
1 A REVIEW OF CORRELATION AND REGRESSION

1 A Review of Correlation and Regression

SW, Chapter 12

Suppose we select n = 10 persons from the population of college seniors who plan to take the
MCAT exam. Each takes the test, is coached, and then retakes the exam. Let Xi be the pre-
coaching score and let Yi be the post-coaching score for the ith individual, i = 1, 2, · · · , n. There
are several questions of potential interest here, for example: Are Y and X related (associated), and
how? Does coaching improve your MCAT score? Can we use the data to develop a mathematical
model (formula) for predicting post-coaching scores from the pre-coaching scores? These questions
can be addressed using correlation and regression models.

The correlation coefficient is a standard measure of association or relationship between two
features Y and X. Most scientists equate Y and X being correlated to mean that Y and X are
associated, related, or dependent upon each other. However, correlation is only a measure of the
strength of a linear relationship. For later reference, let ρ be the correlation between Y and X
in the population and let r be the sample correlation. I define r below. The population correlation
is defined analogously from population data.

Suppose each of n sampled individuals is measured on two quantitative characteristics called Y
and X. The data are pairs of observations (X1, Y1), (X2, Y2), · · · (Xn, Yn), where (Xi, Yi) is the
(X, Y ) pair for the ith individual in the sample. The sample correlation between Y and X, also
called the Pearson product moment correlation coefficient, is

r =
SXY

SXSY
=

∑
i(Xi − X̄)(Yi − Ȳ )√∑

i(Xi − X̄)2
∑

i(Yi − Ȳ )2
,

where

SXY =
∑n

i=1(Xi − X̄)(Yi − Ȳ )
n− 1

is the sample covariance between Y and X, and SY =
√∑

i(Yi − Ȳ )2/(n− 1) and SX =√∑
i(Xi − X̄)2/(n− 1) are the standard deviations for the Y and X samples. Here are eight

important properties of r:

1. −1 ≤ r ≤ 1.

2. If Yi tends to increase linearly with Xi then r > 0.

3. If Yi tends to decrease linearly with Xi then r < 0.

4. If there is a perfect linear relationship between Yi and Xi with a positive slope then r = +1.

5. If there is a perfect linear relationship between Yi and Xi with a negative slope then r = −1.

6. The closer the points (Xi, Yi) come to forming a straight line, the closer r is to ±1.

7. The magnitude of r is unchanged if either the X or Y sample is transformed linearly (i.e. feet
to inches, pounds to kilograms, Celsius to Fahrenheit).

8. The correlation does not depend on which variable is called Y and which is called X.
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1 A REVIEW OF CORRELATION AND REGRESSION

If r is near ±1, then there is a strong linear relationship between Y and X in the sample.
This suggests we might be able to accurately predict Y from X with a linear equation (i.e. linear
regression). If r is near 0, there is a weak linear relationship between Y and X, which suggests
that a linear equation provides little help for predicting Y from X. The pictures below should help
you develop a sense about the size of r.

Note that r = 0 does not imply that Y and X are not related in the sample. It only implies
they are not linearly related. For example, in the lower right plot on the following set of plots,
r = 0 yet Yi = X2

i .
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Testing that ρ = 0

Suppose you want to test H0 : ρ = 0 against HA : ρ 6= 0, where ρ is the population correlation
between Y and X. This test is usually interpreted as a test of no association, or relationship,
between Y and X in the population. Keep in mind, however, that ρ measures the strength of a
linear relationship.

The standard test of H0 : ρ = 0 is based on the magnitude of r. If we let

ts = r

√
n− 2
1− r2

,

then the test rejects H0 in favor of HA if |ts| ≥ tcrit, where tcrit is the two-sided test critical value
from a t-distribution with df = n−2. The p-value for the test is the area under the t-curve outside
±ts (i.e. two-tailed test p-value).

This test assumes that the data are a random sample from a bivariate normal population
for (X, Y ). This assumption implies that all linear combinations of X and Y , say aX + bY , are
normal. In particular, the (marginal) population frequency curves for X and Y are normal. At a
minimum, you should make boxplots of the X and Y samples to check marginal normality. For
large-sized samples, a plot of Y against X should be roughly an elliptical cloud, with the density
of the points decreasing as the points move away from the center of the cloud.
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1 A REVIEW OF CORRELATION AND REGRESSION

The Spearman Correlation Coefficient

The Pearson correlation r can be highly influenced by outliers in one or both samples. For example,
r ≈ −1 in the plot above. If you delete the one extreme case with the largest X and smallest Y
value then r ≈ 0. The two analyses are contradictory. The first analysis (ignoring the plot) suggests
a strong linear relationship, whereas the second suggests the lack of a linear relationship. I will not
strongly argue that you should (must?) delete the extreme case, but I am concerned about any
conclusion that depends heavily on the presence of a single observation in the data set.

•

• ••
•
••• •

•
•

• ••
•

• ••
•

•••
•

•••• •
••

•• •
•

••
•

•
• • ••
•
•

•
•

•

••

•

•
•

•
••

•

•••
•

•

•
• •• •

• •
•

• ••
•

•
• •

•

•
••

•
•
•

•

••
• • •• •

•••••

•

•
•

•
•
•

••

•
•

•
•

•
• ••

•

• •
•

•
•

• •
• ••
•

•
•••

•
• ••
•

•
•
• •••

•
••

•

•••
• •••

•

••
•

•
•
• ••

••• ••
••

•
•• •

•
•

•

•

•

•
•

•
•
•

•

•
• •••
•

••
• ••

•
•

••
•

• •

•

X

Y

0 2 4 6 8 10

-8
-6

-4
-2

0

Spearman’s rank correlation coefficient rS is a sensible alternative to r when normality
is unreasonable or outliers are present. Most books give a computational formula for rS . I will
verbally describe how to compute rS . First, order the Xis and assign them ranks. Then do the
same for the Yis and replace the original data pairs by the pairs of ranked values. The Spearman
rank correlation is the Pearson correlation computed from the pairs of ranks.

The Spearman correlation rS estimates the population rank correlation coefficient, which
is a measure of the strength of linear relationship between population ranks. The Spearman cor-
relation, as with other rank based methods, is not sensitive to the presence of outliers in the data.
In the plot above, rS ≈ 0 whether the unusual point is included or excluded from the analysis. In
samples without unusual observations and a linear trend, you often find that rS ≈ r.

An important point to note is that the magnitude of the Spearman correlation does not change
if either X or Y or both are transformed (monotonically). Thus, if rS is noticeably greater than r,
a transformation of the data might provide a stronger linear relationship.

Example

Eight patients underwent a thyroid operation. Three variables were measured on each patient:
weight in kg, time of operation in minutes, and blood loss in ml. The scientists were interested in
the factors that influence blood loss.
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1 A REVIEW OF CORRELATION AND REGRESSION

weight time blood loss
44.3 105 503
40.6 80 490
69.0 86 471
43.7 112 505
50.3 109 482
50.2 100 490
35.4 96 513
52.2 120 464

We are using Stata for the computations in this course. As with most packages, there are many
ways to get data into the package. With such a small data set it is reasonable to enter it directly,
but that is usually a fairly awkward way to do it. Another (older) method is to place the data in
a flat text file and use commands to read it in. The method I prefer is to import from an Excel
spreadsheet, since most researchers record data that way. A sketch of these methods follows:

Direct: Follow the menu path in Stata of Data -> Data Editor to bring up the spreadsheet-
like Stata Editor. You have to enter data before you can name columns.

Flat Text File: Put the data into a flat text file (just the numbers), named say
C:\biostat\bloodloss.txt. In the Stata Command window type

infile weight time loss using "c:\biostat\bloodloss.txt"

This names the variables while reading them in. The ” marks let you use modern path
structures in the name (spaces, etc.). There also are options under File -> Import to do
this.

Excel Import: Put the data into an Excel spreadsheet with names in the first row of
columns. You would think you could find Excel spreadsheet in File -> Import but no
such luck. Open the spreadsheet, highlight the data (or the whole sheet), follow the menu
path in Stata of Data -> Data Editor and paste into the data editor.

There are other ways to get data into Stata. I use a program named DBMSCopy to import
SAS and Splus datasets into Stata. The easiest method I have found is the Excel Import above. No
matter how you get it in, do follow the path File -> Save As to save a copy of your data in Stata
format (it will be a .dta file). To get a scatterplot matrix of the variables, follow the menu path
Graphics -> Easy Graphs -> Scatterplot Matrix. This will bring up a dialog box in which
you enter variable names. Note that there is a Variables window - you can just click variable names
there and they will be entered in the dialog box. Also note when you click Submit on the dialog
box, commands are recorded in the Review window. If you click on one of those commands, it is
entered in the Stata Command window where you can edit it and submit it (by hitting the Enter
key) without all the clicking through menus. The command line from the scatterplot matrix is
graph matrix weight time loss.

We also want to calculate the correlations and p-values, which we can do by following the menu
path

Statistics -> Summaries, tables & tests -> Summary statistics -> Pairwise
correlations
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1 A REVIEW OF CORRELATION AND REGRESSION

and fill in the dialog box (all you need to do here is to click the box to request significance levels).
The command line generated by this is pwcorr, sig. The results of these two operations are on the
next page.

| weight time loss
-------------+---------------------------

weight | 1.0000
|
|

time | -0.0663 1.0000
| 0.8761
|

loss | -0.7725 -0.1073 1.0000
| 0.0247 0.8003
|

In order to get the Spearman rank correlation coefficients in the same form, follow the menu
path

Statistics -> Summaries, tables & tests -> Nonparametric tests of hypotheses ->
Spearman’s rank correlation

or use the command line spearman, stats(rho p) to get the following

+-----------------+
| Key |
|-----------------|
| rho |
| Sig. level |
+-----------------+

| weight time loss
-------------+---------------------------

weight | 1.0000
|
|

time | 0.2857 1.0000
| 0.4927
|

loss | -0.8743 -0.1557 1.0000
| 0.0045 0.7128
|
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1 A REVIEW OF CORRELATION AND REGRESSION

Comments:

1. (Pearson correlations). Blood loss tends to decrease linearly as weight increases, so r should
be negative. The output gives r = −.77. There is not much of a linear relationship between
blood loss and time, so r should be close to 0. The output gives r = −.11. Similarly, weight
and time have a weak negative correlation, r = −.07.

2. The Pearson and Spearman correlations are fairly consistent here. Only the correlation
between blood loss and weight is significant at the α = 0.05 level (the p-values are given
in the rightmost column).

3. Another measure of association available in Stata is Kendall’s τ (tau, not given here).

Simple Linear Regression

In linear regression, we are interested in developing a linear equation that best summarizes the
relationship in a sample between the response variable Y and the predictor variable (or
independent variable) X. The equation is also used to predict Y from X. The variables are not
treated symmetrically in regression, but the appropriate choice for the response and predictor is
usually apparent.

Linear Equation

If there is a perfect linear relationship between Y and X then Y = β0 + β1X for some β0 and β1,
where β0 is the Y-intercept and β1 is the slope of the line. Two plots of linear relationships are
given below. The left plot has β0 = 5 and β1 = 3. The slope is positive, which indicates that Y
increases linearly when X increases. The right plot has β0 = 7 and β1 = −2. The slope is negative,
which indicates that Y decreases linearly when X increases.
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The line Y = 5 + 3X
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The line Y = 7 - 2X
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Least Squares

Data rarely, if ever, fall on a straight line. However, a straight line will often describe the trend
for a set of data. Given a data set (Xi, Yi), i = 1, ..., n with a linear trend, what linear equation
“best” summarizes the observed relationship between Y and X? There is no universally accepted
definition of “best”, but many researchers accept the Least Squares line (LS line) as a reasonable
summary.

Mathematically, the LS line chooses the values of β0 and β1 that minimize

n∑
i=1

{Yi − (β0 + β1Xi)}2

over all possible choices of β0 and β1. These values can be obtained using calculus. Rather than
worry about this calculation, note that the LS line makes the sum of squared deviations between
the responses Yi and the line as small as possible, over all possible lines. The LS line typically goes
through “the heart” of the data, and is often closely approximated by an eye-ball fit to the data.

•

•
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•
•
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The equation of the LS line is
Ŷ = b0 + b1X

where the intercept b0 satisfies
b0 = Ȳ − b1X̄

and the slope is

b1 =
∑

i(Yi − Ȳ )(Xi − X̄)∑
i(Xi − X̄)2

= r
SY

SX
.

As before, r is the Pearson correlation between Y and X, whereas SY and SX are the sample
standard deviations for the Y and X samples, respectively. The sign of the slope and the sign
of the correlation are identical (i.e. + correlation implies + slope).
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1 A REVIEW OF CORRELATION AND REGRESSION

Special symbols b0 and b1 identify the LS intercept and slope to distinguish the LS line from
the generic line Y = β0 + β1X. You should think of Ŷ as the fitted value at X, or the value of
the LS line at X.

Stata Implementation

A least squares fit of a line is carried out in Stata using the menu path Statistics -> Linear
regression and related -> Linear regression (or the regress command). For the thyroid
operation data with Y = Blood loss in ml and X = Weight in kg, we regress blood loss on the
patients’ weight by filling in the dialog box as below (or using the command regress loss weight),
and obtain the following output

. regress loss weight
Source | SS df MS Number of obs = 8

-------------+------------------------------ F( 1, 6) = 8.88
Model | 1207.45125 1 1207.45125 Prob > F = 0.0247

Residual | 816.048753 6 136.008125 R-squared = 0.5967
-------------+------------------------------ Adj R-squared = 0.5295

Total | 2023.5 7 289.071429 Root MSE = 11.662
------------------------------------------------------------------------------

loss | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

weight | -1.300327 .4364156 -2.98 0.025 -2.368198 -.2324567
_cons | 552.442 21.44088 25.77 0.000 499.9781 604.906

------------------------------------------------------------------------------

For the thyroid operation data with Y = Blood loss in ml and X = Weight in kg, the LS line
is Ŷ = 552.44 − 1.30X, or Predicted Blood Loss = 552.44 − 1.30 Weight. For an 86kg individual,
the Predicted Blood Loss = 552.44 − 1.30 ∗ 86 = 440.64ml. The LS regression coefficients for this
model are interpreted as follows. The intercept b0 is the predicted blood loss for a 0 kg individual.
The intercept has no meaning here. The slope b1 is the predicted increase in blood loss for each
additional kg of weight. The slope is -1.30, so the predicted decrease in blood loss is 1.30 ml for
each increase of 1 kg in weight.
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1 A REVIEW OF CORRELATION AND REGRESSION

Any fitted linear relationship holds only approximately and does not necessarily extend outside
the range of the data. In particular, nonsensical predicted blood losses of less than zero are obtained
at very large weights outside the range of data.

