit = 1.0

1 12 0
1 12
3 12 45
5 12 67
6 12 8
8 13 01
8 13 223
5 13 4
4 13 6
3 13 888

Unfortunately, Minitab seems to be using an old routine for stem-and-leaf plots, and you
cannot use stacked data with the Group variable we created. Minitab is wanting a numeric
group variable in this case (their older routines always required numeric). Follow Data >
Code > Text to Numeric in order to create a new variable in C5 with 1 for ENGLISH and 2
for CELTS. Now the stems at least match up:

Stem-and-Leaf Display: Head Bread

Stem-and-leaf of Head Bread C5 = 1 N = 18
Leaf Unit = 1.0

1 13 2
2 13 8
6 14 0124
(6) 14 567889
6 15 0004
2 15 58

Stem-and-leaf of Head Bread C5 = 2 N = 16
Leaf Unit = 1.0

2 12 04
6 12 5678
(6) 13 012234
4 13 6888
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4. For boxplots, either Unstacked (Multiple Y’s) or Stacked (One Y with Groups) works well.
Again, I prefer the default from the stacked form, but it really doesn’t matter much. Which
is which below?

Many of the data summaries will work on either Unstacked or Stacked data. For the head breadth
data, descriptive statistics output is given below, obtained from both the Stacked data (speci-
fying data in c3 with c4 as a “by variable”) and the Unstacked data (specifying data in separate
columns c1 and c2).

Descriptive Statistics: ENGLISH, CELTS <<<<<<---------Unstacked

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3
ENGLISH 18 0 146.50 1.50 6.38 132.00 141.75 147.50 150.00
CELTS 16 0 130.75 1.36 5.43 120.00 126.25 131.50 135.50

Variable Maximum
ENGLISH 158.00
CELTS 138.00

Descriptive Statistics: Head Bread <<<<<<---------Stacked

Variable Group N N* Mean SE Mean StDev Minimum Q1 Median
Head Bread CELTS 16 0 130.75 1.36 5.43 120.00 126.25 131.50

ENGLISH 18 0 146.50 1.50 6.38 132.00 141.75 147.50

Variable Group Q3 Maximum
Head Bread CELTS 135.50 138.00

ENGLISH 150.00 158.00

Salient Features to Notice

The stem and leaf displays and boxplots indicate that the English and Celt samples are slightly
skewed to the left. There are no outliers in either sample. It is not unreasonable to operationally
assume that the population frequency curves (i.e. the histograms for the populations from which
the samples were selected) for the English and Celtic head breadths are normal.

The sample means and medians are close to each other in each sample, which is not surprising
given the near symmetry and the lack of outliers.
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The data suggest that the typical modern English head breadth is greater than that for Celts.
The data sets have comparable spreads, as measured by either the standard deviation or the IQR
(you need to calculate IQR or ask for it in the above summaries).

Two-Sample Methods: Paired Versus Independent Samples

Suppose you have two populations of interest, say populations 1 and 2, and you are interested in
comparing their (unknown) population means, µ1 and µ2. Inferences on the unknown population
means are based on samples from each population. In practice, most problems fall into one of two
categories.

1. Independent samples, where the sample taken from population 1 has no effect on which
observations are selected from population 2, and vice versa. (SW Chapter 7)

2. Paired or dependent samples, where experimental units are paired based on factors related
or unrelated to the variable measured. (SW Chapter 9)

The distinction between paired and independent samples is best mastered through a series of
examples.

Example The English and Celt head breadth samples are independent

Example Suppose you are interested in whether the CaCO3 (calcium carbonate) level in the
Atrisco well field, which is the water source for Albuquerque, is changing over time. To answer this
question, the CaCO3 level was recorded at each of 15 wells at two time points. These data are
paired. The two samples are the Times 1 and 2 observations.

Example To compare state incomes, a random sample of New Mexico households was selected, and
an independent sample of Arizona households was obtained. It is reasonable to assume independent
samples.

Example Suppose you are interested in whether the husband or wife is typically the heavier
smoker among couples where both adults smoke. Data are collected on households. You measure
the average number of cigarettes smoked by each husband and wife within the sample of households.
These data are paired, i.e. you have selected husband wife pairs as the basis for the samples. It is
reasonable to believe that the responses within a pair are related, or correlated.

