Menarche Data:

The data were entered as N, Freq, and Age as in the notes where N is sample size, Freq is #RM, and Age is the midpoint of the Age interval. Proportion was calculated from these as Freq/N.

Data Display

Row	N	Freq	Age	Proportion
1	376	0	9.21	0.00000
2	200	0	10.21	0.00000
3	93	0	10.58	0.00000
4	120	2	10.83	0.01667
5	90	2	11.08	0.02222
6	88	5	11.33	0.05682
7	105	10	11.58	0.09524
8	111	17	11.83	0.15315
9	100	16	12.08	0.16000
10	93	29	12.33	0.31183
11	100	39	12.58	0.39000
12	108	51	12.83	0.47222
13	99	47	13.08	0.47475
14	106	67	13.33	0.63208
15	105	81	13.58	0.77143
16	117	88	13.83	0.75214
17	98	79	14.08	0.80612
18	97	90	14.33	0.92784
19	120	113	14.58	0.94167
20	102	95	14.83	0.93137
21	122	117	15.08	0.95902
22	111	107	15.33	0.96396
23	94	92	15.58	0.97872
24	114	112	15.83	0.98246
25	1049	1049	17.58	1.00000

We want a plot of proportion vs. age to see the relationship more clearly. Minitab offers an option in Graph > Scatterplot > Simple > Data View > Smoother > Lowess to construct a curve based only on the data with no functional form (such as logs or squares or). I set degree of smoothing to .4 instead of the default .5 in this case for a little better behavior. There are a lot of other smoothers out there, but this is all Minitab offers with scatterplots . The lazy-S or sigmoidal shape is clear from this plot. Of course the proportion cannot be smaller than 0 nor larger than 1 no matter what the Age value, so this is a necessary shape.

To demonstrate how much sense the logistic regression model makes in this case, I computed logit(Proportion)=log $\left(\frac{\text{Proportion}}{1-\text{Proportion}}\right)$ and plotted with a simple regression fit (that is not the line that is fit via maximum likelihood in logistic regression). Minitab will return missing values when Proportion is 0 or 1 (why?).

These data do in fact look fairly linear in the logit scale.

Data formats: In order to fit a formal logistic regression by the methods in the notes, we need to make sure the data are in the correct form. Minitab is a lot more flexible than most packages in how you can structure the data for this analysis. Follow the path Stat > Regression > Binary Logistic Regression to bring up the following box.

Binary Logistic Regression	1	X
C1 N C2 Freq C3 Age C4 Proportion C5 logit(Propc	Response: Success: Success: Failure: Model: Eactors (optional):	Frequency: (optional) Trial: Failure: Trial:
		 V
Select Help		Graphs Options Results Storage QK Cancel

The four buttons at the top define the four formats allowed (you get the same results for all four). If you click the Help button you get a description of the four options. The first is how "raw" data (one line per observation) is entered; the others are summarized forms (the first can be also). The four possibilities for the menarche data appear in the table below