To obtain a plot of the line superimposed on the data, a general- purpose approach is as follows:

. predict yhat,xb

. twoway (scatter loss weight) (line yhat weight,sort), title(Blood Loss Data)
> subtitle(Fitted Regression Line and Data)

The first command puts the predicted values in a new variable named yhat. Everything can be
accomplished through dialog boxes if you forget some of the syntax.

ANOVA Table for Regression

The LS line minimizes
n∑

i=1

{Yi − (β0 + β1Xi)}2

over all choices for β0 and β1. Inserting the LS estimates b0 and b1 into this expression gives

Residual Sums of Squares =
n∑

i=1

{Yi − (b0 + b1Xi)}2.

Several bits of notation are needed. Let

Ŷi = b0 + b1Xi

be the predicted or fitted Y−value for an X−value of Xi and let ei = Yi− Ŷi. The fitted value Ŷi

is the value of the LS line at Xi whereas the residual ei is the distance that the observed response
Yi is from the LS line. Given this notation,

Residual Sums of Squares = Res SS =
n∑

i=1

(Yi − Ŷi)2 =
n∑

i=1

e2
i .

Here is a picture to clarify matters:
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residual

X-val

Response

Fitted

The Residual SS, or sum of squared residuals, is small if each Ŷi is close to Yi (i.e. the line
closely fits the data). It can be shown that

Total SS in Y =
n∑

i=1

(Yi − Ȳ )2 ≥ Res SS ≥ 0.

Also define

Regression SS = Reg SS = Total SS − Res SS = b1

n∑
i=1

(Yi − Ȳ )(Xi − X̄).

The Total SS measures the variability in the Y−sample. Note that

0 ≤ Regression SS ≤ Total SS.

The percentage of the variability in the Y− sample that is explained by the linear rela-
tionship between Y and X is

R2 = coefficient of determination =
Reg SS
Total SS

.

Given the definitions of the Sums of Squares, we can show 0 ≤ R2 ≤ 1 and

R2 = square of Pearson correlation coefficient = r2.

To understand the interpretation of R2, at least in two extreme cases, note that

Reg SS = Total SS ⇔ Res SS = 0
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1 A REVIEW OF CORRELATION AND REGRESSION

⇔ all the data points fall on a straight line
⇔ all the variability in Y is explained by the linear relationship with X

(which has variation)
⇔ R2 = 1. (see the picture below)
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Furthermore,

Reg SS = 0 ⇔ Total SS = Res SS
⇔ b1 = 0
⇔ LS line is Ŷ = Ȳ

⇔ none of the variability in Y is explained by a linear relationship
⇔ R2 = 0.
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LS line with slope zero and intercept of average Y .

Each Sum of Squares has a corresponding df (degrees of freedom). The Sums of Squares and
df are arranged in an analysis of variance (ANOVA) table:

Source df SS MS
Regression 1
Residual n− 2

Total n− 1

The Total df is n − 1. The Residual df is n minus the number of parameters (2) estimated
by the LS line. The Regression df is the number of predictor variables (1) in the model. A Mean
Square is always equal to the Sum of Squares divided by the df . SW use the following notation for
the Residual MS: s2

Y |X = Resid(SS)/(n− 2).

Brief Discussion of Stata Output for Blood Loss Problem

1. Identify the fitted line: Blood Loss = 552.44 - 1.30 Weight (i.e. b0 = 552.44 and b1 = −1.30).

2. Locate the Analysis of Variance Table. In Stata, the Regression SS is called the Model SS.
More on this later.

3. Locate Parameter Estimates Table. More on this later.

4. Note that R2 = .5967 = (−.77247)2 = r2.
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2 THE LINEAR REGRESSION MODEL

2 The Linear Regression Model

The following statistical model is assumed as a means to provide error estimates for the LS line,
regression coefficients, and predictions. Assume that the data (Xi, Yi), i = 1, ..., n are a sample of
(X, Y ) values from the population of interest, and

Visual representation of regression model with population regression line

X

Y

1 2 3 4 5

6
8

10
12

14

1. The mean in the population of all responses Y at a given X value (called µY |X by SW) falls
on a straight line, β0 + β1X, called the population regression line.

2. The variation among responses Y at a given X value is the same for each X, and is denoted
by σ2

Y |X .

3. The population of responses Y at a given X is normally distributed.

4. The pairs (Xi, Yi) are a random sample from the population. Alternatively, we can think that
the Xis were fixed by the experimenter, and that the Yi are random responses at the selected
predictor values.

The model is usually written in the form

Yi = β0 + β1Xi + εi

(i.e. Response = Mean Response + Residual), where the εis are, by virtue of assumptions 2, 3 and
4, independent normal random variables with mean 0 and variance σ2

Y |X . The picture below might
help you visualize this. Note that the population regression line is unknown, and is estimated from
the data using the LS line.
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2 THE LINEAR REGRESSION MODEL

Visual representation of population regression model notation
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X_i

Y_i

epsilon_i

Back to the Data

There are three unknown population parameters in the model: β0, β1 and σ2
Y |X . Given the data,

the LS line
Ŷ = b0 + b1X

estimates the population regression line β0+β1X. The LS line is our best guess about the unknown
population regression line. Here b0 estimates the intercept β0 of the population regression line and
b1 estimates the slope β1 of the population regression line.

The ith observed residual ei = Yi− Ŷi, where Ŷi = b0 +b1Xi is the ith fitted value, estimates
the unobservable residual εi. ( εi is unobservable because β0 and β1 are unknown.) The Residual
MS from the ANOVA table is used to estimate σ2

Y |X :

s2
Y |X = Res MS =

Res SS
Res df

=
∑

i(Yi − Ŷi)2

n− 2
.

CI and Tests for β1

A CI for β1 is given b1 ± tcritSEb1 , where the standard error of b1 under the model is

SEb1 =
sY |X√∑

i(Xi − X̄)2
,

and where tcrit is the appropriate critical value for the desired CI level from a t−distribution with
df =Res df .
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2 THE LINEAR REGRESSION MODEL

To test H0 : β1 = β1,0 (a given value) against HA : β1 6= β1,0, reject H0 if |ts| ≥ tcrit, where

ts =
b1 − β1,0

SEb1

,

and tcrit is the t−critical value for a two-sided test, with the desired size and df =Res df . Alterna-
tively, you can evaluate a p-value in the usual manner to make a decision about H0.

The parameter estimates table in Stata gives the standard error, t−statistic, p-value for testing
H0 : β1 = 0, and a 95% CI for β1. Analogous summaries are given for the intercept, but these are
typically of less interest.

Testing β1 = 0

Assuming the mean relationship is linear, consider testing H0 : β1 = 0 against HA : β1 6= 0. This
test can be conducted using a t-statistic, as outlined above, or with an ANOVA F−test, as outlined
below.

For the analysis of variance (ANOVA) F -test, compute

Fs =
Reg MS
Res MS

and reject H0 when Fs exceeds the critical value (for the desired size test) from an F−table with
numerator df = 1 and denominator df = n − 2; see SW, page 654. The hypothesis of zero slope
(or no relationship) is rejected when Fs is large, which happens when a significant portion of the
variation in Y is explained by the linear relationship with X. Stata gives the F−statistic and
p-value with the ANOVA table output.

The p-values from the t−test and the F−test are always equal. Furthermore this p-value is
equal to the p-value for testing no correlation between Y and X, using the t−test described earlier.
Is this important, obvious, or disconcerting?

A CI for the Population Regression Line

I can not overemphasize the power of the regression model. The model allows you to estimate the
mean response at any X value in the range for which the model is reasonable, even if little or no
data is observed at that location.

We estimate the mean population response among individuals with X = Xp

µp = β0 + β1Xp,

with the fitted value, or the value of the least squares line at Xp:

Ŷp = b0 + b1Xp.

Xp is not necessarily one of the observed Xis in the data. To get a CI for µp, use Ŷp ± tcritSE(Ŷp),
where the standard error of Ŷp is

SE(Ŷp) = sY |X

√
1
n

+
(Xp − X̄)2∑
i(Xi − X̄)2

.

The t−critical value is identical to that used in the subsection on CI for β1.
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2 THE LINEAR REGRESSION MODEL

CI for Predictions

Suppose a future individual (i.e. someone not used to compute the LS line) has X = Xp. The best
prediction for the response Y of this individual is the value of the least squares line at Xp:

Ŷp = b0 + b1Xp.

To get a CI (prediction interval) for an individual response, use Ŷp ± tcritSEpred(Ŷp), where

SEpred(Ŷp) = sY |X

√
1 +

1
n

+
(Xp − X̄)2∑
i(Xi − X̄)2

,

and tcrit is identical to the critical value used for a CI on β1.
For example, in the blood loss problem you may want to estimates the blood loss for an 50kg

individual, and to get a CI for this prediction. This problem is different from computing a CI for
the mean blood loss of all 50kg individuals!

Comments

1. The prediction interval is wider than the CI for the mean response. This is reasonable
because you are less confident in predicting an individual response than the mean response
for all individuals.

2. The CI for the mean response and the prediction interval for an individual response become
wider as Xp moves away from X̄. That is, you get a more sensitive CI and prediction interval
for Xps near the center of the data.

A Further Look at the Blood Loss Data using Stata

We obtain a prediction interval for an individual and confidence intervals for mean blood loss in
Stata as follows (but note that there are a lot of ways to do this). In a separate Stata data set
we create a variable that contains the weight values at which we would like to predict blood loss.
This is done either with the input command or (preferably) using the data editor, an Excel-like
spreadsheet utility. We illustrate the use of input. We desire predictions at weights of 30, 35, 40,
45, 50, 55, 60, 65, 70, and 75 kg. Examine the following Stata code.

clear
input weight
30
35
40
45
50
55
60
65
70
75
end
save weight.dta
use bloodloss
append using weight
regress loss weight
predict loss_hat,xb
predict se_line, stdp
predict se_pred, stdf
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2 THE LINEAR REGRESSION MODEL

generate lci=loss_hat-invttail(6,0.025)*se_line
generate uci=loss_hat+invttail(6,0.025)*se_line
generate lpi=loss_hat-invttail(6,0.025)*se_pred
generate upi=loss_hat+invttail(6,0.025)*se_pred
graph twoway (scatter loss weight) (line loss_hat weight) ///

(line lci weight,sort)(line uci weight,sort) ///
(line lpi weight,sort)(line upi weight, sort) ///
, title(Blood Loss Data) subtitle(CI for Line and Prediction Int.)

The above commands create a new data set called weight, append those weight values to the
bloodloss data set (leaving values of weight and time missing) perform regression using only the
original data set (cases with missing values of X or Y are discarded), and then save the predicted
values Ŷp (fitted values on the regression line) for each value of the variable weight as well as the
standard errors for the fitted line, SE(Ŷp), and standard errors for prediction, SEpred(Ŷp). The
confidence interval for the line and prediction interval is computed and plotted. After this program
is run (from a do-file) the data set looks as follows.

. list,clean
weight time loss loss_hat se_line se_pred lci uci lpi upi

1. 44.3 105 503 494.8375 4.46279 12.48698 483.9175 505.7576 464.283 525.392
2. 40.6 80 490 499.6487 5.295104 12.80805 486.6921 512.6054 468.3086 530.9889
3. 69 86 471 462.7195 9.965039 15.33982 438.3359 487.103 425.1843 500.2546
4. 43.7 112 505 495.6177 4.569383 12.52547 484.4369 506.7986 464.969 526.2665
5. 50.3 109 482 487.0356 4.222673 12.40319 476.703 497.3681 456.686 517.3851
6. 50.2 100 490 487.1656 4.213473 12.40006 476.8556 497.4756 456.8237 517.5074
7. 35.4 96 513 506.4104 6.947425 13.57479 489.4107 523.4102 473.1941 539.6267
8. 52.2 120 464 484.5649 4.475415 12.4915 473.614 495.5159 453.9994 515.1306
9. 30 . . 513.4322 8.954061 14.70317 491.5224 535.342 477.4548 549.4095
10. 35 . . 506.9306 7.088681 13.64762 489.5852 524.2759 473.536 540.3251
11. 40 . . 500.4289 5.463197 12.87846 487.061 513.7969 468.9165 531.9413
12. 45 . . 493.9273 4.355063 12.44888 483.2708 504.5838 463.466 524.3886
13. 50 . . 487.4257 4.196375 12.39426 477.1575 497.6938 457.098 517.7533
14. 55 . . 480.924 5.076955 12.71942 468.5012 493.3469 449.8008 512.0474
15. 60 . . 474.4224 6.592747 13.39673 458.2905 490.5543 441.6418 507.203
16. 65 . . 467.9207 8.406906 14.37652 447.3498 488.4917 432.7427 503.0988
17. 70 . . 461.4191 10.36392 15.60189 436.0595 486.7787 423.2427 499.5956
18. 75 . . 454.9175 12.39631 17.01989 424.5848 485.2502 413.2713 496.5636

40
0

45
0

50
0

55
0

30 40 50 60 70 80
weight

loss Linear prediction
lci uci
lpi upi

CI for Line and Prediction Int.
Blood Loss Data
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2 THE LINEAR REGRESSION MODEL

Given the model Blood Loss = β0 + β1 Weight +ε:

• The LS line is: Predicted Blood Loss = 552.442 - 1.30 Weight.

• The R2 is .597 (i.e. 59.7%); see Lecture 1.

• The F−statistic for testing H0 : β1 = 0 is Fobs = 8.88 with a p − value = .0247. The Error
MS is s2

Y |X = 136.008; see ANOVA table.

