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9 One-Way Analysis of Variance

SW Chapter 11 - all sections except 6.

The one-way analysis of variance (ANOVA) is a generalization of the two sample t−test to
k ≥ 2 groups. Assume that the populations of interest have the following (unknown) population
means and standard deviations:

population 1 population 2 · · · population k

mean µ1 µ2 · · · µk

std dev σ1 σ2 · · · σk

A usual interest in ANOVA is whether µ1 = µ2 = · · · = µk. If not, then we wish to know which
means differ, and by how much. To answer these questions we select samples from each of the k
populations, leading to the following data summary:

sample 1 sample 2 · · · sample k

size n1 n2 · · · nk

mean Y 1 Y 2 · · · Y k

std dev s1 s2 · · · sk

A little more notation is needed for the discussion. Let Yij denote the jth observation in the ith

sample and define the total sample size n∗ = n1 + n2 + · · · + nk. Finally, let Y be the average
response over all samples (combined), that is

Y =
∑

ij Yij

n∗
=
∑

i niY i

n∗
.

Note that Y is not the average of the sample means, unless the samples sizes ni are equal.
An F−statistic is used to test H0 : µ1 = µ2 = · · · = µk against HA : not H0. The assumptions

needed for the standard ANOVA F−test are analogous to the independent two-sample t−test
assumptions: (1) Independent random samples from each population. (2) The population frequency
curves are normal. (3) The populations have equal standard deviations, σ1 = σ2 = · · · = σk.

The F−test is computed from the ANOVA table, which breaks the spread in the combined data
set into two components, or Sums of Squares (SS). The Within SS, often called the Residual
SS or the Error SS, is the portion of the total spread due to variability within samples:

SS(Within) = (n1 − 1)s2
1 + (n2 − 1)s2

2 + · · ·+ (nk − 1)s2
k =

∑
ij(Yij − Y i)2.

The Between SS, often called the Model SS, measures the spread between (actually among!) the
sample means

SS(Between) = n1(Y 1 − Y )2 + n2(Y 2 − Y )2 + · · ·+ nk(Y k − Y )2 =
∑

i ni(Y i − Y )2,

weighted by the sample sizes. These two SS add to give

SS(Total) = SS(Between) + SS(Within) =
∑

ij(Yij − Y )2.
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9 ONE-WAY ANALYSIS OF VARIANCE

Each SS has its own degrees of freedom (df). The df(Between) is the number of groups minus
one, k − 1. The df(Within) is the total number of observations minus the number of groups:
(n1−1)+(n2−1)+· · · (nk−1) = n∗−k. These two df add to give df(Total) = (k−1)+(n∗−k) = n∗−1.

The Sums of Squares and df are neatly arranged in a table, called the ANOVA table:

Source df SS MS
Between Groups k − 1

∑
i ni(Y i − Y )2

Within Groups n∗ − k
∑

i(ni − 1)s2
i

Total n∗ − 1
∑

ij(Yij − Y )2.

The ANOVA table often gives a Mean Squares (MS) column, left blank here. The Mean
Square for each source of variation is the corresponding SS divided by its df . The Mean Squares
can be easily interpreted.

The MS(Within)

(n1 − 1)s2
1 + (n2 − 1)s2

2 + · · ·+ (nk − 1)s2
k

n∗ − k
= s2

pooled

is a weighted average of the sample variances. The MS(Within) is known as the pooled estimator
of variance, and estimates the assumed common population variance. If all the sample sizes are
equal, the MS(Within) is the average sample variance. The MS(Within) is identical to the pooled
variance estimator in a two-sample problem when k = 2.

The MS(Between) ∑
i ni(Y i − Y )2

k − 1
is a measure of variability among the sample means. This MS is a multiple of the sample variance
of Y 1, Y 2, ..., Y k when all the sample sizes are equal.

The MS(Total) ∑
ij(Yij − Y )2

n∗ − 1
is the variance in the combined data set.