Resp	- Freq I	Form	Succ	- Trial F	Form	Succ	-Failure	Form	Failur	e - Trial	Form
				#			#	#		#	
Age	Resp.	Freq	Age	RM	Ν	Age	RM	~RM	Age	~RM	N
9.21	RM	0	9.21	0	376	9.21	0	376	9.21	376	376
9.21	~RM	376	10.21	0	200	10.21	0	200	10.21	200	200
10.21	RM	0	10.58	0	93	10.58	0	93	10.58	93	93
10.21	~RM	200	10.83	2	120	10.83	2	118	10.83	118	120
10.58	RM	0	11.08	2	90	11.08	2	88	11.08	88	90
10.58	~RM	93	11.33	5	88	11.33	5	83	11.33	83	88
10.83	RM	2	11 58	10	105	11 58	10	95	11 58	95	105
10.83	~RM	118	11.83	17	111	11.83	17	94	11.83	94	111
11 08	RM	2	12 08	16	100	12.08	16	84	12 08	84	100
11.08	~RM	88	12.33	29	93	12.33	29	64	12.33	64	93
11.33	RM	5	12.58	39	100	12.58	39	61	12.58	61	100
11 33	~RM	83	12.00	51	108	12.00	51	57	12.00	57	108
11.50	RM	10	13.08	47	90	12.00	47	52	12.00	52	aq
11.50	~RM	95	13.00	67	106	13.00	67	30	13.00	30	106
11.00	RM	17	13.58	81	105	13.58	81	24	13.50	24	105
11.00	DM	0/	13.00	88	117	13.00	88	24	13.00	24	105
12.08		16	1/ 08	70	08	1/ 08	70	29 10	1/ 08	29 10	08
12.00		Q/	14.00	00	90	14.00	00	19	14.00	19	90
12.00		20	14.55	90 112	120	14.55	90 112	7	14.55	7	120
12.00		29	14.00	05	120	14.00	05	7	14.00	7	120
12.55		20	14.00	117	102	14.00	117	5	14.00	5	102
12.00		59	15.00	107	122	15.00	107	5	15.00	5	122
12.00		51	15.55	02	0/	15.55	02	4	15.55	4	0/
12.00		57	15.00	9Z 110	94 117	15.00	9Z 112	2	15.00	2	94 117
12.00		47	17.60	1040	1040	17.60	1040	2	17.63	2	1040
12.00		47 52	17.50	1049	1049	17.50	1049	0	17.50	0	1049
12 22		5Z 67									
10.00		20									
12.55		29									
12.50		24									
12.00		24									
10.00		20									
13.03		29									
14.00		19									
14.00		19									
14.33		90									
14.33		112									
14.50		113									
14.58		/ 05									
14.83		95									
14.83	~RIVI	/									
15.08	RIVI	117									
15.08	~KIVI	5									
15.33	KIVI	107									
15.33	~KM	4									
15.58	KM	92									
15.58	~KIVI	2									
15.83	KIM	112									
15.83	~KM	2									
17.58	RIM	1049									
17.58	~RM	0									

The first form is a little tricky since Minitab has to decide what is an event (Success) and what is not an event (Failure). Minitab's rule (reported from the help system) is:

Reference event for the response variable

Minitab needs to designate one of the response values as the reference event. Minitab defines the reference event based on the data type:

- For numeric factors, the reference event is the greatest numeric value.
- For date/time factors, the reference event is the most recent date/time.
- For text factors, the reference event is the last in alphabetical order.

You can change the default reference event in the Options subdialog box. To change the event, specify the new event value in the *Event* box.

Other packages have different rules. Minitab is more flexible about all this than most other packages. If I had wanted ~RM to be the event instead of RM, I would enter "~RM" in the box described above.

The data as presented on page 1 are in the second form, so fill in the box as follows:

Binary Logistic Regression	n	
C1 N C2 Freq C2 Are	C Response: C2	Frequency: C3 (optional)
C4 Proportion	• Success: Freq	Trial: N
CS IOGIC(Frope	O Success:	Fajlure:
	○ F <u>a</u> ilure:	Tria <u>l</u> :
	Model:	
	Age	<u>~</u>
	Eactors (optional):	
		× y
		<u>G</u> raphs Options
Select		<u>R</u> esults <u>S</u> torage
Help		<u>O</u> K Cancel

With these results:

Binary Logistic Regression: Freq, N versus Age

Link Function: Logit

Response Information

Variable Value Count Freq Success 2308 Failure 1610 N Total 3918

Logistic Regression Table

 Odds
 95% CI

 Predictor
 Coef
 SE Coef
 Z
 P
 Ratio
 Lower
 Upper

 Constant
 -21.2264
 0.770656
 -27.54
 0.000
 Age
 1.63197
 0.0589509
 27.68
 0.000
 5.11
 4.56
 5.74

Log-Likelihood = -819.652Test that all slopes are zero: G = 3667.180, DF = 1, P-Value = 0.000

Goodness-of-Fit Tests

Chi-Square	DF	P
21.8699	23	0.528
26.7035	23	0.269
6.7833	5	0.237
	Chi-Square 21.8699 26.7035 6.7833	Chi-Square DF 21.8699 23 26.7035 23 6.7833 5

Table of Observed and Expected Frequencies: (See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic)

Value	Suc	cess	Fai		
Group	Observed	Expected	Observed	Expected	Total
1	0	2.8	576	573.2	576
2	9	14.2	382	376.8	391
3	72	64.7	337	344.3	409
4	204	198.7	209	214.3	413
5	338	338.7	79	78.3	417
6	432	435.0	23	20.0	455
7	1253	1253.9	4	3.1	1257

Measures of Association: (Between the Response Variable and Predicted Probabilities)