• The Parameter Estimates table gives b0 and b1, their standard errors, t−statistics and p-
values for testing H0 : β0 = 0 and H0 : β1 = 0. The t−test and F− test p-values for testing
that the slope is zero are identical.

• Prediction and CI: The estimated average blood loss for all 50kg patients is 552.442−1.30033∗
50 = 487.43. We are 95% confident that the mean blood loss of all 50kg patients is between
(approximately) 477 and 498 ml. A 95% prediction interval for the blood loss of a single 50
kg person is less precise (about 457 to 518 ml).

As a summary we might say that weight is important for explaining the variation in blood loss.
In particular, the estimated slope of the least squares line (Predicted Blood loss = 552.442 - 1.30
Weight) is significantly different from zero (p-value = .0247), with weight explaining approximately
60% (59.7%) of the variation in blood loss for this sample of 8 thyroid operation patients.

Checking the regression model

A regression analysis is never complete until the assumptions of the model have been checked.
In addition, you need to evaluate whether individual observations, or groups of observations, are
unduly influencing the analysis. A first step in any analysis is to plot the data. The plot provides
information on the linearity and constant variance assumption. For example, the data plot below
shows a linear relationship with roughly constant variance.

In addition to plotting the data, a variety of methods for checking models are based on plots of
the residuals, ei = Yi− Ŷi (i.e. Observed − Fitted). The command rvpplot in Stata plots the ei

against the predictor values Xi. Alternatively (and equivalently for simple linear regression), the
command rvfplot plots ei against the fitted values Ŷi, as illustrated in the plots below. Regardless
of which you use, the residual plot should exhibit no systematic dependence of the sign or the
magnitude of the residuals on the fitted values.
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The real power of this plot (ei against Ŷi) is with multiple predictor problems (multiple re-

gression). For simple linear regression, the information in this plot is similar to the information
in the original data plot, except that the residual plot eliminates the effect of the trend on your
perceptions of model adequacy.

The following plots show how inadequacies in the data plot appear in a residual plot.
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The first plot (above) shows a roughly linear relationship between Y and X with non-constant
variance. The residual plot shows a megaphone shape rather than the ideal horizontal band. A
possible remedy is a weighted least squares analysis to handle the non-constant variance, or to
transform Y to stabilize the variance. Transforming the data may destroy the linearity.
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The next plot (above) shows a nonlinear relationship between Y and X. The residual plot
shows a systematic dependence of the sign of the residual on the fitted value. A possible remedy is
to transform the data.
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The last plot (above) shows an outlier. This point has a large residual. A sensible approach is
to refit the model after deleting the case and see if any conclusions change.

Checking Normality

The normality assumption can be evaluated with a boxplot or a normal quantile plot of the residuals
(Stata command graph [residuals], box and qnorm). A formal test of normality using the residuals
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2 THE LINEAR REGRESSION MODEL

can be based on the Wilk-Shapiro test (discussed in last semester’s lab) using the Stata command
swilk.

Checking Independence

Diagnosing dependence among observations usually requires some understanding of the mechanism
that generated the data. There are a variety of graphical and inferential tools for checking inde-
pendence for data collected over time (called a time series). The easiest thing to do is plot the ri

against time index and look for any suggestive patterns.

Outliers

Outliers are observations that are poorly fitted by the regression model. The response for an outlier
is far from the fitted line, so outliers have large positive or negative values of the residual ei.

What do you do with outliers? Outliers may be due to incorrect recordings of the data or
failure of the measuring device, or indications or a change in the mean or variance structure for
one or more cases. Incorrect recordings should be fixed if possible, but otherwise deleted from the
analysis.

Routine deletion of outliers from the analysis is not recommended. This practice can have a
dramatic effect on the fit of the model and the perceived precision of parameter estimates and
predictions. Analysts who routinely omit outliers without cause tend to overstate the significance
of their findings and get a false sense of precision in their estimates and predictions. At the very
least, a data analyst should repeat the analysis with and without the outliers to see whether any
substantive conclusions are changed.

Influential observations

Certain data points can play a very important role in determining the position of the LS line. These
data points may or may not be outliers. For example, the observation with Y > 45 in the first
plot below is an outlier relative to the LS fit. The extreme observation in the second plot has a
very small ei. Both points are highly influential observations - the LS line changes dramatically
when these observations are deleted. The influential observation in the second plot is not an outlier
because its presence in the analysis determines that the LS line will essentially pass through it! In
these plots the solid line is the LS line from the full data set, whereas the dashed line is the LS line
after omitting the unusual point.
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A standard measure of the influence that individual cases have on the LS line is called Cook’s
Distance, which is available as predict cooksd, cooksd for example. For simple linear regression
most influential cases can be easily spotted by carefully looking at the data plot. If you identify
cases that you suspect might be influential, you should hold them out (individually) and see if any
important conclusions change. If so, you need to think hard about whether the cases should be
included or excluded from the analysis. We will obtain and interpret Cook’s distances later.

A Final Look at the Blood Loss Data

We create various diagnostic plots and perform the Shapiro-Wilk test of normality on the residuals
using the Stata commands

use bloodloss
regress loss weight
predict res, r
swilk r
graph box r, saving(boxplot)
qnorm r, saving(probplot)
rvfplot, saving(respredplot)
rvpplot weight, saving(resweightplot)
graph combine boxplot.gph probplot.gph respredplot.gph resweightplot.gph, saving(all)

Residual plots for the blood loss problem follow. Do we see any marked problems with influential

cases, outliers, or non-normality? Also, go back in the notes and look at the data plot.
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The results of the Shapiro-Wilk normality test on the residuals:

Shapiro-Wilk W test for normal data
Variable | Obs W V z Prob>z

-------------+-------------------------------------------------
res | 8 0.84852 2.110 1.328 0.09204
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3 Transformations in Regression

Simple linear regression is appropriate when the scatterplot of Y against X show a linear trend.
In many problems, non-linear relationships are evident in data plots. Linear regression techniques
can still be used to model the dependence between Y and X, provided the data can be transformed
to a scale where the relationship is roughly linear. In the ideal world, theory will suggest an ap-
propriate transformation. In the absence of theory one usually resorts to empirical model building.
Polynomial models are another method for handling nonlinear relationships.

I will suggest transformations that you can try if the trend in your scatterplot has one of the
following functional forms. The responses are assumed to be non-negative (in some cases strictly
positive) in all cases.
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(b) Y as a Positive Exponential of X
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(b) Y as a Negative Exponential of X

The functional relationship between Y and X in (a) is given by Y = β0X
β1 , that is Y is related

to a power of X, where the power is typically unknown. For the left plot, β1 > 0 whereas β1 < 0 for
the plot on the right. For either situation, the logarithm of Y is linearly related to the logarithm
of X (regardless of the base):

log(Y ) = log(β0) + β1log(X).

You should consider a simple linear regression of Y ′ = log(Y ) on X ′ = log(X).
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The functional relationship between Y and X in (b) is given by Y = β0 exp(β1X), that is Y is
an exponential function of X. For the plot on the left, β1 > 0 whereas β1 < 0 for the plot on the
right. In either situation, the natural logarithm of Y is linearly related to X:

loge(Y ) = loge(β0) + β1X.

You should consider a simple linear regression of Y ′ = loge(Y ) on X. Actually, the base of the
logarithm is not important here either.
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(c) Y as a Logarithm of X
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(d) Y as a Reciprocal of X
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(d) Y as a Reciprocal of X

The functional relationship between Y and X in (c) is given by Y = β0 + β1 log(X), that is Y
is an logarithmic function of X. For the plot on the left, β1 > 0 whereas β1 < 0 for the plot on the
right. In each situation, consider a simple linear regression of Y on X ′ = log(X).

The functional relationship between Y and X in (d) is

Y = β0 + β1
1
X

.

Hence, consider a simple linear regression of Y on X ′ = 1/X. Note that each plot in (d) has a
horizontal asymptote of β0.
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In most problems, the trend or signal will be buried in a considerable amount of noise, or
variability, so the best transformation may not be apparent. If two or more transformations are
suggested try all of them and see which is best - look at diagnostics from the various fits rather
than (meaningless) summaries such as R2. In situations where a logarithmic transformation is
suggested, you might try a square root transformation as well. It often does make a considerable
difference in the quality of the fit whether you transform Y only, X only, or both. There are more
organized schemes for choosing transformations, but this sort of trial and error is the most common
practice. Note that the functional forms (a) - (d), while probably the most frequently encountered,
are not at all the only ones used.

The need to transform is sometimes much more apparent in a plot of the residuals against the
predicted values from a “linear fit” of the original data because you tend not to perceive subtle
deviations from linearity. The Wind Speed example below illustrates this.

Transformations also can help to control influential values and outliers (recall that an outlying
X-value can cause that point to exert undue influence on the fit). Functions such as log have the
effect of bringing outlying values much closer to the rest of the data. The Brain Weights vs. Body
Weights example below illustrates this. When I see a variable with a highly skewed distribution, I
usually try transforming it to make it more symmetric. This can work both ways, of course - you
can make a nice symmetrically distributed variable skewed by transforming it.

Computing Predictions

Transforming the response to a new scale causes no difficulties if you wish to make predictions on
the original scale. For example, suppose you fit a linear regression of loge(Y ) on X. The fitted
values satisfy ̂loge(Y ) = b0 + b1X.

The predicted response Yp for an individual with X = Xp is obtained by first getting the predicted
value for loge(Yp): ̂loge(Yp) = b0 + b1Xp.

Our best guess for Yp is obtained by exponentiating our prediction for loge(Yp):

Ŷp = exp( ̂loge(Yp)) = exp(b0 + b1Xp).

The same idea can be used to get prediction intervals for Yp from a prediction interval for loge(Yp)
(just transform the lower and upper confidence limits).

Other transformations on Y are handled analogously. For example, how do you predict Y using
a simple linear regression with 1/Y as the selected response?

Example of Transformations: Wind Speed Data

A research engineer is investigating the use of a windmill to generate electricity. She has collected
data on the DC output from the windmill and the corresponding wind velocity. She wants to
develop a model that explains the dependence of the DC output on wind velocity. The data were
read into Stata and plotted.
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3 TRANSFORMATIONS IN REGRESSION

. list speed dc,clean
speed dc

1. 5 1.582
2. 6 1.822
3. 3.4 1.057
4. 2.7 .5
5. 10 2.236
6. 9.7 2.386
7. 9.55 2.294
8. 3.05 .558
9. 8.15 2.166
10. 6.2 1.866
11. 2.9 .653
12. 6.35 1.93
13. 4.6 1.562
14. 5.8 1.737
15. 7.4 2.088
16. 3.6 1.137
17. 7.85 2.179
18. 8.8 2.112
19. 7 1.8
20. 5.45 1.501
21. 9.1 2.303
22. 10.2 2.31
23. 4.1 1.194
24. 3.95 1.144
25. 2.45 .123
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DC Output vs. Wind Speed

. regress dc speed
Source | SS df MS Number of obs = 25

-------------+------------------------------ F( 1, 23) = 160.26
Model | 8.92961408 1 8.92961408 Prob > F = 0.0000

Residual | 1.28157328 23 .055720577 R-squared = 0.8745
-------------+------------------------------ Adj R-squared = 0.8690

Total | 10.2111874 24 .42546614 Root MSE = .23605
------------------------------------------------------------------------------

dc | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

speed | .2411489 .0190492 12.66 0.000 .2017426 .2805551
_cons | .1308752 .1259894 1.04 0.310 -.1297537 .3915041

------------------------------------------------------------------------------
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3 TRANSFORMATIONS IN REGRESSION

The data plot shows a strong linear trend, but the relationship is nonlinear. If I ignore the
nonlinearity and fit a simple linear regression model, I get

Predicted DC Output = .1309 + .2411 Wind Speed.

Although the R2 from this fit is high, R2 = .875, I am unhappy with the fit of the model. The plot
of the residuals against the fitted values clearly points out the inadequacy:
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Residual Plots

The rvfplot shows that the linear regression systematically underestimates the DC output for
wind speeds in the middle, and overestimates the DC output for low and high wind speeds. This
model is not acceptable for making predictions - one can and should do better!

The original data plot indicates that DC output approaches an upper limit of about 2.5 amps
as the wind speed increases. Given this fact, and the trend in the plot, I decided to use the inverse
of wind speed as a predictor of DC output. Another reasonable first step would be a logarithmic
transformation of wind speed but this function steadily increases without approaching a finite limit.

Aside: The above plot is not the same as in the previous notes or in the lab. I decided to illustrate
further the flexibility of Stata and the power of do files. We obtained exactly those four plots
in Minitab if we requested the 4-in-1 plots in regression. You might want to replace the histogram
with a boxplot – the modification is simple. The do file statements to produce the plot after
running the regression command are:
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3 TRANSFORMATIONS IN REGRESSION

predict residual, r
quietly qnorm residual, saving(probplot, replace) nodraw ///

title(Normal Prob. Plot of Residuals)
quietly rvfplot, saving(respredplot, replace) nodraw ///

title(Residuals vs. Fitted Values)
quietly hist residual, freq saving(hist, replace) nodraw ///

title(Histogram of the Residuals)
generate obs_order = _n
quietly twoway connect residual obs_order, saving(obs_order, replace) ///

nodraw title(Residuals vs. Order of the Data)
drop obs_order
graph combine probplot.gph respredplot.gph hist.gph obs_order.gph, ///

title(Residual Plots)

This program will fail if the variable residual exists before you run it (that can be fixed).

A plot of DC output against one over the wind speed is fairly linear:
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DC Output vs. Reciprocal of Speed

This suggests that a simple linear regression fit on this scale is appropriate. Note that DC
output is a decreasing function of one over the wind speed.

. regress dc speed_inv
Source | SS df MS Number of obs = 25

-------------+------------------------------ F( 1, 23) = 1128.43
Model | 10.0072178 1 10.0072178 Prob > F = 0.0000

Residual | .203969527 23 .00886824 R-squared = 0.9800
-------------+------------------------------ Adj R-squared = 0.9792

Total | 10.2111874 24 .42546614 Root MSE = .09417
------------------------------------------------------------------------------

dc | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

speed_inv | -6.934547 .2064335 -33.59 0.000 -7.361588 -6.507507
_cons | 2.97886 .0449023 66.34 0.000 2.885973 3.071748

------------------------------------------------------------------------------
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The LS regression line is

Predicted DC output = 2.9789− 6.9345
1

Wind speed
.