The decision on whether to reject H0 : µ1 = µ2 = · · · = µk is based on the ratio of the
MS(Between) and the MS(Within):

Fs =
MS(Between)
MS(Within)

.

Large values of Fs indicate large variability among the sample means Y 1, Y 2, ..., Y k relative to the
spread of the data within samples. That is, large values of Fs suggest that H0 is false.

Formally, for a size α test, reject H0 if Fs ≥ Fcrit, where Fcrit is the upper-α percentile from
an F distribution with numerator degrees of freedom k − 1 and denominator degrees of freedom
n∗ − k (i.e. the df for the numerators and denominators in the F−ratio.) The p-value for the test
is the area under the F− probability curve to the right of Fs:
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9 ONE-WAY ANALYSIS OF VARIANCE

0 1 2 3 4 5 6FCrit

α = .05 (fixed)

Reject H0 for FS here

F with 4 and 20 degrees of freedom

0 1 2 3 4 5 6FS

p−value (random)

F with 4 and 20 degrees of freedom
FS not significant

FCrit

For k = 2 the ANOVA F− test is equivalent to the pooled two-sample t−test.

Minitab summarizes the ANOVA F−test with a p-value. The data can be either UNSTACKED
or STACKED, but for multiple comparisons discussed later the data must be STACKED. To carry
out the analysis, follow the sequence: STAT > ANOVA > ONE-WAY for STACKED data or
ONE-WAY (unstacked) for UNSTACKED data. With STACKED data, you need to specify the
response variable (i.e. the column containing the measurements to be analyzed) and the factor
(i.e. the column with subscripts that identify the samples) in the dialog box. As with a two-sample
analysis, high quality side-by-side boxplots and dotplots can be generated from the ANOVA dialog
box. The command line syntax for ANOVA can be obtained from the on-line help, if you are
interested.

Example: Comparison of Fats

During cooking, doughnuts absorb fat in various amounts. A scientist wished to learn whether
the amount absorbed depends on the type of fat. For each of 4 fats, 6 batches of 24 doughnuts
were prepared. The data are grams of fat absorbed per batch (minus 100).

Let

µi = pop mean grams of fat i absorbed per batch of 24 doughnuts (-100).

The scientist wishes to test H0 : µ1 = µ2 = µ3 = µ4 against HA : not H0. There is no strong
evidence against normality here. Furthermore the sample standard deviations (see output below)
are close. The standard ANOVA appears to be appropriate here.

The p-value for the F−test is .001. The scientist would reject H0 at any of the usual test levels
(i.e. .05 or .01). The data suggest that the population mean absorption rates differ across fats in
some way. The F−test does not say how they differ.
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9 ONE-WAY ANALYSIS OF VARIANCE

Row fat1 fat2 fat3 fat4
1 64 78 75 55
2 72 91 86 66
3 68 97 78 49
4 77 82 71 64
5 90 85 63 70
6 76 77 76 68

One-way ANOVA: grams versus fat

Source DF SS MS F P
fat 3 1595.5 531.8 7.95 0.001
Error 20 1338.3 66.9
Total 23 2933.8

S = 8.180 R-Sq = 54.38% R-Sq(adj) = 47.54%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -----+---------+---------+---------+----
fat1 6 74.500 9.028 (------*-----)
fat2 6 85.000 7.772 (------*------)
fat3 6 74.833 7.627 (------*------)
fat4 6 62.000 8.222 (------*------)

-----+---------+---------+---------+----
60 70 80 90

Pooled StDev = 8.180

Fisher 95% Individual Confidence Intervals <<<<<<<<<<< WILL EXPLAIN SOON
All Pairwise Comparisons among Levels of fat

Simultaneous confidence level = 80.83%

fat = fat1 subtracted from:

fat Lower Center Upper ------+---------+---------+---------+---
fat2 0.648 10.500 20.352 (----*----)
fat3 -9.518 0.333 10.185 (----*----)
fat4 -22.352 -12.500 -2.648 (----*----)