Although the focus here will be on comparing population means, you should recognize that in
paired samples you may also be interested, as in the problems above, in how observations compare
within a pair. These goals need not agree, depending on the questions of interest. Note that with
paired data, the sample sizes are equal, and equal to the number of pairs.

Two Independent Samples: CI and Test Using Pooled Variance

These methods assume that the populations have normal frequency curves, with equal population
standard deviations, i.e. σ1 = σ2. Let (n1, Y 1, s1) and (n2, Y 2, s2) be the sample sizes, means
and standard deviations from the two samples.
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The standard CI for µ1 − µ2 is given by

Lower = (Y 1 − Y 2)− tcritSEY 1−Y 2

Upper = (Y 1 − Y 2) + tcritSEY 1−Y 2

The t-statistic for testing H0 : µ1 − µ2 = 0 (µ1 = µ2) against HA : µ1 − µ2 6= 0 (µ1 6= µ2) is
given by

ts =
Y 1 − Y 2

SEY 1−Y 2

.

The standard error of Y 1 − Y 2 used in both the CI and the test is given by

SEY 1−Y 2
= spooled

√
1
n1

+
1
n2

.

Here the pooled variance estimator,

s2
pooled =

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
,

is our best estimate of the common population variance. The pooled estimator of variance is a
weighted average of the two sample variances, with more weight given to the larger sample. If
n1 = n2 then s2

pooled is the average of s2
1 and s2

2.
The critical value tcrit for CI and tests is obtained in usual way from a t-table with df =

n1 + n2 − 2. For the test, follow the one-sample procedure, with the new ts and tcrit.
The pooled CI and tests are sensitive to the normality and equal standard deviation assump-

tions. The observed data can be used to assess the reasonableness of these assumptions. You should
look at boxplots and stem-and-leaf displays to assess normality, and should check whether s1 ≈ s2

to assess the assumption σ1 = σ2. Formal tests of these assumptions will be discussed later.

Satterthwaite’s Method

Satterthwaite’s method assumes normality, but does not require equal population standard
deviations. Satterthwaite’s procedures are somewhat conservative, and adjust the SE and df
to account for unequal population variances. Satterthwaite’s method uses the same CI and test
statistic formula, with a modified standard error:

SEY 1−Y 2
=

√
s2
1

n1
+

s2
2

n2
,

and degrees of freedom:

df =

(
s2
1

n1
+ s2

2
n2

)2

s4
1

n2
1(n1−1)

+ s4
2

n2
2(n2−1)

.

Note that df = n1 + n2 − 2 when n1 = n2 and s1 = s2. The Satterthwaite and pooled variance
procedures usually give similar results when s1 ≈ s2.
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SW use Satterthwaite’s method for CI and tests, and only briefly touch upon the use of the
pooled procedures. The df formula for Satterthwaite’s method is fairly complex, so SW propose a
conservative df formula that uses the minimum of n1 − 1 and n2 − 1 instead.

Examples: SW examples 7.7 and 7.8 pages 229-230.

Minitab does the pooled and Satterthwaite analyses, either on stacked or unstacked data. Follow
the steps STAT > BASIC STATISTICS > 2 sample t. In the dialog box, specify the data to be
analyzed, choose a CI level, and check if you wish to assume equal variances. The output will
contain a p-value for a two-sided tests of equal population means and a CI for the difference in
population means. If you check the box for assuming equal variances you will get the pooled
method, otherwise the output is for Satterthwaite’s method.

An important point to note: You can request individual values plots and side-by-side boxplots
as an option in the dialog box - and the data need not be stacked.

Example: Head Breadths

The English and Celts are independent samples. We looked at boxplots and stem and leaf
displays, which suggested that the normality assumption for the t-test is reasonable. The Minitab
output below shows the English and Celt sample standard deviations are fairly close, so the pooled
and Satterthwaite results should be comparable. The pooled analysis is preferable here, but either
is appropriate.