The residual plots show left skewness, but no serious outliers. The Shapiro-Wilk test has a p-value
of 0.08. The transformation appears to work well, although if I tried harder I might be able to
symmetrize the residuals a little better (I would start by transforming Y instead of X). I don’t
think it is worth the trouble here, though. It is fairly clear by examining the scatter plot (the one
corresponding to the actual regression we did!) that there are no highly influential points here.
Still, we really should check the Cook’s D values as a routine matter. Since 1 is a common cutoff
for Cook’s D, and no values stand out much, we have little to be concerned over.
. predict cooksd,cooksd
. gene obs_order = _n
. twoway spike cooksd obs_order
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3 TRANSFORMATIONS IN REGRESSION

All our theory and modelling applies in the linear scale (the transformed problem where we fit
output to 1/speed). We really want to see how well things appear to work in the original scale,
though. The following statements accomplish that.

. regress dc speed_inv

. predict pred_dc,xb

. twoway (scatter dc speed_inv) (line pred_dc speed_inv,sort),legend(off)
> title(Prediction on Linear Scale) saving(l,replace)
. twoway (scatter dc speed) (line pred_dc speed,sort),legend(off)
> title(Prediction on Original Scale) saving(o,replace)
. graph combine l.gph o.gph

We would put confidence and prediction bands on the plot in a similar manner. How would we
predict output (with a prediction interval) for a wind speed of 15?
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3 TRANSFORMATIONS IN REGRESSION

Brain Weights and Body Weights of Mammals

The data below are the average brain weight (g) and body weights (kg) for 62 species of mammals.
We are interested in developing a model for predicting brain weight from body weight.

. list,clean
species body_wt brain_wt

1. Arctic fox 3.385 44.5
2. Owl monkey .48 15.499
3. Mountain beaver 1.35 8.1
4. Cow 465 423
5. Gray wolf 36.33 119.5
6. Goat 27.66 115
7. Roe deer 14.83 98.2
8. Guinea pig 1.04 5.5
9. Vervet 4.19 58
10. Chinchilla .425 6.4
11. Ground squirrel .101 4
12. Arctic ground squirrel .92 5.7
13. Africa giant poached rat 1 6.6
14. Lesser short-tailed shrew .005 .14
15. Star-nosed mole .06 1
16. Nine-banded armadillo 3.5 10.8
17. Tree hyrax 2 12.3
18. N. American opussum 1.7 6.3
19. Asian elephant 2547 4603
20. Big brown bat .023 .3
21. Donkey 187.1 419
22. Horse 521 655
23. European hedgehog .785 3.5
24. Patas monkey 10 115
25. Cat 3.3 25.6
26. Galago .2 5
27. Genet 1.41 17.5
28. Giraffe 529 680
29. Gorilla 207 406
30. Gray seal 85 325
31. Rock hyrax .75 12.3
32. Human 62 1320
33. African elephant 6654 5712
34. Water opussum 3.5 3.9
35. Rhesus monkey 6.8 179
36. Kangaroo 35 56
37. Yellow-bellied marmot 4.05 17
38. Golden hamster .12 1
39. Mouse .023 .4
40. Little brown bat .01 .25
41. Slow loris 1.4 12.5
42. Okapi 250.01 490
43. Rabbit 2.5 12.1
44. Sheep 55.5 175
45. Jaguar 100 157
46. Chimpanzee 52.16 440
47. Baboon 10.55 179.5
48. Desert hedgehog .55 2.4
49. Giant armadillo 60 81
50. Rock hyrax 3.6 21
51. Raccoon 4.288 39.2
52. Rat .28 1.9
53. Eastern American mole .075 1.2
54. Mole rat .122 3
55. Musk shrew .048 .33
56. Pig 192 180
57. Echidna 3 25
58. Brazilian tapir 160 169
59. Tenrec .9 2.6
60. Phalanger 1.62 11.4
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3 TRANSFORMATIONS IN REGRESSION

61. Tree shrew .104 2.5
62. Red fox 4.235 50.4

A plot of the brain weights against the body weights is non-informative because many species
have very small brain weights and body weights compared to the elephants:

. scatter br bo,tit(Brain Weight vs. Body Wt. for 62 Mammals)
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Brain Weight vs. Body Wt. for 62 Mammals

If we momentarily hold out the species with body weights exceeding 200kg or brain weights exceed-
ing 200g, and replot the data, we see that the brain weight of mammals typically increases with
the body weight, but the relationship is nonlinear:

. scatter br bo if(bo<=200),tit(Brain Wt vs. Body Wt. for 62 Mammals)
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The trend suggests transforming both variables to a logarithmic scale to linearize the relationship
between brain weight and body weight. It does not matter which base logarithm you choose. The
relationship is no more linear with one base than another. I will use natural logarithms. What is
even more compelling about the log transform here is the extreme right skewness of both variables
– logs pull extremely large values down much more than more modest values, so they tend to
symmetrize such data (and regression works much better when both variables have reasonably
symmetric distributions).
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3 TRANSFORMATIONS IN REGRESSION

. graph box bod,name(bodbox)

. graph box br,name(brbox)

. graph combine bodbox brbox

0
2,

00
0

4,
00

0
6,

00
0

8,
00

0
B

od
y_

W
t

0
2,

00
0

4,
00

0
6,

00
0

B
ra

in
_W

t

The plot of loge(brain weight) against loge(body weight) is fairly linear:

. gene lbod=log(body_wt)

. gene lbr = log(brain_wt)

. scatter lbr lbod,title(Brain Wt. vs. Body Wt. on a log-log scale) xti(Log(Bod
> y Weight)) yti(Log(Brain Weight))
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Brain Wt. vs. Body Wt. on a log−log scale

At this point I considered fitting the model:

loge(brain weight) = β0 + β1 loge(body weight) + ε.

Summary information from fitting this model:
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3 TRANSFORMATIONS IN REGRESSION

. regre lbr lbo

Source | SS df MS Number of obs = 62
-------------+------------------------------ F( 1, 60) = 697.42

Model | 336.188164 1 336.188164 Prob > F = 0.0000
Residual | 28.9225677 60 .482042795 R-squared = 0.9208

-------------+------------------------------ Adj R-squared = 0.9195
Total | 365.110732 61 5.98542184 Root MSE = .69429

------------------------------------------------------------------------------
lbr | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
lbod | .7516859 .0284635 26.41 0.000 .6947505 .8086214

_cons | 2.134787 .0960432 22.23 0.000 1.942672 2.326902
------------------------------------------------------------------------------

The fitted relationship:

Predicted loge(brain weight) = 2.135 + 0.752 loge(body weight),

explains about 92% of the variation in loge(brain weight). The t−test for H0 : β1 = 0 is highly
significant (p − value = 0 to three decimal places). This summary information combined with
the data plot indicates that there is a strong linear relationship between loge(brain weight) and
loge(body weight), with the average loge(brain weight) increasing as loge(body weight) increases.

To predict brain weights, use the inverse transformation

Predicted brain weight = exp{Predicted loge(brain weight)}

or

Predicted brain weight = exp{2.135 + 0.752 loge(body weight)}
= exp(2.135) ∗ body weight0.752

= 8.457 ∗ body weight0.752.

These conclusions are tentative, subject to a careful residual analysis. Residual plots do not
suggest any serious deficiencies with the model, but do highlight one or more poorly fitted species:
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Can anyone guess what species these may be, and what further analyses might be reasonable?
The largest and smallest residuals belong to observations 32 and 34 respectively (obtained from
simply entering the data editor). Note that a normal probability (or Q − Q) plot of the residuals
is reasonably straight and the Shapiro-Wilk test of normality indicates no gross departures from
normality:

Shapiro-Wilk W test for normal data
Variable | Obs W V z Prob>z

-------------+-------------------------------------------------
res | 62 0.98268 0.967 -0.073 0.52927

Cook’s D does not show any particular problems (until the value approaches 1, most data
analysts do not worry much about it). Compare it to the value in the original scale where the
distribution of both variables was so skewed.
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Usually it is worth plotting the fitted values back on the original scale as we did for the wind
speed data. That would not be very useful here since the original scale obscures most of the data.
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4 Introduction to Multiple Linear Regression

In multiple linear regression, a linear combination of two or more predictor variables is used to
explain the variation in a response. In essence, the additional predictors are used to explain the
variation in the response not explained by a simple linear regression fit.

As an illustration, I will consider the following problem. The data set is from the statistics
package Minitab, where it is described thus:

Anthropologists wanted to determine the long-term effects of altitude change on human
blood pressure. They measured the blood pressures of a number of Peruvians native to
the high Andes mountains who had since migrated to lower climes. Previous research
suggested that migration of this kind might cause higher blood pressure at first, but over
time blood pressure would decrease. The subjects were all males over 21, born at high
altitudes, with parents born at high altitudes. The measurements included a number
of characteristics to help measure obesity: skin-fold and other physical characteristics.
Systolic and diastolic blood pressure are recorded separately; systolic is often a more
sensitive indicator. Note that this is only a portion of the data collected.

The data set is on the web site. Variables in the data set are

Name Description
Age Age in years
Years Years since migration
Weight Weight in kilograms
Height Height in mm
Chin Chin skin fold in mm
Forearm Forearm skin fold in mm
Calf Calf skin fold in mm
Pulse Pulse in beats per minute
Systol Systolic blood pressure
Diastol Diastolic blood pressure

A question we consider concerns the long term effects of an environmental change on the systolic
blood pressure. In particular, is there a relationship between the systolic blood pressure and how
long the Indians lived in their new environment as measured by the fraction of their life spent in
the new environment? (fraction = years since migration/age - you need to generate fraction).

A plot of systolic blood pressure against fraction suggests a weak linear relationship (from graph
matrix weight systol fraction). Nonetheless, consider fitting the regression model

sys bp = β0 + β1 fraction + ε.

The least squares line is given by

̂sys bp = 133.50− 15.75 fraction,

and suggests that average systolic blood pressure decreases as the fraction of life spent in modern so-
ciety increases. However, the t−test of H0 : β1 = 0 is not significant at the 5% level (p-value=.089).
That is, the weak linear relationship observed in the data is not atypical of a population where
there is no linear relationship between systolic blood pressure and the fraction of life spent in a
modern society.
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Stata output:

. regress systol fraction

Source | SS df MS Number of obs = 39
-------------+------------------------------ F( 1, 37) = 3.05

Model | 498.063981 1 498.063981 Prob > F = 0.0888
Residual | 6033.37192 37 163.064106 R-squared = 0.0763

-------------+------------------------------ Adj R-squared = 0.0513
Total | 6531.4359 38 171.879892 Root MSE = 12.77

------------------------------------------------------------------------------
systol | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
fraction | -15.75183 9.012962 -1.75 0.089 -34.01382 2.510169

_cons | 133.4957 4.038011 33.06 0.000 125.3139 141.6775
------------------------------------------------------------------------------

Even if this test were significant, the small value of R2 = .076 suggests that fraction does not
explain a substantial amount of the variation in the systolic blood pressures. If we omit the
individual with the highest blood pressure (see the plot) then the relationship would be weaker.

Taking Weight into Consideration

At best, there is a weak relationship between systolic blood pressure and fraction. However, it is
usually accepted that systolic blood pressure and weight are related; see the scatterplot matrix for
confirmation. A natural way to take weight into consideration is to include weight and fraction as
predictors of systolic blood pressure in the multiple regression model:

sys bp = β0 + β1 fraction + β2 weight + ε.

As in simple linear regression, the model is written in the form:

Response = Mean of Response + Residual,
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so the model implies that average systolic blood pressure is a linear combination of fraction and
weight. As in simple linear regression, the standard multiple regression analysis assumes that the
responses are normally distributed with a constant variance σ2

Y |X . The parameters of the regression
model β0, β1, β2 and σ2

Y |X are estimated by LS.
Stata output for fitting the multiple regression model follows.

. regress systol fraction weight

Source | SS df MS Number of obs = 39
-------------+------------------------------ F( 2, 36) = 16.16

Model | 3090.07324 2 1545.03662 Prob > F = 0.0000
Residual | 3441.36266 36 95.5934072 R-squared = 0.4731

-------------+------------------------------ Adj R-squared = 0.4438
Total | 6531.4359 38 171.879892 Root MSE = 9.7772

------------------------------------------------------------------------------
systol | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
fraction | -26.76722 7.217801 -3.71 0.001 -41.40559 -12.12884
weight | 1.216857 .2336873 5.21 0.000 .7429168 1.690796
_cons | 60.89592 14.28088 4.26 0.000 31.93295 89.85889

------------------------------------------------------------------------------

Important Points to Notice About the Regression Output

1. The LS estimates of the intercept and the regression coefficient for fraction, and their standard
errors, change from the simple linear model to the multiple regression model. For the simple
linear regression

̂sys bp = 133.50− 15.75 fraction.

For the multiple regression model

̂sys bp = 60.89− 26.76 fraction + 1.21 weight.

There is frequently a big difference between coefficients from simple linear regression and
those from multiple linear regression (for the same predictor variables).

2. Comparing the simple linear regression and the multiple regression models we see that the
Model (Regression) df has increased to 2 from 1 (2=number of predictor variables) and the
Residual (error) df has decreased from 37 to 36 (= n− 1− number of predictors). Adding a
predictor increases the Model (Regression) df by 1 and decreases the Residual df by 1.

3. The Residual SS decreases by 6033.37 - 3441.36 = 2592.01 upon adding the weight term. The
Model (Regression) SS increased by 2592.01 upon adding the weight term to the model. The
Total SS does not depend on the number of predictors so it stays the same. The Residual
SS, or the part of the variation in the response unexplained by the regression model never
increases when new predictors are added. After all, you are not going to do any worse
modelling the data if you use more predictors - the smaller model (simple linear regression)
is a special case of the larger model (multiple linear regression). Anything you can fit using
the simple one-variable model you also can fit using the two-variable model, but you can do
a lot more with the two-variable model.