------+---------+---------+---------+---
-20 0 20 40
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fat = fat2 subtracted from:

fat Lower Center Upper ------+---------+---------+---------+---
fat3 -20.018 -10.167 -0.315 (----*----)
fat4 -32.852 -23.000 -13.148 (----*---)

------+---------+---------+---------+---
-20 0 20 40

fat = fat3 subtracted from:

fat Lower Center Upper ------+---------+---------+---------+---
fat4 -22.685 -12.833 -2.982 (----*----)

------+---------+---------+---------+---
-20 0 20 40

Fisher 99.167% Individual Confidence Intervals <<<<<<<<-- Bonferroni comparisons
All Pairwise Comparisons among Levels of fat

Simultaneous confidence level = 96.16%

fat = fat1 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat2 -3.325 10.500 24.325 (------*------)
fat3 -13.492 0.333 14.159 (------*------)
fat4 -26.325 -12.500 1.325 (------*------)

--------+---------+---------+---------+-
-20 0 20 40

fat = fat2 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat3 -23.992 -10.167 3.659 (------*------)
fat4 -36.825 -23.000 -9.175 (------*-----)

--------+---------+---------+---------+-
-20 0 20 40

fat = fat3 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat4 -26.659 -12.833 0.992 (------*-----)

--------+---------+---------+---------+-
-20 0 20 40

Multiple Comparison Methods: Fisher’s Method

The ANOVA F−test checks whether all the population means are equal. Multiple comparisons
are often used as a follow-up to a significant ANOVA F−test to determine which population means
are different. I will discuss Fisher’s, Bonferroni’s and Tukey’s methods for comparing all pairs of
means. These approaches are implemented in Minitab.

Fisher’s Least significant difference method (LSD or FSD) is a two-step process:
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9 ONE-WAY ANALYSIS OF VARIANCE

1. Carry out the ANOVA F−test of H0 : µ1 = µ2 = · · · = µk at the α level. If H0 is not rejected,
stop and conclude that there is insufficient evidence to claim differences among population
means. If H0 is rejected, go to step 2.

2. Compare each pair of means using a pooled two sample t−test at the α level. Use spooled

from the ANOVA table and df = df(Residual).

To see where the name LSD originated, consider the t−test of H0 : µi = µj (i.e. populations i and
j have same mean). The t−statistic is

ts =
Y i − Y j

spooled

√
1
ni

+ 1
nj

.

You reject H0 if |ts| ≥ tcrit, or equivalently, if

|Y i − Y j | ≥ tcritspooled

√
1
ni

+
1
nj

.

The minimum absolute difference between Y i and Y j needed to reject H0 is the LSD, the quantity
on the right hand side of this inequality. If all the sample sizes are equal n1 = n2 = · · · = nk then
the LSD is the same for each comparison:

LSD = tcritspooled

√
2
n1

,

where n1 is the common sample size.
I will illustrate Fisher’s method on the doughnut data, using α = .05. At the first step, you

reject the hypothesis that the population mean absorptions are equal because p− value = .001. At
the second step, compare all pairs of fats at the 5% level. Here, spooled = 8.18 and tcrit = 2.086 for
a two-sided test based on 20 df (the df for Residual SS). Each sample has six observations, so the
LSD for each comparison is

LSD = 2.086 ∗ 8.18 ∗
√

2
6

= 9.85.

Any two sample means that differ by at least 9.85 in magnitude are significantly different at the
5% level.

An easy way to compare all pairs of fats is to order the samples by their sample means. The
samples can then be grouped easily, noting that two fats are in the same group if the absolute
difference between their sample means is smaller than the LSD.