The form of the output will tell you which sample corresponds to population 1 and which
corresponds to population 2. This should be clear from the dialog box if you use the UNSTACKED
data, as I did. Here the CI tells us about the difference between the English and Celt population
means, so I need to define µ1 = population mean head breadths for all Englishmen and µ2 =
population mean head breadths for Celts.

Two-Sample T-Test and CI: ENGLISH, CELTS

Two-sample T for ENGLISH vs CELTS <<<--------- Pooled

N Mean StDev SE Mean
ENGLISH 18 146.50 6.38 1.5
CELTS 16 130.75 5.43 1.4

Difference = mu (ENGLISH) - mu (CELTS)
Estimate for difference: 15.7500
95% CI for difference: (11.5809, 19.9191)
T-Test of difference = 0 (vs not =): T-Value = 7.70 P-Value = 0.000 DF = 32
Both use Pooled StDev = 5.9569

Two-Sample T-Test and CI: ENGLISH, CELTS

Two-sample T for ENGLISH vs CELTS <<<--------- Satterthwaite

N Mean StDev SE Mean
ENGLISH 18 146.50 6.38 1.5
CELTS 16 130.75 5.43 1.4
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Difference = mu (ENGLISH) - mu (CELTS)
Estimate for difference: 15.7500
95% CI for difference: (11.6158, 19.8842)
T-Test of difference = 0 (vs not =): T-Value = 7.77 P-Value = 0.000 DF = 31

The boxplot, asked for optionally, is nice here – it show means, and connects them to emphasize
the analysis being done.

Remarks: The T = entry on the T-TEST line is tobs, whereas P = is the p-value.

The pooled analysis strongly suggests that H0 : µ1 − µ2 = 0 is false, given the 2-sided p-value
of .0000. We are 95% confident that µ1 − µ2 is between 11.6 and 19.9 mm. That is, we are 95%
confident that the population mean head breadth for Englishmen (µ1) exceeds the population mean
head breadth for Celts (µ2) by between 11.6 and 19.9 mm.

The CI interpretation is made easier by recognizing that we concluded the population means
are different, so the direction of difference must be consistent with that seen in the observed data,
where the sample mean head breadth for Englishmen exceeds that for the Celts. Thus, the limits
on the CI for µ1−µ2 tells us how much larger the mean is for the English population (i.e. between
11.6 and 19.9 mm).

The interpretation of the analysis is always simplified if you specify the first sample in the dialog
box (for an UNSTACKED analysis) to be the sample with the larger mean. Why?

Example: Androstenedione Levels in Diabetics

The data consist of independent samples of diabetic men and women. For each individual,
the scientist recorded their androstenedione level (a hormone - Mark McGwire’s favorite dietary
supplement). Let µ1 = mean androstenedione level for the population of diabetic men, and µ2 =
mean androstenedione level for the population of diabetic women. We are interested in comparing
the population means given the observed data.

The raw data and Minitab output is given below. The boxplots suggest that the distributions
are reasonably symmetric. However, the normality assumption for the women is unreasonable due
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to the presence of outliers. The equal population standard deviation assumption also appears un-
reasonable. The sample standard deviation for men is noticeably larger than the women’s standard
deviation, even with outliers in the women’s sample.

I am more comfortable with the Satterthwaite analysis here than the pooled variance analy-
sis. However, I would interpret all results cautiously, given the unreasonableness of the normality
assumption.

Data Display

Row men women andro sex

1 217 84 217 1
2 123 87 123 1
3 80 77 80 1
4 140 84 140 1
5 115 73 115 1
6 135 66 135 1
7 59 70 59 1
8 126 35 126 1
9 70 77 70 1

10 63 73 63 1
11 147 56 147 1
12 122 112 122 1
13 108 56 108 1
14 70 84 70 1
15 80 84 2
16 101 87 2
17 66 77 2
18 84 84 2
19 73 2
20 66 2
21 70 2
22 35 2
23 77 2
24 73 2
25 56 2
26 112 2
27 56 2
28 84 2
29 80 2
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30 101 2
31 66 2
32 84 2

Descriptive Statistics: men, women

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
men 14 0 112.5 11.4 42.8 59.0 70.0 118.5 136.3 217.0
women 18 0 75.83 4.06 17.24 35.00 66.00 77.00 84.00 112.00