4. The proportion of variation in the response explained by the regression model:

R2 = Model (or Regression) SS / Total SS
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never decreases when new predictors are added to a model. The R2 for the simple linear
regression was .076, whereas R2 = .473 for the multiple regression model. Adding the weight
variable to the model increases R2 by 40%. That is, weight and fraction together explain
40% more of the variation in systolic blood pressure than explained by fraction alone. I am
not showing you the output, but if you predict systolic blood pressure using only weight, the
R2 is .27; adding fraction to that model increases the R2 once again to .47. How well two
predictors work together is not predictable from how well each works alone.

Stata also reports an adjusted R2. That has a penalty for fitting too many variables built
into it, and can decrease when variables are added. If the number of variables is a lot less
than n (it should be) there is not much difference between the two R2s.

5. The estimated variability about the regression line

Residual MS = s2
Y |X

decreased dramatically after adding the weight effect. For the simple linear regression model
(fitting fraction as the only predictor), s2

Y |X = 163.06, whereas s2
Y |X = 95.59 for the multiple

regression model. This suggests that an important predictor has been added to model. Note
that Stata also reports Root MSE =

√
ResidualMS =

√
s2
Y |X , an estimate of the standard

deviation rather than the variance about the regression line.

6. The F -statistic for the multiple regression model

Fobs = Regression MS / Residual MS = 16.16

(which is compared to a F-table with 2 and 36 df) tests H0 : β1 = β2 = 0 against HA : not H0.
This is a test of no relationship between the average systolic blood pressure and fraction and
weight, assuming the relationship is linear. If this test is significant then either fraction or
weight, or both, are important for explaining the variation in systolic blood pressure. Unlike
simple linear regression, this test statistic is not simply the square of a t-statistic. It is a
whole new test for us, and simply addresses the question “is anything going on anywhere in
this model?”

7. Given the model
sys bp = β0 + β1 fraction + β2 weight + ε,

one interest is testing H0 : β2 = 0 against HA : β2 6= 0. The t-statistic for this test

tobs =
b2 − 0
SE(b2)

=
1.217
.234

= 5.21

is compared to a t−critical value with Residual df = 36. Stata gives a p-value of .000,
which suggests β2 6= 0. The t-test of H0 : β2 = 0 in the multiple regression model tests
whether adding weight to the simple linear regression model explains a significant part of the
variation in systolic blood pressure not explained by fraction. In some sense, the t−test of
H0 : β2 = 0 will be significant if the increase in R2 (or decrease in Residual SS) obtained by
adding weight to this simple linear regression model is substantial. We saw a big increase in
R2, which is deemed significant by the t−test. A similar interpretation is given to the t−test
for H0 : β1 = 0.
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8. The t−tests for β0 = 0 and β1 = 0 are conducted, assessed, and interpreted in the same
manner. The p-value for testing H0 : β0 = 0 is .000, whereas the p-value for testing H0 : β1 = 0
is .001. This implies that fraction is important in explaining the variation in systolic blood
pressure after weight is taken into consideration (by including weight in the model as a
predictor). These t-tests are tests for the effect of a variable adjusted for the effects of all
other variables in the model.

9. We compute CIs for the regression parameters βi in the usual way: bi + tcritSE(bi), where
tcrit is the t−critical value for the corresponding CI level with df = Residual df .

Understanding the Model

The t−test for H0 : β1 = 0 is highly significant (p-value=.001) in the multiple regression model,
which implies that fraction is important in explaining the variation in systolic blood pressure after
weight is taken into consideration (by including weight in the model as a predictor). Weight is
called a suppressor variable. Ignoring weight suppresses the relationship between systolic blood
pressure and fraction - recall that fraction was not significant as a predictor by itself.

The implications of this analysis are enormous! Essentially, the correlation between a predictor
and a response says very little about the importance of the predictor in a regression model with
one or more additional predictors. This conclusion also holds in situations where the correlation is
high, in the sense that a predictor that is highly correlated with the response may be unimportant
in a multiple regression model once other predictors are included in the model.

Another issue that I wish to address concerns the interpretation of the regression coefficients
in a multiple regression model. For our problem, let us first focus on the fraction coefficient in the
fitted model

̂sys bp = 60.90− 26.77 fraction + 1.22 weight.

The negative coefficient indicates that the predicted systolic blood pressure decreases as fraction
increases holding weight constant. In particular, the predicted systolic blood pressure decreases
by 26.76 for each unit increase in fraction, holding weight constant at any value. Similarly, the
predicted systolic blood pressure increases by 1.21 for each unit increase in weight, holding fraction
constant at any level.

We should examine residuals. Now the diagnostics are much more important to us, since we
cannot see everything in terms of one predictor variable.
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Shapiro-Wilk W test for normal data
Variable | Obs W V z Prob>z

-------------+-------------------------------------------------
residual | 39 0.98269 0.671 -0.838 0.79910

We will discuss these plots in class. Are there any observations we should investigate further?
Which ones?
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Another Multiple Regression Example

The data below are selected from a larger collection of data referring to candidates for the General
Certificate of Education (GCE) who were being considered for a special award. Here, total denotes
the candidate’s TOTAL mark, out of 1000, in the GCE exam, while comp is the candidate’s score
in the compulsory part of the exam, which has a maximum score of 200 of the 1000 points on the
exam. scel denotes the candidates’ score, out of 100, in a School Certificate English Language
(SCEL) paper taken on a previous occasion.

. list,clean

total comp scel
1. 476 111 68
2. 457 92 46
3. 540 90 50
4. 551 107 59
5. 575 98 50
6. 698 150 66
7. 545 118 54
8. 574 110 51
9. 645 117 59

10. 690 114 80
11. 634 130 57
12. 637 118 51
13. 390 91 44
14. 562 118 61
15. 560 109 66

A goal here is to compute a multiple regression of the TOTAL score on COMP and SCEL, and
make the necessary tests to enable you to comment intelligently on the extent to which current
performance in the compulsory test (COMP) may be used to predict aggregate TOTAL performance
on the GCE exam, and on whether previous performance in the School Certificate English Language
(SCEL) has any predictive value independently of what has already emerged from the current
performance in the compulsory papers.

I will lead you through a number of steps to help you answer this question. Let us answer the
following straightforward questions based on the Stata output.

1. Plot TOTAL against COMP and SCEL individually, and comment on the form (i.e. linear,
non-linear, logarithmic, etc.), strength, and direction of the relationships.

2. Plot COMP against SCEL and comment on the form, strength, and direction of the
relationship.

3. Compute the correlation between all pairs of variables. Do the correlation values appear
reasonable, given the plots?

Stata output: scatterplot matrix and correlations...
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Total
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. pwcorr total comp scel, sig
| total comp scel

-------------+---------------------------
total | 1.0000

|
|

comp | 0.7307 1.0000
| 0.0020
|

scel | 0.5477 0.5089 1.0000
| 0.0346 0.0527
|

In parts 4 through 9, ignore the possibility that TOTAL, COMP or SCEL might ideally need
to be transformed.

4. Which of COMP and SCEL explains a larger proportion of the variation in TOTAL?
Which would appear to be a better predictor of TOTAL? (Explain).

5. Consider 2 simple linear regression models for predicting TOTAL one with COMP as
a predictor, and the other with SCEL as the predictor. Do COMP and SCEL individually
appear to be important for explaining the variation in TOTAL (i.e. test that the slopes of the
regression lines are zero). Which, if any, of the output, support, or contradicts, your answer
to the previous question?

Stata output:
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. regress total comp

Source | SS df MS Number of obs = 15
-------------+------------------------------ F( 1, 13) = 14.90

Model | 53969.7272 1 53969.7272 Prob > F = 0.0020
Residual | 47103.2062 13 3623.32355 R-squared = 0.5340

-------------+------------------------------ Adj R-squared = 0.4981
Total | 101072.933 14 7219.49524 Root MSE = 60.194

------------------------------------------------------------------------------
total | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
comp | 3.948465 1.023073 3.86 0.002 1.73825 6.158681

_cons | 128.5479 115.1604 1.12 0.285 -120.241 377.3367
------------------------------------------------------------------------------

. regress total scel

Source | SS df MS Number of obs = 15
-------------+------------------------------ F( 1, 13) = 5.57

Model | 30320.6397 1 30320.6397 Prob > F = 0.0346
Residual | 70752.2936 13 5442.48412 R-squared = 0.3000

-------------+------------------------------ Adj R-squared = 0.2461
Total | 101072.933 14 7219.49524 Root MSE = 73.773

------------------------------------------------------------------------------
total | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
scel | 4.826232 2.044738 2.36 0.035 .4088448 9.243619

_cons | 291.5859 119.0382 2.45 0.029 34.4196 548.7522
------------------------------------------------------------------------------

6. Fit the multiple regression model

TOTAL = β0 + β1COMP + β2SCEL + ε.

Test H0 : β1 = β2 = 0 at the 5% level. Describe in words what this test is doing, and what
the results mean here.

Stata output:

. regress total comp scel

Source | SS df MS Number of obs = 15
-------------+------------------------------ F( 2, 12) = 8.14

Model | 58187.5043 2 29093.7522 Prob > F = 0.0058
Residual | 42885.429 12 3573.78575 R-squared = 0.5757

-------------+------------------------------ Adj R-squared = 0.5050
Total | 101072.933 14 7219.49524 Root MSE = 59.781

------------------------------------------------------------------------------
total | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
comp | 3.295936 1.180318 2.79 0.016 .7242444 5.867628
scel | 2.09104 1.924796 1.09 0.299 -2.102731 6.284811

_cons | 81.16147 122.4059 0.66 0.520 -185.5382 347.8611
------------------------------------------------------------------------------

7. In the multiple regression model, test H0 : β1 = 0 and H0 : β2 = 0 individually. Describe
in words what these tests are doing, and what the results mean here.

8. How does the R2 from the multiple regression model compare to the R2 from the individual
simple linear regressions? Is what you are seeing here appear reasonable, given the tests on
the individual coefficients?
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9. Do your best to answer the question posed above, in the paragraph on page 43 that begins
“A goal .... ”. Provide an equation (LS) for predicting TOTAL.

Comments on the GCE Analysis

I will give you my thoughts on these data, and how I would attack this problem, keeping the
ultimate goal in mind. As a first step, I plot the data and check whether transformations are
needed. The plot of TOTAL against COMP is fairly linear, but the trend in the plot of TOTAL
against SCEL is less clear. You might see a non-linear trend here, but the relationship is not very
strong. When I assess plots I try to not allow a few observations affect my perception of trend, and
with this in mind, I do not see any strong evidence at this point to transform any of the variables.

One difficulty that we must face when building a multiple regression model is that these two-
dimensional (2D) plots of a response against individual predictors may have little information about
the appropriate scales for a multiple regression analysis. In particular, the 2D plots only tell us
whether we need to transform the data in a simple linear regression analysis. If a 2D plot shows a
strong non-linear trend, I would do an analysis using the suggested transformations, including any
other effects that are important. However, it might be that no variables need to be transformed in
the multiple regression model.

Although SCEL appears to be useful as a predictor of TOTAL on its own, the multiple regression
output indicates that SCEL does not explain a significant amount of the variation in TOTAL,
once the effect of COMP has been taken into account. In particular, the SCEL effect in the
multiple regression model is far from significant (p-value=.30). Hence, previous performance in the
SCEL exam has little predictive value independently of what has already emerged from the current
performance in the compulsory papers.

What are my conclusions? Given that SCEL is not a useful predictor in the multiple regression
model, I would propose a simple linear regression model to predict TOTAL from COMP:

Predicted TOTAL = 128.55 + 3.95 COMP.

Output from the fitted model was given earlier. A residual analysis of the model showed no serious
deficiencies. In particular, the residuals versus the predicted values looks random and the normal
probability plot of the residuals looks reasonably straight. Note that the following summaries are
for this one-variable model, not the two-variable model fit earlier.

Shapiro-Wilk W test for normal data
Variable | Obs W V z Prob>z

-------------+-------------------------------------------------
residual | 15 0.97287 0.526 -1.271 0.89806
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A Taste of Model Selection for Multiple Regression

Given data on a response variable Y and k predictor variables X1, X2, ..., Xk, we wish to develop
a regression model to predict Y . Assuming that the collection of variables is measured on the
correct scale, and that the candidate list of predictors includes all the important predictors, the
most general (linear) model is

Y = β0 + β1 X1 + · · ·+ βk Xk + ε.

In most problems one or more of the predictors can be eliminated from this general or full model
without loss of information. We want to identify the important predictors, or equivalently, eliminate
the predictors that are not useful for explaining the variation in Y .

We will study several automated methods for model selection. Given a specific criterion for
selecting a model, Stata gives the best predictors. Before applying any of the methods, you should
plot Y against each predictor X1, X2, ..., Xk to see whether transformations are needed. If a
transformation of Xi is suggested, include the transformation along with the original Xi in the
candidate list. Note that you can transform the predictors differently, for example, log(X1) and√

X2. However, if several transformations are suggested for the response, then you should consider
doing one analysis for each suggested response scale before deciding on the final scale.

At this point, I will only consider the backward elimination method. Other approaches can
be handled in Stata.

Backward Elimination

The backward elimination procedure deletes unimportant variables, one at a time, starting from
the full model. The steps in the procedure are:

1. Fit the full model
Y = β0 + β1 X1 + · · ·+ βk Xk + ε. (1)

2. Find the variable which when omitted from the full model (1) reduces R2 the least, or equiv-
alently, increases the Residual SS the least. This is the variable that gives the largest p-value
for testing an individual regression coefficient H0 : βi = 0 for i > 0. Suppose this variable is
Xk. If you reject H0, stop and conclude that the full model is best. If you do not reject H0,
delete Xk from the full model, giving the new full model

Y = β0 + β1 X1 + · · ·+ βk−1 Xk−1 + ε.

Repeat steps 1 and 2 sequentially until no further predictors can be deleted.