Fats Sample Mean
2 85.00
3 74.83
1 74.50
4 62.00

There are six comparisons of two fats. From this table, you can visually assess which sample
means differ by at least the LSD=9.85, and which ones do not. For completeness, the table below
summarizes each comparison:
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9 ONE-WAY ANALYSIS OF VARIANCE

Comparison Absolute difference in means Exceeds LSD?
Fats 2 and 3 10.17 Yes

2 and 1 10.50 Yes
2 and 4 23.00 Yes

Fats 3 and 1 0.33 No
3 and 4 12.83 Yes

Fats 1 and 4 12.50 Yes

The end product of the multiple comparisons is usually presented as a collection of groups,
where a group is defined to be a set of populations with sample means that not significantly different
from each other. Overlap among groups is common, and occurs when one or more populations
appears in two or more groups. Any overlap requires a more careful interpretation of the analysis.

There are three groups for the doughnut data, with no overlap. Fat 2 is in a group by itself, and
so is Fat 4. Fats 3 and 1 are in a group together. This information can be summarized by ordering
the samples from lowest to highest average, and then connecting the fats in the same group using
an underscore:

FAT 4 FAT 1 FAT 3 FAT 2
----- -------------- -----

The results of a multiple comparisons must be interpreted carefully. At the 5% level, you have
sufficient evidence to conclude that the population mean absorption for Fat 2 exceeds the other
population means, whereas the mean absorption for Fat 4 is smallest. However, there is insufficient
evidence to conclude that the population mean absorptions for Fats 1 and 3 differ.

Be Careful with Interpreting Groups in Multiple Comparisons!

To see why you must be careful when interpreting groupings, suppose you obtain two groups in a
three sample problem. One group has samples 1 and 3. The other group has samples 3 and 2:

1 3 2
---------

-----------

This occurs, for example, when |Y 1 − Y 2| ≥ LSD, but both |Y 1 − Y 3| and |Y 3 − Y 2| are
less than the LSD. There is a tendency to conclude, and please try to avoid this line of attack,
that populations 1 and 3 have the same mean, populations 2 and 3 have the same mean, but
populations 1 and 2 have different means. This conclusion is illogical. The groupings imply that
we have sufficient evidence to conclude that population means 1 and 2 are different, but insufficient
evidence to conclude that population mean 3 differs from either of the other population means.
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9 ONE-WAY ANALYSIS OF VARIANCE

FSD Multiple Comparisons in Minitab

To get Fisher comparisons in Minitab, check on COMPARISONS in the one-way ANOVA dialog
box. Then choose Fisher, with individual error rate = 5 to get the individual comparisons at the
5% level, as considered above. One slight difficulty relative to our presentation is that Minitab
summarizes the multiple comparisons in terms of all possible 95% CIs for differences in population
means. This output can be used to generate groupings by noting that the individual CIs will cover
zero if and only if the corresponding 5% tests of equal means is not significant. Thus a CI for the
difference in the population means that covers zero implies that the two populations are in the
same group. A summary of the CIs is given below; see the earlier output. Let us see that we can
recover the groups from this output.

95% CI for Limits
µ2 − µ1 0.65 to 20.35
µ3 − µ1 -9.52 to 10.19
µ3 − µ1 -22.35 to -2.65

µ3 − µ2 -20.02 to -0.32
µ4 − µ2 -32.85 to -13.15

µ4 − µ3 -22.69 to -2.98

Discussion of the FSD Method

There are c = .5k(k − 1) pairs of means to compare in the second step of the FSD method. Each
comparison is done at the α level, where for a generic comparison of the ith and jth populations

α = probability of rejecting H0 : µi = µj when H0 is true.

This probability is called the comparison error rate by SAS and the individual error rate by
Minitab.

The individual error rate is not the only error rate that is important in multiple comparisons.
The family error rate (FER), or the experimentwise error rate, is defined to be the probability
of at least one false rejection of a true hypothesis H0 : µi = µj over all comparisons. When many
comparisons are made, you may have a large probability of making or or more false rejections of
true null hypotheses. In particular, when all c comparisons of two population means are performed,
each at the α level, then

α < FER < cα.