Stem-and-Leaf Display: andro

Stem-and-leaf of andro sex = 1 N = 14
Leaf Unit = 10

1 0 5
4 0 677
5 0 8
7 1 01
7 1 2223
3 1 44
1 1
1 1
1 2 1

Stem-and-leaf of andro sex = 2 N = 18
Leaf Unit = 10

1 0 3
3 0 55
(7) 0 6677777
8 0 888888
2 1 01

Using the Satterthwaite test, the data strongly suggest that the population mean androstene-
dione levels are different. In particular, the Welsh (Satterthwaite) p-value for testing H0 : µ1−µ2 =
0 is .008. The 95% Satterthwaite CI for µ1 − µ2 extends from 11.0 to 62.4, which implies that we
are 95% confident that the population mean andro level for diabetic men exceeds that for diabetic
women by at least 11.0 but by no more than 62.4.

As a comparison, let us examine the output for the pooled procedure. The p-value for the
pooled t-test is .002, whereas the 95% confidence limits are 14.1 and 59.2. That is, we are 95%
confident that the population mean andro level for men exceeds that for women by at least 14.1
but by no more than 59.2. These results are qualitatively similar to the Satterthwaite conclusions.

Two-Sample T-Test and CI: men, women

Two-sample T for men vs women

N Mean StDev SE Mean
men 14 112.5 42.8 11 women 18 75.8 17.2 4.1

Difference = mu (men) - mu (women)
Estimate for difference: 36.6667
95% CI for difference: (10.9577, 62.3756)
T-Test of difference = 0 (vs not =): T-Value = 3.02 P-Value = 0.008 DF = 16
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Two-Sample T-Test and CI: men, women

Two-sample T for men vs women

N Mean StDev SE Mean
men 14 112.5 42.8 11 women 18 75.8 17.2 4.1

Difference = mu (men) - mu (women) Estimate for difference: 36.6667
95% CI for difference: (14.1124, 59.2210)
T-Test of difference = 0 (vs not =): T-Value = 3.32 P-Value = 0.002 DF = 30
Both use Pooled StDev = 30.9914

One-Sided Tests

SW discuss one-sided tests for two-sample problems, where the null hypothesis is H0 : µ1 − µ2 = 0
but the alternative is directional, either HA : µ1 − µ2 < 0 (i.e. µ1 < µ2) or HA : µ1 − µ2 > 0 (i.e.
µ1 > µ2). Once you understand the general form of rejection regions and p-values for one-sample
tests, the one-sided two-sample tests do not pose any new problems. Use the t− statistic, with
the appropriate tail of the t−distribution to define critical values and p-values. One-sided two-
sample tests are directly implemented in Minitab, by specifying the type of test in the dialog box.
One-sided confidence bounds are given with the one-sided tests.

Paired Analysis

With paired data, inferences on µ1−µ2 are based on the sample of differences within pairs. By taking
differences within pairs, two dependent samples are transformed into one sample, which contains
the relevant information for inferences on µd = µ1 − µ2. To see this, suppose the observations
within a pair are Y1 and Y2. Then within each pair, compute the difference d = Y1 − Y2. If the Y1

data are from a population with mean µ1 and the Y2 data are from a population with mean µ2,
then the d’s are a sample from a population with mean µd = µ1 − µ2. Furthermore, if the sample
of differences comes from a normal population, then we can use standard one sample techniques to
test µd = 0 (i.e. µ1 = µ2), and to get a CI for µd = µ1 − µ2.

Let d̄ = Y 1−Y 2 be the sample mean of the differences (which is also the mean difference), and
let sd be the sample standard deviation of the differences. The standard error of d̄ is SEd̄ = sd/

√
n,

where n is the number of pairs. The paired t−test (two-sided) CI for µd is given by d̄ ± tcritSEd̄.
To test H0 : µd = 0 (µ1 = µ2) against HA : µd 6= 0 (µ1 6= µ2), use

ts =
d̄− 0
SEd̄

to compute a p-value as in a two-sided one-sample test. One-sided tests are evaluated in the usual
way for one-sample tests on means.