In backward elimination we isolate the least important predictor left in the model, and check
whether it is important. If not, delete it and repeat the process. Otherwise, stop. A test level of
0.1 (a very common value to use), for example, on the individual predictors is specified in Stata
using pr(0.1) in the sw command.

Epidemiologists use a slightly different approach to building models. They argue strongly
for the need to always include confounding variables in a model, regardless of their statistical
significance. I will discuss this issue more completely for logistic regression, but you should recognize
its importance.
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Illustration

I will illustrate backward elimination on the Peru Indian data, using systolic blood pressure as
the response, and seven candidate predictors: weight in kilos, height in mm, chin skin fold in mm,
forearm skin fold in mm, calf skin fold in mm, pulse rate-beats/min, and fraction. A plot of systolic
blood pressure against each of the individual potential predictors does not strongly suggest the need
to transform either the response or any of the predictors:
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The correlation matrix shows that most of the potential predictors are weakly correlated with
systolic blood pressure. Based on correlations, the best single variable for predicting blood pressure
is weight.

. correlate weight height chin forearm calf pulse fraction systol
(obs=39)

| weight height chin forearm calf pulse fraction systol
-------------+------------------------------------------------------------------------

weight | 1.0000
height | 0.4503 1.0000
chin | 0.5617 -0.0079 1.0000

forearm | 0.5437 -0.0689 0.6379 1.0000
calf | 0.3919 -0.0028 0.5160 0.7355 1.0000
pulse | 0.3118 0.0078 0.2231 0.4219 0.2087 1.0000

fraction | 0.2931 0.0512 0.1201 0.0280 -0.1130 0.2142 1.0000
systol | 0.5214 0.2191 0.1702 0.2723 0.2508 0.1355 -0.2761 1.0000

Stata commands for the previous output are (assuming you grabbed the Stata data set peru.dta
from the web and use’d it)
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generate fraction=years/age
graph matrix weight height chin forearm calf pulse fraction systol
correlate weight height chin forearm calf pulse fraction systol

Summaries from the full model with 7 predictors follow. The F -test in the full model ANOVA

table (F = 4.92 with p-value=.0008) tests the hypothesis that the regression coefficient for each

predictor variable is zero. This test is highly significant, indicating that one or more of the

predictors is important in the model. Note that R2 = .53 for the full model.

. regress systol weight height chin forearm calf pulse fraction
Source | SS df MS Number of obs = 39

-------------+------------------------------ F( 7, 31) = 4.92
Model | 3436.89993 7 490.985705 Prob > F = 0.0008

Residual | 3094.53596 31 99.8237407 R-squared = 0.5262
-------------+------------------------------ Adj R-squared = 0.4192

Total | 6531.4359 38 171.879892 Root MSE = 9.9912
------------------------------------------------------------------------------

systol | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

weight | 1.710538 .3864434 4.43 0.000 .9223814 2.498694
height | -.0454089 .0394397 -1.15 0.258 -.1258466 .0350289
chin | -1.154889 .845932 -1.37 0.182 -2.880179 .5704004

forearm | -.7143249 1.350676 -0.53 0.601 -3.469047 2.040397
calf | .1058654 .6116778 0.17 0.864 -1.14166 1.35339
pulse | .07971 .1959149 0.41 0.687 -.3198611 .4792811

fraction | -29.35489 7.86754 -3.73 0.001 -45.40084 -13.30894
_cons | 106.3085 53.8376 1.97 0.057 -3.494025 216.111

------------------------------------------------------------------------------

You can automate stepwise selection of predictors (for which backward elimination is a special
case) using the sw command. Six model selection procedures are allowed: backward selection,
forward selection, backward stepwise, forward stepwise, backward hierarchical selection, and for-
ward hierarchical selection. See the Stata manual for descriptions. The command sw can also be
used with other regression models including logistic (and other binary response model) regression,
Poisson regression, and Cox proportional hazards regression. To obtain the stepwise procedure for
multiple linear regression in our example, using an cutoff of 0.1, type sw regress systol weight
height chin forearm calf pulse fraction, pr(0.1). I cannot seem to get this to work cor-
rectly using the pull-down menus, and I’m not sure there is much potential gain anyway. This is a
pretty simple command. The Stata output follows.

. sw regress systol weight height chin forearm calf pulse fraction,pr(0.1)
begin with full model

p = 0.8637 >= 0.1000 removing calf
p = 0.6953 >= 0.1000 removing pulse
p = 0.6670 >= 0.1000 removing forearm
p = 0.2745 >= 0.1000 removing height
p = 0.1534 >= 0.1000 removing chin

Source | SS df MS Number of obs = 39
-------------+------------------------------ F( 2, 36) = 16.16

Model | 3090.07324 2 1545.03662 Prob > F = 0.0000
Residual | 3441.36266 36 95.5934072 R-squared = 0.4731

-------------+------------------------------ Adj R-squared = 0.4438
Total | 6531.4359 38 171.879892 Root MSE = 9.7772

------------------------------------------------------------------------------
systol | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
weight | 1.216857 .2336873 5.21 0.000 .7429168 1.690796

fraction | -26.76722 7.217801 -3.71 0.001 -41.40559 -12.12884
_cons | 60.89592 14.28088 4.26 0.000 31.93295 89.85889

------------------------------------------------------------------------------
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The procedure summary tells you that the least important variable in the full model, as judged
by the p-value, is calf skin fold. This variable, upon omission, will reduce R2 the least, or equiv-
alently, increases the Residual SS the least. The p-value of .86 exceeds the specified 0.10 cut-off,
so the first step of the backward elimination would be to eliminate calf skin fold from the model.
This is the p-value for the t-test on calf in the 7-variable model.

The next variable eliminated is pulse because of the p-value of .70 in the 6-variable model where
calf was not fit (Stata isn’t showing you all of that output). Notice that this is different from the
p-value in the 7-variable model. Next Stata removes forearm because of the large p-value of .67 in
a 5-variable model with calf and pulse removed. Other variables are eliminated similarly. There is
a huge amount of computation summarized in this one table.

Looking at the rest of the step history, the backward elimination procedure eliminates five
variables from the full model, in the following order: calf skin fold, pulse rate, forearm skin fold,
height, and chin skin fold. As we progress from the full model to the selected model, R2 decreases as
follows: R2 = .53 (full model), .53, .52, .52, .50, and .47 (from several regression fits not shown).
The decrease is slight across this spectrum of models.

The model summary selected by backward elimination includes two predictors: weight and
fraction. The fitted model is given by:

Predicted SYS BP = 60.90 + 1.22 Weight− 26.77 Fraction.

Each predictor is significant at the .001 level. The fitted model explains 47% of the variation in
systolic blood pressures. This 2-variable model does as well, for any practical purposes, in predicting
systolic blood pressure as a much more complicated 7-variable model. There was no real surprise
here, since these two variables were the only ones significant in the 7-variable model, but often you
will be left with a model you would not have guessed from a fit of all variables.

Using a mechanical approach, we are led to a model with weight and fraction as predictors of
systolic blood pressure. At this point you should closely examine the fitted model.

Stepwise procedures receive a great deal of criticism. When a large number of variables are
screened this way, the resulting relationships tend to be exaggerated. There is a big multiple
comparisons problem here as well. This technique should be regarded as exploratory and the
resulting p-values and coefficients assessed from independent data, although common practice is
just to report final results. It is likely that the strength of relationships discovered in stepwise
procedures will be hard to replicate in later studies, however. This is, nonetheless, an invaluable
screening device when one has a lot of predictor variables.
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5 One-Way ANOVA (Review) and Experimental Design

Samuels and Witmer Chapter 11 - all sections except 6.
The one-way analysis of variance (ANOVA) is a generalization of the two sample t−test to

k ≥ 2 groups. Assume that the populations of interest have the following (unknown) population
means and standard deviations:

population 1 population 2 · · · population k

mean µ1 µ2 · · · µk

std dev σ1 σ2 · · · σk

A usual interest in ANOVA is whether µ1 = µ2 = · · · = µk. If not, then we wish to know which
means differ, and by how much. To answer these questions we select samples from each of the k
populations, leading to the following data summary:

sample 1 sample 2 · · · sample k

size n1 n2 · · · nk

mean Y 1 Y 2 · · · Y k

std dev s1 s2 · · · sk

A little more notation is needed for the discussion. Let Yij denote the jth observation in the ith

sample and define the total sample size n∗ = n1 + n2 + · · · + nk. Finally, let Y be the average
response over all samples (combined), that is

Y =
∑

ij Yij

n∗
=

∑
i niY i

n∗
.

Note that Y is not the average of the sample means, unless the sample sizes ni are equal.
An F−statistic is used to test H0 : µ1 = µ2 = · · · = µk against HA : not H0. The assumptions

needed for the standard ANOVA F−test are analogous to the independent two-sample t−test
assumptions: (1) Independent random samples from each population. (2) The population frequency
curves are normal. (3) The populations have equal standard deviations, σ1 = σ2 = · · · = σk.

The F−test is computed from the ANOVA table, which breaks the spread in the combined data
set into two components, or Sums of Squares (SS). The Within SS, often called the Residual
SS or the Error SS, is the portion of the total spread due to variability within samples:

SS(Within) = (n1 − 1)s2
1 + (n2 − 1)s2

2 + · · ·+ (nk − 1)s2
k =

∑
ij(Yij − Y i)2.

The Between SS, often called the Model SS, measures the spread between (actually among!) the
sample means

SS(Between) = n1(Y 1 − Y )2 + n2(Y 2 − Y )2 + · · ·+ nk(Y k − Y )2 =
∑

i ni(Y i − Y )2,

weighted by the sample sizes. These two SS add to give

SS(Total) = SS(Between) + SS(Within) =
∑

ij(Yij − Y )2.

Each SS has its own degrees of freedom (df). The df(Between) is the number of groups minus
one, k − 1. The df(Within) is the total number of observations minus the number of groups:
(n1−1)+(n2−1)+· · · (nk−1) = n∗−k. These two df add to give df(Total) = (k−1)+(n∗−k) = n∗−1.

The Sums of Squares and df are neatly arranged in a table, called the ANOVA table:
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Source df SS MS
Between Groups k − 1

∑
i ni(Y i − Y )2

Within Groups n∗ − k
∑

i(ni − 1)s2
i

Total n∗ − 1
∑

ij(Yij − Y )2.

The ANOVA table often gives a Mean Squares (MS) column, left blank here. The Mean
Square for each source of variation is the corresponding SS divided by its df . The Mean Squares
can be easily interpreted.

The MS(Within)

(n1 − 1)s2
1 + (n2 − 1)s2

2 + · · ·+ (nk − 1)s2
k

n∗ − k
= s2

pooled

is a weighted average of the sample variances. The MS(Within) is known as the pooled estimator
of variance, and estimates the assumed common population variance. If all the sample sizes are
equal, the MS(Within) is the average sample variance. The MS(Within) is identical to the pooled
variance estimator in a two-sample problem when k = 2.

The MS(Between) ∑
i ni(Y i − Y )2

k − 1
is a measure of variability among the sample means. This MS is a multiple of the sample variance
of Y 1, Y 2, ..., Y k when all the sample sizes are equal.

The MS(Total) ∑
ij(Yij − Y )2

n∗ − 1
is the variance in the combined data set.

The decision on whether to reject H0 : µ1 = µ2 = · · · = µk is based on the ratio of the
MS(Between) and the MS(Within):

Fs =
MS(Between)
MS(Within)

.

Large values of Fs indicate large variability among the sample means Y 1, Y 2, ..., Y k relative to the
spread of the data within samples. That is, large values of Fs suggest that H0 is false.

Formally, for a size α test, reject H0 if Fs ≥ Fcrit, where Fcrit is the upper-α percentile from
an F distribution with numerator degrees of freedom k − 1 and denominator degrees of freedom
n∗− k (i.e. the df for the numerators and denominators in the F−ratio.). An F distribution table
is given on pages 687-696 of SW. The p-value for the test is the area under the F− probability
curve to the right of Fs. Stata summarizes the ANOVA F−test with a p-value. In Stata, use
the anova or oneway commands to perform 1-way ANOVA. The data should be in the form of a
variable containing the response Yij and a grouping variable. For k = 2, the test is equivalent to
the pooled two-sample t−test.
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0 1 2 3 4 5 6FCrit

α = .05 (fixed)

Reject H0 for FS here

F with 4 and 20 degrees of freedom

0 1 2 3 4 5 6FS

p−value (random)

F with 4 and 20 degrees of freedom
FS not significant

FCrit

Example from the Child Health and Development Study (CHDS)

We consider data from the birth records of 680 live-born white male infants. The infants were
born to mothers who reported for pre-natal care to three clinics of the Kaiser hospitals in northern
California. As an initial analysis, we will examine whether maternal smoking has an effect on
the birth weights of these children. To answer this question, we define 3 groups based on mother’s
smoking history: (1) mother does not currently smoke or never smoked (2) mother smoked less than
one pack of cigarettes a day during pregnancy (3) mother smoked at least one pack of cigarettes a
day during pregnancy.

Let µi = pop mean birth weight (in lbs) for children in group i, (i = 1, 2, 3). We wish to test
H0 : µ1 = µ2 = µ3 against HA : not H0.

The side-by-side boxplots of the data show roughly the same spread among groups and little
evidence of skew:
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Birth Weight by Maternal Smoking

There is no strong evidence against normality here. Furthermore the sample standard deviations
are close (see the following output). We may formally test the equality of variances across the three
groups (remember - the F-test is not valid if its assumptions are not met) using Stata’s robvar

54



5 ONE-WAY ANOVA (REVIEW) AND EXPERIMENTAL DESIGN

command. In this example we obtain a set of three robust tests for the hypothesis H0 : σ1 = σ2 = σ3

where σi is the population standard deviation of weight in group i, i = 1, 2, 3. What robust means
in this context is that the test still works reasonably well if assumptions are not quite met. The
classical test of this hypothesis is Bartlett’s test, and that test is well known to be extraordinarily
sensitive to the assumption of normality of all the distributions. There are two ways a test may not
work well when assumptions are violated - the level may not be correct, or the power may be poor.
For Bartlett’s test, the problem is the level may not be accurate, which in this case means that you
may see a small p-value that does not reflect unequal variances but instead reflects non-normality.
A test with this property is known as liberal because it rejects H0 too often (relative to the nominal
α).