For example, in the doughnut problem where k = 4, there are c = .5 ∗ 4 ∗ 3 = 6 possible
comparisons of pairs of fats. If each comparison is carried out at the 5% level, then .05 < FER <
.30. At the second step of the FSD method, you could have up to a 30% chance of claiming one or
more pairs of population means are different if no differences existed between population means.
Minitab gives the actual FER for this problem as .192. SAS and most other statistical packages
do not evaluate the exact FER, so the upper bound is used.

The first step of the FSD method is the ANOVA “screening” test. The multiple comparisons
are carried out only if the F−test suggests that not all population means are equal. This screening
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test tends to deflate the FER for the two-step FSD procedure. However, the FSD method is
commonly criticized for being extremely liberal (too many false rejections of true null hypotheses)
when some, but not many, differences exist - especially when the number of comparisons is large.
This conclusion is fairly intuitive. When you do a large number of tests, each, say, at the 5% level,
then sampling variation alone will suggest differences in 5% of the comparisons where the H0 is
true. The number of false rejections could be enormous with a large number of comparisons. For
example, chance variation alone would account for an average of 50 significant differences in 1000
comparisons each at the 5% level.

Bonferroni Comparisons

The Bonferroni method controls the FER by reducing the individual comparison error rate. The
FER is guaranteed to be no larger than a prespecified amount, say α, by setting the individual error
rate for each of the c comparisons of interest to α/c. Larger differences in the sample means are
needed before declaring statistical significance using the Bonferroni adjustment than when using
the FSD method at the α level.

Assuming all comparisons are of interest, you can implement the Bonferroni adjustment in
Minitab by specifying the Fisher comparisons with the appropriate individual error rate.
Minitab gives the actual FER, and 100(1 − α/c)% CI for all pairs of means µi − µj . A by-
product of the Bonferroni adjustment is that we have at least 100(1 − α)% confidence that all CI
statements hold simultaneously!

If you wish to guarantee a FER ≤ .05 on all six comparisons in the doughnut problem, then
set the individual error rate to .05/6 = .0083. Minitab gives 100(1 − .0083)% = 99.17% CIs for
all µi − µj , and computes the actual FER. Here FER=.0382. The Bonferroni output was given
earlier. Looking at the output, can you create the groups? You should get the groups given below,
which implies you have sufficient evidence to conclude that the population mean absorption for Fat
2 exceeds that for Fat 4.

FAT 4 FAT 1 FAT 3 FAT 2
-----------------------

------------------------

The Bonferroni method tends to produce “coarser” groups than the FSD method, because
the individual comparisons are conducted at a lower level. Equivalently, the minimum significant
difference is inflated for the Bonferroni method. For example, in the doughnut problem with
FER ≤ .05, the critical value for the individual comparisons at the .0083 level is tcrit = 2.929. You
can read this off the Minitab output or estimate it from a t−table with df = 20. The minimum
significant difference for the Bonferroni comparisons is

LSD = 2.929 ∗ 8.18 ∗
√

2
6

= 13.824

versus an LSD=9.85 for the FSD method. Referring back to our table of sample means on page
71, we see that the sole comparison where the absolute difference between sample means exceeds
13.824 involves Fats 2 and 4.
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Example from Koopmans: Facial Tissue Thickness

In an anthropological study of facial tissue thickness for different racial groups, data were taken
during autopsy at several points on the faces of deceased individuals. The Glabella measurements
taken at the bony ridge for samples of individuals from three racial groups (cauc = Caucasian,
afam = African American and naao = Native American and Oriental) follow. The data values are
in mm.

There are 3 groups, so there are 3 possible pairwise comparisons. If you want a Bonferroni
analysis with FER of no greater than .05, you should do the individual comparisons at the .05/3 =
.0167 level. Minitab output is given below. Except for the mild outlier in the Caucasian sample,
the observed distributions are fairly normal, with similar spreads. I would expect the standard
ANOVA to perform well here.