A graphical analysis of paired data focuses on the sample of differences, and not on the
original samples. In particular, the normality assumption is assessed on the sample of differences.
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Minitab Analysis

The most natural way to enter paired data is as two columns, one for each treatment group. At
this point you can use the Minitab calculator to create a column of differences, and do the usual
one-sample graphical and inferential analysis on this column of differences, or you can do the paired
analysis directly without this intermediate step.

Example: Paired Analysis of Data on Twins

Burt (1966) presented data on IQ scores for identical twins that were raised apart, one by foster
parents and one by the genetic parents. Assuming the data are a random sample of twin pairs,
consider comparing the population mean IQs for twins raised at home to those raised by foster
parents. Let µf=population mean IQ for twin raised by foster parents, and µg=population mean
IQ for twin raised by genetic parents.

I created the data in the worksheet (c1=foster; c2=genetic), and computed the differences
between the IQ scores for the children raised by the genetic and foster parents (c3=diff=genetic-
foster). I also made a scatter plot of the genetic versus foster IQ scores.

Data Display

Row foster genetic diff

1 82 82 0
2 80 90 10
3 88 91 3
4 108 115 7
5 116 115 -1
6 117 129 12
7 132 131 -1
8 71 78 7
9 75 79 4

10 93 82 -11
11 95 97 2
12 88 100 12
13 111 107 -4
14 63 68 5
15 77 73 -4
16 86 81 -5
17 83 85 2
18 93 87 -6
19 97 87 -10
20 87 93 6
21 94 94 0
22 96 95 -1
23 112 97 -15
24 113 97 -16
25 106 103 -3
26 107 106 -1
27 98 111 13

71



8 TWO-SAMPLE INFERENCES FOR MEANS

This plot of IQ scores shows that scores are related within pairs of twins. This is consistent
with the need for a paired analysis.

Given the sample of differences, I created a boxplot and a stem and leaf display, neither which
showed marked deviation from normality. The boxplot is centered at zero, so one would not be too
surprised if the test result is insignificant.

Stem-and-Leaf Display: diff

Stem-and-leaf of diff N = 27
Leaf Unit = 1.0

2 -1 65
4 -1 10
6 -0 65
(8) -0 44311110
13 0 02234
8 0 5677
4 1 0223
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Given the sample of differences, I generated a one-sample CI and test (i.e. STAT > BASIC
STATISTICS > 1-sample t). The hypothesis under test is µd = µg − µf = 0. The p-value for this
test is large. We do not have sufficient evidence to claim that the population mean IQs for twins
raised apart are different. This is consistent with the CI for µd given below, which covers zero.

One-Sample T: diff

Test of mu = 0 vs not = 0

Variable N Mean StDev SE Mean 95% CI T P
diff 27 0.185185 7.736214 1.488835 (-2.875159, 3.245529) 0.12 0.902

Alternatively, I can generate the test and CI directly from the raw data in two columns, fol-
lowing: STAT > BASIC STATISTICS > paired-t, and specifying genetic as the first sample and
foster as the second. This gives the following output, which leads to identical conclusions to the
earlier analysis. If you take this approach, you can get high quality graphics in addition to the test
and CI.

You might ask why I tortured you by doing the first analysis, which required creating and
analyzing the sample of differences, when the alternative and equivalent second analysis is so much
easier. ( A later topic deals with non-parametric analyses of paired data for which the differences
must be first computed. )

Paired T-Test and CI: genetic, foster

Paired T for genetic - foster

N Mean StDev SE Mean
genetic 27 95.2963 15.7353 3.0283
foster 27 95.1111 16.0823 3.0950
Difference 27 0.185185 7.736214 1.488835

95% CI for mean difference: (-2.875159, 3.245529)
T-Test of mean difference = 0 (vs not = 0): T-Value = 0.12
P-Value = 0.902

Remark: I could have defined the difference to be the foster IQ score minus the genetic IQ score.
How would this change the conclusions?

Example: Paired Comparisons of Two Sleep Remedies

The following data give the amount of sleep gained in hours from two sleep remedies, A and B,
applied to 10 individuals who have trouble sleeping an adequate amount. Negative values imply
sleep loss. In 9 of the 10 individuals, the sleep gain on B exceeded that on A.