Stata output follows; we do not reject that the variances are equal across the three groups at
any reasonable significance level using any of the three test statistics:

. robvar( weight),by(ms_gp_txt)
| Summary of Child’s birth weight
| (lbs)

ms_gp_txt | Mean Std. Dev. Freq.
-----------------+------------------------------------

Nonsmoker | 7.7328084 1.0523406 381
Less than a pack | 7.2213018 1.0777604 169

Pack or more | 7.2661539 1.0909461 130
-----------------+------------------------------------

Total | 7.5164706 1.0923455 680
W0 = .82007944 df(2, 677) Pr > F = .44083367
W50 = .75912861 df(2, 677) Pr > F = .46847213
W10 = .77842523 df(2, 677) Pr > F = .45953896

There are multiple ways to get the ANOVA table here, the most common being the command
anova weight ms_gp or the more specialized oneway weight ms_gp. Bartlett’s test for equal
variances is given when using the latter. In the following output, I also gave the ,b option to get
Bonferroni multiple comparisons, discussed after the Fisher’s Method (next section).

The ANOVA table is:

. oneway weight ms_gp_txt,b
Analysis of Variance

Source SS df MS F Prob > F
------------------------------------------------------------------------
Between groups 40.7012466 2 20.3506233 17.90 0.0000
Within groups 769.4943 677 1.13662378
------------------------------------------------------------------------

Total 810.195546 679 1.19321877
Bartlett’s test for equal variances: chi2(2) = 0.3055 Prob>chi2 = 0.858

Comparison of Child’s birth weight (lbs) by ms_gp_txt
(Bonferroni)

Row Mean-|
Col Mean | Nonsmok Less tha
---------+----------------------
Less tha | -.511507

| 0.000
|

Pack or | -.466655 .044852
| 0.000 1.000

The p-value for the F−test is less than .0001. We would reject H0 at any of the usual test
levels (i.e. .05 or .01), concluding that the population mean birth weights differ in some way across
smoking status groups. The data (boxplots) suggest that the mean birth weights are higher for
children born to mothers that did not smoke during pregnancy, but that is not a legal conclusion
based upon the F-test alone.

The Stata commands to obtain this analysis are:
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infile id head ...et cetera... pheight using c:/chds.txt
generate ms_gp = 1 if msmoke == 0
replace ms_gp = 2 if msmoke >= 1 & msmoke < 20
replace ms_gp = 3 if msmoke >= 20
gene ms_gp_txt = " Nonsmoker" if ms_gp ==1
replace ms_gp_txt = "Less than a pack" if ms_gp ==2
replace ms_gp_txt = "Pack or more" if ms_gp ==3
graph box weight, over(ms_gp_txt)
robvar weight, by (ms_gp_txt)
oneway weight ms_gp_txt,b

Multiple Comparison Methods: Fisher’s Method

The ANOVA F−test checks whether all the population means are equal. Multiple comparisons
are often used as a follow-up to a significant ANOVA F−test to determine which population means
are different. I will discuss Fisher, Bonferroni, and Tukey methods for comparing all pairs of means.
Fisher’s and Tukey’s approaches are implemented in Stata using Stata’s prcomp command. This
command is not automatically installed in Stata 8 or 9. You will have to search for “pairwise
comparisons” under Help > Search... and click on the blue sg101 link. Click on [Click here
to install] (your computer must be connected to the internet to do this) and you will then have
access to this command.

Fisher’s Least significant difference method (LSD or FSD) is a two-step process:

1. Carry out the ANOVA F−test of H0 : µ1 = µ2 = · · · = µk at the α level. If H0 is not rejected,
stop and conclude that there is insufficient evidence to claim differences among population
means. If H0 is rejected, go to step 2.

2. Compare each pair of means using a pooled two sample t−test at the α level. Use spooled

from the ANOVA table and df = df(Residual). Using this denominator is different from just
doing all the possible pair-wise t-tests.

To see where the name LSD originated, consider the t−test of H0 : µi = µj (i.e. populations i and
j have same mean). The t−statistic is

ts =
Y i − Y j

spooled

√
1
ni

+ 1
nj

.

You reject H0 if |ts| ≥ tcrit, or equivalently, if

|Y i − Y j | ≥ tcrit spooled

√
1
ni

+
1
nj

.

The minimum absolute difference between Y i and Y j needed to reject H0 is the LSD, the quantity
on the right hand side of this inequality.

Stata gives all possible comparisons between pairs of populations means. The error level (i.e.
α) can be set to an arbitrary value using the level() subcommand, with 0.05 being the standard.
Looking at the CI’s in the Stata output, we conclude that the mean birth weights for children
born to non-smoking mothers (group 1) is significantly different from the mean birth weights for
each of the other two groups (2 and 3), since confidence intervals do not contain 0. The Stata
command prcomp weight ms_gp produced the output (it needs group defined numerically); the
default output includes CIs for differences in means. Alternatively, one obtains the p-values for
testing the hypotheses that the population means are equal using the test subcommand. This is
illustrated in the section on Tukey’s method. Examining the output from the prcomp command,
we see the FSD method is called the t method by Stata.

56



5 ONE-WAY ANOVA (REVIEW) AND EXPERIMENTAL DESIGN

. prcomp weight ms_gp
Pairwise Comparisons of Means

Response variable (Y): weight Child’s birth weight (lbs)
Group variable (X): ms_gp Maternal Smoking Group

Group variable (X): ms_gp Response variable (Y): weight
------------------------------- -------------------------------

Level n Mean S.E.
------------------------------------------------------------------

1 381 7.732808 .053913
2 169 7.221302 .0829046
3 130 7.266154 .0956823

------------------------------------------------------------------
Individual confidence level: 95% (t method)
Homogeneous error SD = 1.066126, degrees of freedom = 677

95%
Level(X) Mean(Y) Level(X) Mean(Y) Diff Mean Confidence Limits
-------------------------------------------------------------------------------

2 7.221302 1 7.732808 -.5115066 -.7049746 -.3180387
3 7.266154 1 7.732808 -.4666546 -.6792774 -.2540318

2 7.221302 .0448521 -.1993527 .2890568
-------------------------------------------------------------------------------

Discussion of the FSD Method

With k groups, there are c =
(k
2

)
= k(k−1)

2 pairs of means to compare in the second step of the FSD
method. Each comparison is done at the α level, where for a generic comparison of the ith and jth

populations

α = probability of rejecting H0 : µi = µj when H0 is true.

This probability is called the comparison error rate or the individual error rate.
The individual error rate is not the only error rate that is important in multiple comparisons.

The family error rate (FER), or the experimentwise error rate, is defined to be the probability
of at least one false rejection of a true hypothesis H0 : µi = µj over all comparisons. When many
comparisons are made, you may have a large probability of making one or more false rejections of
true null hypotheses. In particular, when all c comparisons of two population means are performed,
each at the α level, then α ≤ FER ≤ cα.

For example, in the birth weight problem where k = 3, there are c = .5 ∗ 3 ∗ 2 = 3 possible
comparisons of two groups. If each comparison is carried out at the 5% level, then .05 ≤ FER ≤ .15.
At the second step of the FSD method, you could have up to a 15% chance of claiming one or more
pairs of population means are different if no differences existed between population means.

The first step of the FSD method is the ANOVA “screening” test. The multiple comparisons
are carried out only if the F−test suggests that not all population means are equal. This screening
test tends to deflate the FER for the two-step FSD procedure. However, the FSD method is
commonly criticized for being extremely liberal (too many false rejections of true null hypotheses)
when some, but not many, differences exist - especially when the number of comparisons is large.
This conclusion is fairly intuitive. When you do a large number of tests, each, say, at the 5% level,
then sampling variation alone will suggest differences in 5% of the comparisons where the H0 is
true. The number of false rejections could be enormous with a large number of comparisons. For
example, chance variation alone would account for an average of 50 significant differences in 1000
comparisons each at the 5% level.

The Bonferroni Multiple Comparison Method

The Bonferroni method goes directly after the preceding relationship, α ≤ FER ≤ cα. To keep the
FER below level α, do the individual tests at level α

c , or equivalently multiply each of the reported
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p-values by c. This is, in practice, extremely conservative but it does guarantee the FER is below
α. If you have, for instance, c = 3 comparisons to make, and a reported p-value from a t-test is
.02 then the Bonferroni p-value is 3(.02) = .06 and the difference would not be judged significant.
With more comparisons it becomes extremely hard for the Bonferroni method to find anything.
The FSD method tends to have a too-high FER, the Bonferroni method a too-low FER. Very often
they agree.

Earlier (p. 69) we looked at the ANOVA output following the oneway weight group,b com-
mand. Examining that output we see p-values of 0 for testing H0 : µ1 = µ2 and H0 : µ1 = µ3,
and a p-value of 1 for testing H0 : µ2 = µ3 using the Bonferroni method. The Bonferroni tests see
group 1 differing from both 2 and 3, and no difference between 2 and 3, in complete agreement
with FSD.

Tukey’s Multiple Comparison Method

One commonly used alternative to FSD and Bonferroni is Tukey’s honest significant difference
method (HSD). Unlike FSD (but similar to Bonferroni), Tukey’s method allows you to prespecify
the FER, at the cost of making the individual comparisons more conservative than in FSD (but
less conservative than Bonferroni).

To implement Tukey’s method with a FER of α, reject H0 : µi = µj when

|Y i − Y j | ≥ qcrit√
2

spooled

√
1
ni

+
1
nj

,

where qcrit is the α level critical value of the studentized range distribution (tables not in SW).
The right hand side of this equation is called the HSD. For the birth weight data, the groupings
based on the Tukey and Fisher methods are identical. We obtain Tukey’s groupings via the Stata
command prcomp weight group, tukey test. The differences with an asterisk next to them are
significant (the |numerator| is larger than the denominator):

. prcomp weight ms_gp,tukey test
Pairwise Comparisons of Means

Response variable (Y): weight Child’s birth weight (lbs)
Group variable (X): ms_gp Maternal Smoking Group

Group variable (X): ms_gp Response variable (Y): weight
------------------------------- -------------------------------

Level n Mean S.E.
------------------------------------------------------------------

1 381 7.732808 .053913
2 169 7.221302 .0829046
3 130 7.266154 .0956823

------------------------------------------------------------------
Simultaneous significance level: 5% (Tukey wsd method)
Homogeneous error SD = 1.066126, degrees of freedom = 677

(Row Mean - Column Mean) / (Critical Diff)
Mean(Y) | 7.7328 7.2213 Level(X)

| 1 2
--------+--------------------
7.2213| -.51151*

2| .23145
|

7.2662| -.46665* .04485
3| .25436 .29214
|

Stata does not provide, as built-in commands or options, very many multiple comparison
procedures. The one-way ANOVA problem we have been looking at is relatively simple, and the
Tukey method appears as something of an afterthought for it. For more complicated multi-factor
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models, about all Stata offers is Bonferroni and a two other methods (Holm and Sidak) that adjust
the p-value similarly using slightly different principles to control FER, but less conservatively than
Bonferroni. The help file on mtest has details. FSD is always available, since that amounts to no
adjustment. In response to questions on the www about doing multiple comparisons, Stata has
pointed out how easy it is to program whatever you want in do files (probably the right answer
for experts). Some packages like SAS offer a larger number of options. What Stata offers is
adequate for many areas of research, but for some others it will be necessary to go beyond the
built-in offerings of Stata (a reviewer on your paper will let you know!)

Checking Assumptions in ANOVA Problems

The classical ANOVA assumes that the populations have normal frequency curves and the popu-
lations have equal variances (or spreads). You can test the normality assumption using multiple
Wilk-Shapiro tests (i.e. one for each sample). In addition, you can save (to the worksheet) the
centered data values, which are the observations minus the mean for the group from which each
observation comes. These centered values, or residuals, should behave as a single sample from a
normal population. A boxplot and normal quantile test of the residuals gives an overall assessment
of normality. The commands predict residuals, resid and then swilk residuals indicates
that, although not significant at the 5% level, normality may be suspect:

. swilk residuals
Shapiro-Wilk W test for normal data

Variable | Obs W V z Prob>z
-------------+-------------------------------------------------

residuals | 680 0.99580 1.866 1.520 0.06425

Mathematically, this is just a specialized regression problem and we can construct the same
diagnostic plots we have been doing for regression. Cook’s D is not worth doing in this case,
though.
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There are several alternative procedures that can be used when either the normality or equal
variance assumption are not satisfied. Welch’s ANOVA method (available in JMP-In, not directly
available in Stata) is appropriate for normal populations with unequal variances. The test is a gen-
eralization of Satterthwaite’s two-sample test discussed last semester. Most statisticians probably
would use weighted least squares or transformations to deal with the unequal variance problem (we
will discuss this if time permits this semester). The Wilcoxon or Kruskal-Wallis non-parametric
ANOVA is appropriate with non-normal populations with similar spreads.

For the birth weight data, recall that formal tests of equal variances are not significant (p-
values > .4). Thus, there is insufficient evidence that the population variances differ. Given that
the distributions are fairly symmetric, with no extreme values, the standard ANOVA appears to
be the method of choice. As an illustration of an alternative method, though, the summary from
the Kruskal-Wallis approach follows, leading to the same conclusion as the standard ANOVA. One
weakness of Stata is that it does not directly provide for non-parametric multiple comparisons. One
could do all the pair-wise Mann-Whitney two-sample tests and use a Bonferroni adjustment (the
ranksum command implements this two sample version of the Kruskal-Wallis test). The Bonferroni
adjustment just multiplies all the p-values by 3 (the number of comparisons). If you do this, you find
the same conclusions as with the normal-theory procedures: Group 1 differs from the other two, and
groups 2 and 3 are not significantly different. Recall from last semester the Kruskal-Wallis and the
Mann-Whitney amount to little more than one-way ANOVA and two-sample t-tests, respectively,
on ranks in the combined samples (this controls for outliers).