Let µc = population mean Glabella measurement for Caucasians, µa = population mean
Glabella measurement for African Americans, and µn = population mean Glabella measurement
for Native Americans and Orientals. At the 5% level, you would not reject the hypothesis that the
population mean Glabella measurements are identical. That is, you do not have sufficient evidence
to conclude that these racial groups differ with respect to their average Glabella measurement.

The Bonferroni intervals reinforce this conclusion, since each interval for a difference in popula-
tion means contains zero. You can think of the Bonferroni intervals as simultaneous CI. We’re (at
least) 95% confident that all of the following statements hold simultaneously: −1.62 ≤ µc − µa ≤
.32, −.91 ≤ µn − µc ≤ 1.00, and −1.54 ≤ µn − µa ≤ .33. The individual CI have level
100(1− .0167)% = 98.33%. Any further comments?

CONTENTS OF WORKSHEET: Data in Columns c1-c3, labeled

Row cauc afam naao
1 5.75 6.00 8.00
2 5.50 6.25 7.00
3 6.75 6.75 6.00
4 5.75 7.00 6.25
5 5.00 7.25 5.50
6 5.75 6.75 4.00
7 5.75 8.00 5.00
8 7.75 6.50 6.00
9 5.75 7.50 7.25
10 5.25 6.25 6.00
11 4.50 5.00 6.00
12 6.25 5.75 4.25
13 5.00 4.75
14 6.00

Descriptive Statistics: cauc, afam, naao

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
cauc 12 0 5.813 0.241 0.833 4.500 5.313 5.750 6.125 7.750
afam 13 0 6.462 0.248 0.895 5.000 5.875 6.500 7.125 8.000
naao 14 0 5.857 0.298 1.117 4.000 4.938 6.000 6.438 8.000
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One-way ANOVA: Glabella versus Group

Source DF SS MS F P
Group 2 3.398 1.699 1.83 0.175
Error 36 33.461 0.929
Total 38 36.859

S = 0.9641 R-Sq = 9.22% R-Sq(adj) = 4.18%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -----+---------+---------+---------+----
afam 13 6.4615 0.8947 (----------*----------)
cauc 12 5.8125 0.8334 (----------*-----------)
naao 14 5.8571 1.1168 (---------*----------)

-----+---------+---------+---------+----
5.50 6.00 6.50 7.00

Pooled StDev = 0.9641

Fisher 98.33% Individual Confidence Intervals
All Pairwise Comparisons among Levels of Group

Simultaneous confidence level = 95.69%

Group = afam subtracted from:

Group Lower Center Upper ---+---------+---------+---------+------
cauc -1.6178 -0.6490 0.3198 (-------------*-------------)
naao -1.5365 -0.6044 0.3277 (------------*-------------)

---+---------+---------+---------+------
-1.40 -0.70 0.00 0.70

Group = cauc subtracted from:

Group Lower Center Upper ---+---------+---------+---------+------
naao -0.9074 0.0446 0.9967 (-------------*------------)

---+---------+---------+---------+------
-1.40 -0.70 0.00 0.70
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Further Discussion of Multiple Comparisons

The FSD and Bonferroni methods comprise the ends of the spectrum of multiple comparisons
methods. Among multiple comparisons procedures, the FSD method is most likely to find differ-
ences, whether real or due to sampling variation, whereas Bonferroni is often the most conservative
method. You can be reasonably sure that differences suggested by the Bonferroni method will be
suggested by almost all other methods, whereas differences not significant under FSD will not be
picked up using other approaches.

The Bonferroni method is conservative, but tends to work well when the number of comparisons
is small, say 4 or less. A smart way to use the Bonferroni adjustment is to focus attention only on
the comparisons of interest (generated independently of looking at the data!), and ignore the rest.
I will return to this point later.

Two commonly used alternatives to FSD and Bonferroni are Tukey’s honest significant dif-
ference method (HSD) and Newman-Keuls studentized range method. Tukey’s method can be
implemented in Minitab by specifying Tukey multiple comparisons (typically with FER=5%) in
the one-way ANOVA dialog box. SW discuss the Newman-Keuls approach, which is not imple-
mented in Minitab.