Let µA = population mean sleep gain (among troubled sleepers) on remedy A, and µB =
population mean sleep gain (among troubled sleepers) on remedy B. Consider testing H0 : µB−µA =
0 or equivalently µd = 0, where µd = µB − µA.

The observed distribution of differences between B and A is slightly skewed to the right, with
a single outlier in the upper tail. The normality assumption of the standard one-sample t-test and
CI are suspect here. I will continue with the analysis.
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Data Display

diff
Row a b (b-a)

1 0.7 1.9 1.2
2 -1.6 0.8 2.4
3 -0.2 1.1 1.3
4 -1.2 0.1 1.3
5 0.1 -0.1 -0.2
6 3.4 4.4 1.0
7 3.7 5.5 1.8
8 0.8 1.6 0.8
9 0.0 4.6 4.6
10 2.0 3.0 1.0

Stem-and-Leaf Display: diff (b-a)

Stem-and-leaf of diff (b-a) N = 10
Leaf Unit = 0.10

1 -0 2
2 0 8
(6) 1 002338
2 2 4
1 3
1 4 6

One-Sample T: diff (b-a)

Test of mu = 0 vs not = 0

Variable N Mean StDev SE Mean 95% CI T P
diff (b-a) 10 1.52000 1.27174 0.40216 (0.61025, 2.42975) 3.78 0.004

The p-value for testing H0 is .004. We’d reject H0 at the 5% or 1% level, and conclude that the
population mean sleep gains on the remedies are different. We are 95% confident that µB exceeds
µA by between .61 and 2.43 hours. Again, these results must be reported with caution, because
the normality assumption is unreasonable. However, the presence of outliers tends to make the
t-test and CI conservative, so we’d expect to find similar conclusions if we used the nonparametric
methods discussed later.
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Query: In what order should the remedies be given to the patients?

Should You Compare Means?

The mean is the most common feature on which two distributions are compared. You should not,
however, blindly apply the two-sample tests (paired or unpaired) without asking yourself whether
the means are the relevant feature to compare. This issue is not a big concern when, as highlighted
in the first graph below, the two (normal) populations have equal spreads or standard deviations. In
such cases the difference between the two population means is equal to the difference between any
fixed percentile for the two distributions, so the mean difference is a natural measure of difference.

Consider instead the hypothetical scenario depicted in the bottom pane below, where the pop-
ulation mean lifetimes using two distinct drugs for a fatal disease are µ1 = 16 months from time of
diagnosis and µ2 = 22 months from time of diagnosis, respectively. The standard deviations under
the two drugs are σ1 = 1 and σ2 = 6, respectively. The second drug has the higher mean lifetime,
but at the expense of greater risk. For example, the first drug gives you a 97.7% chance of living
at least 14 months, whereas the second drug only gives you a 90.8% chance of living at least 14
months. Which drug is best? It depends on what is important to you, a higher expected lifetime
or a lower risk of dying early.

0 5 10 15

Normal Distributions with Identical Variances

10 15 20 25 30 35 40

Normal Distributions with Different Variances
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Nonparametric Procedures

Usually the biggest problems with assumptions of normality occur when we see extreme skewness
and/or outliers. The first remedy most statisticians try in such cases is to transform the data using
logs or another appropriate transformation to obtain approximate normality on the transformed
scale. That often works well but does not handle nearly all problems. Nonparametric procedures
are a set of methods designed as alternatives to procedures like t-tests and t-confidence intervals
that can be applied even when sampling is not from a normal distribution. I will cover these in a
very cursory fashion – this is actually a huge topic on its own.

Minitab implements some of the more popular methods if you follow the path
Stat > Nonparametrics. The first three options are 1-Sample Sign, 1-Sample Wilcoxon, and
Mann-Whitney. The Sign Test is an alternative to the 1-Sample t-test and makes no real assumption
about the shape of the distribution sampled from; it focuses on the population median rather than
the mean, however. The Wilcoxon Signed Rank test also is an alternative to the 1-Sample t-test; the
only assumption about the distribution sampled from is that it is symmetric. The Mann-Whitney
test is an alternative to the 2-Sample t-test. It focuses on differences in population medians, and
assumes only that the two population distributions have the same general shape.