Pairs	Number	Percent	Summary Measures	
Concordant	3599107	96.9	Somers' D	0.94
Discordant	90351	2.4	Goodman-Kruskal Gamma	0.95
Ties	26422	0.7	Kendall's Tau-a	0.46
Total	3715880	100.0		

Leukemia Data

Data Display

Row	IAG	WBC	Live	LWBC
1	1	75	1	4.31749
2	1	230	1	5.43808
3	1	430	1	6.06379
4	1	260	1	5.56068
5	1	600	0	6.39693
6	1	1050	1	6.95655
7	1	1000	1	6.90776
8	1	1700	0	7.43838
9	1	540	0	6.29157
10	1	700	1	6.55108
11	1	940	1	6.84588
12	1	3200	0	8.07091
13	1	3500	0	8.16052
14	1	5200	0	8.55641
15	1	10000	1	9.21034
16	1	10000	0	9.21034
17	1	10000	0	9.21034
18	0	440	1	6.08677
19	0	300	1	5.70378
20	0	400	0	5.99146
21	0	150	0	5.01064
22	0	900	0	6.80239
23	0	530	0	6.27288
24	0	1000	0	6.90776
25	0	1900	0	7.54961
26	0	2700	0	7.90101
27	0	2800	0	7.93737
28	0	3100	0	8.03916
29	0	2600	0	7.86327
30	0	2100	0	7.64969
31	0	7900	0	8.97462
32	0	10000	0	9.21034
33	0	10000	0	9.21034

Note that the data are not in the summarized form of the previous data set. Here there is one row of data for each individual in the data set. This is the most common structure for data. The data are coded so that IAG=1 for AG+ and IAG=0 for AG-, while Live=0 if pt died in less than a year and Live=1 if pt lived at least one year. We are trying to model probability of living at least one year, and since Minitab uses the largest numerical value as the reference category, this is the coding we want. If we were using JMP-IN, we would reverse the coding on Live since that package uses the lowest numerical value as the event.

In order to fit the desired model in this form, fill in the dialog box as follows:

Binary Logistic Regression	n	
C1 IAG C2 WBC	• Response: Live	Freguency: [
C3 Live C4 LWBC	O Success:	Irial:
	O Su <u>c</u> cess:	Fajlure:
	○ F <u>a</u> ilure:	Tria <u>l</u> :
	<u>M</u> odel:	
	LWBC IAG	
		~
	Eactors (optional):	
	¢	Cranha
Select		<u>R</u> esults <u>S</u> torage
Help		<u>O</u> K Cancel

Binary Logistic Regression: Live versus LWBC, IAG

Link Function: Logit

Response Information

Variable Value Count Live 1 11 (Event) 0 22 Total 33

Logistic Regression Table

					Odds	95	% CI
Predictor	Coef	SE Coef	Z	P	Ratio	Lower	Upper
Constant	5.54335	3.02242	1.83	0.067			
LWBC	-1.10876	0.460948	-2.41	0.016	0.33	0.13	0.81
IAG	2.51956	1.09068	2.31	0.021	12.42	1.46	105.35

Log-Likelihood = -13.416Test that all slopes are zero: G = 15.177, DF = 2, P-Value = 0.001

Goodness-of-Fit Tests

Method	Chi-Square	DF	P
Pearson	19.8094	27	0.839
Deviance	23.0136	27	0.684
Hosmer-Lemeshow	7.0303	8	0.533

Table of Observed and Expected Frequencies: (See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic)

					Gr	oup					
Value 1	1	2	3	4	5	6	7	8	9	10	Total
Obs Exp	0 0.0	0 0.1	0 0.1	1 0.4	0 0.5	1 0.8	1 1.6	3 1.8	1 2.2	4 3.5	11
0											
Obs	3	3	3	3	3	2	3	0	2	0	22
Exp	3.0	2.9	2.9	3.6	2.5	2.2	2.4	1.2	0.8	0.5	
Total	3	3	3	4	3	3	4	3	3	4	33

Measures of Association: (Between the Response Variable and Predicted Probabilities)

Pairs	Number	Percent	Summary Measures	
Concordant	210	86.8	Somers' D	0.74
Discordant	30	12.4	Goodman-Kruskal Gamma	0.75
Ties	2	0.8	Kendall's Tau-a	0.34
Total	242	100.0		