To implement Tukey’s method with a FER of α, reject H0 : µi = µj when

|Y i − Y j | ≥
qcrit√

2
spooled

√
1
ni

+
1
nj

,

where qcrit is the α level critical value of the studentized range distribution. For the doughnut fats,
the groupings based on Tukey and Bonferroni comparisons are identical; see the Minitab output
below.

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of fat

Individual confidence level = 98.89%

fat = fat1 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat2 -2.725 10.500 23.725 (-----*------)
fat3 -12.891 0.333 13.558 (-----*------)
fat4 -25.725 -12.500 0.725 (------*-----)

--------+---------+---------+---------+-
-20 0 20 40

fat = fat2 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat3 -23.391 -10.167 3.058 (------*------)
fat4 -36.225 -23.000 -9.775 (------*-----)

--------+---------+---------+---------+-
-20 0 20 40

fat = fat3 subtracted from:

fat Lower Center Upper --------+---------+---------+---------+-
fat4 -26.058 -12.833 0.391 (------*-----)

--------+---------+---------+---------+-
-20 0 20 40
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Checking Assumptions in ANOVA Problems

The classical ANOVA assumes that the populations have normal frequency curves and the popu-
lations have equal variances (or spreads). You can test the normality assumption using multiple
normal scores tests, which we discussed earlier. An alternative approach that is useful with three
or more samples is to make a single normal scores plot for the entire data set. The samples must
be centered at the same location for this to be meaningful. (WHY?) This is done by subtracting
the sample mean from each observation in the sample, giving the so-called residuals. A normal
scores plot or histogram of the residuals should resemble a sample from a normal population. These
two plots can be generated with the ANOVA procedure in Minitab, but the normal probability
plot does not include a p-value for testing normality. However, the residuals can be stored in the
worksheet, and then a formal test of normality is straightforward (from the path Stat > Basic
Statistics > Normality Test — use either the Anderson Darling or the Ryan Joiner test).

Bartlett’s test and Levene’s test for equal population variances are obtained from Stat > ANOVA
> Test for Equal Variances. Bartlett’s test is a little sensitive to the normality assumption,
while Levene’s is not. I will now define Bartlett’s test, which assumes normally distributed data.
As above, let n∗ = n1 + n2 + · · · + nk, where the nis are the sample sizes from the k groups, and
define

v = 1 +
1

3(k − 1)

(
k∑

i=1

1
ni − 1

− 1
n∗ − k

)
.

Bartlett’s statistic for testing H0 : σ2
1 = · · · = σ2

k is given by

Bobs =
2.303

v

{
(n− k)logs2

pooled −
k∑

i=1

(ni − 1)logs2
i

}
,

where s2
pooled is the pooled estimator of variance and s2

i is the estimated variance based on the ith

sample.
Large values of Bobs suggest that the population variances are unequal. For a size α test, we

reject H0 if Bobs ≥ χ2
k−1,crit, where χ2

k−1,crit is the upper-α percentile for the χ2
k−1 (chi-squared)

probability distribution with k−1 degrees of freedom. A generic plot of the χ2 distribution is given
below. SW give a chi-squared table on p. 653. A p-value for the test is given by the area under
the chi-squared curve to the right of Bobs.
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0 4 χCrit
2

α = .05 (fixed)

Reject H0 for χS
2 here

χ2 distribution with 3 degrees of freedom

Minitab does the calculation for us, as illustrated below. Follow the menu path Stat > ANOVA
> Test for equal variances. This result is not surprising given how close the sample variances
are to each other.
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Example from the Child Health and Development Study (CHDS)

We consider data from the birth records of 680 live-born white male infants. The infants were
born to mothers who reported for pre-natal care to three clinics of the Kaiser hospitals in northern
California. As an initial analysis, we will examine whether maternal smoking has an effect on
the birth weights of these children. To answer this question, we define 3 groups based on mother’s
smoking history: (1) mother does not currently smoke or never smoked (2) mother smoked less than
one pack of cigarettes a day during pregnancy (3) mother smoked at least one pack of cigarettes a
day during pregnancy.