The Sign Test is pretty inefficient to use for data actually sampled from a normal distribution,
but it protects against arbitrarily large outliers. The Wilcoxon and Mann-Whitney tests, if they
are appropriate, are very efficient (just as powerful) relative to the t-test, and they also provide
great protection against the bad effects of outliers.

Let’s look at the Sign Test and Wilcoxon tests for the data on sleep remedies (paired data give
rise to 1-Sample methods applied to the differences).

One-Sample T: diff (b-a) <<<<<<<<< COMPARE WITH T

Test of mu = 0 vs not = 0

Variable N Mean StDev SE Mean 95% CI T P
diff (b-a) 10 1.52000 1.27174 0.40216 (0.61025, 2.42975) 3.78 0.004

Sign CI: diff (b-a) <<<<<<<<< ASK FOR CI AND TEST SEPARATELY

Sign confidence interval for median

Confidence
Achieved Interval

N Median Confidence Lower Upper Position
diff (b-a) 10 1.250 0.8906 1.000 1.800 3

0.9500 0.932 2.005 NLI <<-- USE THIS
0.9785 0.800 2.400 2

Sign Test for Median: diff (b-a)

Sign test of median = 0.00000 versus not = 0.00000

N Below Equal Above P Median
diff (b-a) 10 1 0 9 0.0215 1.250
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Wilcoxon Signed Rank CI: diff (b-a)

Confidence
Estimated Achieved Interval

N Median Confidence Lower Upper
diff (b-a) 10 1.30 94.7 0.80 2.70

Wilcoxon Signed Rank Test: diff (b-a)

Test of median = 0.000000 versus median not = 0.000000

N
for Wilcoxon Estimated

N Test Statistic P Median
diff (b-a) 10 10 54.0 0.008 1.300

There is very little difference among these results. The sign test has the shortest CI (but it is
for a population median, not mean). For real interpretation, though, your conclusions would not
depend on which of these procedures you used. That at least makes you more comfortable if you
go ahead and report the results of the t-test.

Let’s go back to the androstenedione data set where we saw a problem with outliers. For
purposes of illustration, we’ll compare the Mann-Whitney to the 2-Sample t-test. Again, there is
no real difference in a practical sense. I am uncomfortable with the Mann-Whitney here since the
shapes do not really look the same.

Two-Sample T-Test and CI: men, women

Two-sample T for men vs women

N Mean StDev SE Mean
men 14 112.5 42.8 11
women 18 75.8 17.2 4.1

Difference = mu (men) - mu (women)
Estimate for difference: 36.6667
95% CI for difference: (10.9577, 62.3756)
T-Test of difference = 0 (vs not =): T-Value = 3.02 P-Value = 0.008 DF = 16

Mann-Whitney Test and CI: men, women

N Median
men 14 118.50
women 18 77.00

Point estimate for ETA1-ETA2 is 38.00
95.4 Percent CI for ETA1-ETA2 is (3.99,56.01)
W = 293.5
Test of ETA1 = ETA2 vs ETA1 not = ETA2 is significant at 0.0185
The test is significant at 0.0183 (adjusted for ties)

Finally, to see that there really can be a difference, let’s return to the income data from several
lectures ago. The two large outliers pretty well destroy any meaning to the t-interval, but the
sign-interval makes a lot of sense for a population median.

Data Display
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Income
7 1110 7 5 8 12 0 5 2 2 46
7

One-Sample T: Income

Variable N Mean StDev SE Mean 95% CI
Income 12 100.917 318.008 91.801 (-101.136, 302.969)

Sign CI: Income

Sign confidence interval for median

Confidence
Achieved Interval

N Median Confidence Lower Upper Position
Income 12 7.00 0.8540 5.00 8.00 4

0.9500 2.79 10.95 NLI
0.9614 2.00 12.00 3

**** REMARK: NLI stands for non-linear interpolation

SW do discuss the Mann-Whitney test in Section 7.11.
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