Let µi = pop mean birth weight (in lbs) for children in group i, (i = 1, 2, 3). We wish to test
H0 : µ1 = µ2 = µ3 against HA : not H0.

Several plots were generated as part of the analysis: dotplots and boxplots, normal probability
plots for each sample, and a normal probability plot and histogram of the residuals from the
ANOVA. These are included at the end of the notes.

Looking at the boxplots, there is some evidence of non-normality here. Although there are
outliers in the no smoking group, we need to recognize that the sample size for this group is fairly
large - 381. Given that boxplots are calibrated in such a way that 7 outliers per 1000 observations
are expected when sampling from a normal population, 5 outliers (you only see 4!) out of 381 seems
a bit excessive. A formal test rejects the hypothesis of normality in the no and low smoker groups.
The normal probability plot and the histogram of the residuals also suggests that the population
distributions are heavy tailed. I also saved the residuals from the ANOVA and did a formal test of
normality on the combined sample, which was significant (p-value=.029). However, I am not overly
concerned about this for the following reasons - in large samples, small deviations from normality
are often statistically significant and in my experience, the small deviations we are seeing here are
not likely to impact our conclusions, in the sense that non-parametric methods that do not require
normality will lead to the same conclusions.

Looking at the summaries, we see that the sample standard deviations are close. Formal tests
of equal population variances are far from significant. The p-values for Bartlett’s test and Levene’s
test are greater than .4. Thus, the standard ANOVA appears to be appropriate here.

The p-value for the F−test is less than .0001. We would reject H0 at any of the usual test levels
(i.e. .05 or .01). The data suggest that the population mean birth weights differ across smoking
status groups. The Tukey multiple comparisons suggest that the mean birth weights are higher for
children born to mothers that did not smoke during pregnancy.

Descriptive Statistics: Weight

Variable Smoke_Gp N N* Mean SE Mean StDev Minimum Q1 Median
Weight 1 381 0 7.7328 0.0539 1.0523 3.3000 7.0000 7.7000

2 169 0 7.2213 0.0829 1.0778 5.2000 6.3500 7.1000
3 130 0 7.2662 0.0957 1.0909 4.4000 6.5000 7.3000

Variable Smoke_Gp Q3 Maximum
Weight 1 8.4500 11.4000

2 7.8500 10.0000
3 8.0000 9.4000

One-way ANOVA: Weight versus Smoke_Gp

Source DF SS MS F P
Smoke_Gp 2 40.70 20.35 17.90 0.000
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Error 677 769.49 1.14
Total 679 810.20

S = 1.066 R-Sq = 5.02% R-Sq(adj) = 4.74%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev -------+---------+---------+---------+--
1 381 7.733 1.052 (-----*----)
2 169 7.221 1.078 (-------*-------)
3 130 7.266 1.091 (--------*--------)

-------+---------+---------+---------+--
7.20 7.40 7.60 7.80

Pooled StDev = 1.066

Tukey 95% Simultaneous Confidence Intervals
All Pairwise Comparisons among Levels of Smoke_Gp

Individual confidence level = 98.05%

Smoke_Gp = 1 subtracted from:

Smoke_Gp Lower Center Upper -----+---------+---------+---------+----
2 -0.742 -0.512 -0.281 (-------*-------)
3 -0.720 -0.467 -0.213 (-------*--------)

-----+---------+---------+---------+----
-0.60 -0.30 0.00 0.30

Smoke_Gp = 2 subtracted from:

Smoke_Gp Lower Center Upper -----+---------+---------+---------+----
3 -0.246 0.045 0.336 (--------*---------)

-----+---------+---------+---------+----
-0.60 -0.30 0.00 0.30
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