. kwallis weight,by(ms_gp_txt)
Test: Equality of populations (Kruskal-Wallis test)
+------------------------------------+
| ms_gp_txt | Obs | Rank Sum |
|------------------+-----+-----------|
| Nonsmoker | 381 | 144979.00 |
| Less than a pack | 169 | 47591.00 |
| Pack or more | 130 | 38970.00 |
+------------------------------------+

chi-squared = 36.594 with 2 d.f.
probability = 0.0001
chi-squared with ties = 36.637 with 2 d.f.
probability = 0.0001

Basics of Experimental Design

This section describes an experimental design to compare the effectiveness of four insecticides to
eradicate beetles. The primary interest is determining which treatment is most effective, in the
sense of providing the lowest typical survival time.

In a completely randomized design (CRD), the scientist might select a sample of genetically
identical beetles for the experiment, and then randomly assign a predetermined number of beetles
to the treatment groups (insecticides). The sample sizes for the groups need not be equal. A power
analysis is often conducted to determine sample sizes for the treatments. For simplicity, assume
that 48 beetles will be used in the experiment, with 12 beetles assigned to each group.

After assigning the beetles to the four groups, the insecticide is applied (uniformly to all ex-
perimental units or beetles), and the individual survival times recorded. A natural analysis of the
data would be to compare the survival times using a one-way ANOVA.

There are several important controls that should be built into this experiment. The same strain
of beetles should be used to ensure that the four treatment groups are alike as possible, so that
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differences in survival times are attributable to the insecticides, and not due to genetic differences
among beetles. Other factors that may influence the survival time, say the concentration of the
insecticide or the age of the beetles, would be held constant, or fixed by the experimenter, if possible.
Thus, the same concentration would be used with the four insecticides.

In complex experiments, there are always potential influences that are not realized or thought
to be unimportant that you do not or can not control. The randomization of beetles to groups
ensures that there is no systematic dependence of the observed treatment differences on the un-
controlled influences. This is extremely important in studies where genetic and environmental
influences can not be easily controlled (as in humans, more so than in bugs or mice). The ran-
domization of beetles to insecticides tends to diffuse or greatly reduce the effect of the uncontrolled
influences on the comparison of insecticides, in the sense that these effects become part of the
uncontrolled or error variation of the experiment.

Suppose yij is the response for the jth experimental unit in the ith treatment group, where
i = 1, 2, ..., I. The statistical model for a completely randomized one-factor design that leads to
a one-way ANOVA is given by:

yij = µi + eij ,

where µi is the (unknown) population mean for all potential responses to the ith treatment, and eij

is the residual or deviation of the response from the population mean. The responses within and
across treatments are assumed to be independent, normal random variables with constant variance.

For the insecticide experiment, yij is the survival time for the jth beetle given the ith insec-
ticide, where i = 1, 2, 3, 4 and j = 1, 2, .., 12. The random selection of beetles coupled with the
randomization of beetles to groups ensures the independence assumptions. The assumed population
distributions of responses for the I = 4 insecticides can be represented as follows:

 

 

Insecticide 1

Insecticide 2

Insecticide 3

Insecticide 4
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Let µ = 1
I

∑
i µi be the grand mean, or average of the population means. Let αi = µi − µ be

the ith treatment group effect. The treatment effects add to zero, α1 + α2 + · · ·+ αI = 0, and
measure the difference between the treatment population means and the grand mean. Given this
notation, the one-way ANOVA model is

yij = µ + αi + eij .

The model specifies that the

Response = Grand Mean + Treatment Effect + Residual.

An hypothesis of interest is whether the population means are equal: H0 : µ1 = · · · = µI , which
is equivalent to the hypothesis of no treatment effects: H0 : α1 = · · · = αI = 0. If H0 is true, then
the one-way model is

yij = µ + eij ,

where µ is the common population mean. We know how to test H0 and do multiple comparisons
of the treatments, so I will skip this material.

Most epidemiological studies are observational studies where the groups to be compared
ideally consist of individuals that are similar on all characteristics that influence the response,
except for the feature that defines the groups. In a designed experiment, the groups to be compared
are defined by treatments randomly assigned to individuals. If, in an observational study we can not
define the groups to be homogeneous on important factors that might influence the response, then
we should adjust for these factors in the analysis. I will discuss this more completely in the next
2 weeks. In the analysis we just did on smoking and birth weight, we were not able to randomize
with respect to several factors that might influence the response, and will need to adjust for them.

Paired Experiments and Randomized Block Experiment

A randomized block design is often used instead of a completely randomized design in studies
where there is extraneous variation among the experimental units that may influence the response.
A significant amount of the extraneous variation may be removed from the comparison of treatments
by partitioning the experimental units into fairly homogeneous subgroups or blocks.

For example, suppose you are interested in comparing the effectiveness of four antibiotics for
a bacterial infection. The recovery time after administering an antibiotic may be influenced by
the patients general health, the extent of their infection, or their age. Randomly allocating ex-
perimental subjects to the treatments (and then comparing them using a one-way ANOVA) may
produce one treatment having a “favorable” sample of patients with features that naturally lead to
a speedy recovery. Additionally, if the characteristics that affect the recovery time are spread across
treatments, then the variation within samples due to these uncontrolled features can dominate the
effects of the treatment, leading to an inconclusive result.

A better way to design this experiment would be to block the subjects into groups of four
patients who are alike as possible on factors other than the treatment that influence the recovery
time. The four treatments are then randomly assigned to the patients (one per patient) within a
block, and the recovery time measured. The blocking of patients usually produces a more sensi-
tive comparison of treatments than does a completely randomized design because the variation in
recovery times due to the blocks is eliminated from the comparison of treatments.

A randomized block design is a paired experiment when two treatments are compared. The
usual analysis for a paired experiment is a parametric or non-parametric paired comparison. In
certain experiments, each experimental unit receives each treatment. The experimental units are
“natural” blocks for the analysis.
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Example: Comparison of Treatments to Relieve Itching

Ten male volunteers between 20 and 30 years old were used as a study group to compare seven
treatments (5 drugs, a placebo, and no drug) to relieve itching. Each subject was given a different
treatment on seven study days. The time ordering of the treatments was randomized across days.
Except on the no-drug day, the subjects were given the treatment intravenously, and then itching
was induced on their forearms using an effective itch stimulus called cowage. The subjects recorded
the duration of itching, in seconds. The data are given in the table below. From left to right the
drugs are: papaverine, morphine, aminophylline, pentobarbitol, tripelenamine.

Patient Nodrug Placebo Papv Morp Amino Pento Tripel
1 174 263 105 199 141 108 141
2 224 213 103 143 168 341 184
3 260 231 145 113 78 159 125
4 255 291 103 225 164 135 227
5 165 168 144 176 127 239 194
6 237 121 94 144 114 136 155
7 191 137 35 87 96 140 121
8 100 102 133 120 222 134 129
9 115 89 83 100 165 185 79
10 189 433 237 173 168 188 317

The volunteers in the study were treated as blocks in the analysis. At best, the volunteers might
be considered a representative sample of males between the ages of 20 and 30. This limits the extent
of inferences from the experiment. The scientists can not, without sound medical justification,
extrapolate the results to children or to senior citizens.

The Analysis of a Randomized Block Design

Assume that you designed a randomized block experiment with I blocks and J treatments, where
each treatment occurs once in each block. Let yij be the response for the jth treatment within the
ith block. The model for the experiment is

yij = µij + eij ,

where µij is the population mean response for the jth treatment in the ith block and eij is the
deviation of the response from the mean. The population means are assumed to satisfy the additive
model

µij = µ + αi + βj

where µ is a grand mean, αi is the effect for the ith block, and βj is the effect for the jth treatment.
The responses are assumed to be independent across blocks, normally distributed and with constant
variance. The randomized block model does not require the observations within a block to be
independent, but does assume that the correlation between responses within a block is identical for
each pair of treatments. This is a reasonable working assumption in many analyses. In this case
you really need to be sure the order in which treatments are administered to subjects is randomized
in order to assume equal correlation.

The model is sometimes written as

Response = Grand Mean + Treatment Effect + Block Effect + Residual.
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Given the data, let ȳi· be the ith block sample mean (the average of the responses in the ith

block), ȳ·j be the jth treatment sample mean (the average of the responses on the jth treatment),
and ȳ·· be the average response of all IJ observations in the experiment.

An ANOVA table for the randomized block experiment partitions the Model SS into SS for
Blocks and Treatments.

Source df SS MS
Blocks I − 1 J

∑
i(ȳi· − ȳ··)2

Treats J − 1 I
∑

j(ȳ·j − ȳ··)2

Error (I − 1)(J − 1)
∑

ij(yij − ȳi· − ȳ·j + ȳ··)2

Total IJ − 1
∑

ij(yij − ȳ··)2.

A primary interest is testing whether the treatment effects are zero: H0 : β1 = · · · = βJ = 0.
The treatment effects are zero if the population mean responses are identical for each treat-
ment. A formal test of no treatment effects is based on the p-value from the F-statistic Fobs =
MS Treat/MS Error. The p-value is evaluated in the usual way (i.e. as an upper tail area from an
F-distribution with J − 1 and (I − 1)(J − 1) df.) This H0 is rejected when the treatment averages
ȳ·j vary significantly relative to the error variation.

A test for no block effects (H0 : α1 = · · · = αI = 0) is often a secondary interest, because, if
the experiment is designed well, the blocks will be, by construction, noticeably different. There are
no block effects if the block population means are identical. A formal test of no block effects is
based on the p-value from the F-statistic Fobs = MS Blocks/MS Error. This H0 is rejected when
the block averages ȳi· vary significantly relative to the error variation.

A Randomized Block Analysis of the Itching Data

The anova command is used to get the randomized block analysis. You will be shown the steps in
Thursday’s Lab, but I will mention a few important points.

• The data are comprised of three variables: itchtime, person (ranges from 1-10), and treat-
ment (ranges from 1-7). A data file called itch.txt was created with these three variables to
be read into Stata.

• In the anova table, persons play the role of Blocks in this analysis. Using the commands
infile itchtime person treatment using c:/itch.txt and then
anova itchtime person treatment we obtain the following output:

Number of obs = 70 R-squared = 0.4832
Root MSE = 55.6327 Adj R-squared = 0.3397

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 156292.6 15 10419.5067 3.37 0.0005
|

person | 103279.714 9 11475.5238 3.71 0.0011
treatment | 53012.8857 6 8835.48095 2.85 0.0173

|
Residual | 167129.686 54 3094.99418

-----------+----------------------------------------------------
Total | 323422.286 69 4687.2795

• The Model SS is the Sum of the person SS and treatment SS; check that they add up. The
F-test on the Whole-Model test ANOVA checks for whether Treatments or Persons, or both,
are significant, i.e. provides an overall test of all effects in the model.
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• Next comes the SS for Persons and Treatments, and the corresponding F-statistics and p-
values.

• It is possible in Minitab, JMP-IN and SAS (but not directly in Stata) to obtain Tukey
multiple comparisons of the treatments. These are options in the analysis of the individual
effects.

• In Stata, we obtain the results of testing differences in the treatments (averaged over persons)
using Fisher’s method from the test command. You will cover this in more detail in Thurs-
day’s lab. To obtain Bonferroni’s adjusted p-values, simply multiply the p-value for each of
Fisher’s tests by the number of comparisons you are making; in the itching time example this

is

(
7
2

)
= 21 paired comparisons. We obtain, for example the results of Fisher’s method

for comparing treatment 1 with treatment 2 (no drug versus placebo) and treatment 1 with
treatment 3 (no drug versus papaverine) with the following commands:

test _b[treatment[1]] = _b[treatment[2]]
test _b[treatment[1]] = _b[treatment[3]]

We obtain the output:

( 1) treatment[1] - treatment[2] = 0
F( 1, 54) = 0.31

Prob > F = 0.5814
( 1) treatment[1] - treatment[3] = 0

F( 1, 54) = 8.56
Prob > F = 0.0050

We see that using Fisher’s method, treatments 1 and 2 do not significantly differ, but treat-
ments 1 and 3 do significantly differ at the 5% level. The corresponding Bonferroni p-values
are 0.58(2) > 1 and 0.005(2) = 0.01 for only the two comparisons. They are 0.58(21) > 1 and
0.005(21) = 0.105 if all 21 paired comparisons are to be made. We would accept that there
is no significant difference in mean itching time between either pairs of treatments when all
21 comparisons are to be made. The tabulated p-values resulting from Fisher’s method are:

Treatment 1 2 3 4 5 6
2 0.58
3 0.01 0.00
4 0.09 0.03 0.23
5 0.07 0.02 0.30 0.88
6 0.56 0.26 0.02 0.26 0.20
7 0.34 0.13 0.05 0.44 0.36 0.71

We have the following groupings:

3 5 4 7 6 1 2
-------
--------- Fisher’s

-------

-----------
----------- Bonferroni’s [and Tukey’s obtained in JMP-IN]
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Looking at the means for each treatment averaged over persons, we see that each of the five
drugs appears to have an effect, compared to the placebo and to no drug, which have similar
means. Papaverine appears to be the most effective drug, whereas placebo is the least effective
treatment. A formal F-test shows significant differences among the treatments (p-value=0.017),
and among patients (p-value=0.001). The only significant pairwise difference in treatments is
between papaverine and placebo using Bonferroni (or Tukey) adjustments.

This all looks more difficult than it needs to be in practice. The usual strategy to start grouping
population means this way is first to get the ordering of sample means. Examining the following
produces the order 3 5 4 7 6 1 2 above.

. mean itchtime,over(treatment) noheader
--------------------------------------------------------------

Over | Mean Std. Err. [95% Conf. Interval]
-------------+------------------------------------------------
itchtime |

1 | 191 17.34871 156.3903 225.6097
2 | 204.8 33.43278 138.1034 271.4966
3 | 118.2 16.69983 84.88474 151.5153
4 | 148 14.14763 119.7762 176.2238
5 | 144.3 13.30585 117.7556 170.8444
6 | 176.5 21.77422 133.0616 219.9384
7 | 167.2 21.34521 124.6175 209.7825

--------------------------------------------------------------

The target p-value for the Fisher method probably will be .05, and for the Bonferroni method is
obtained by simple calculation:

. disp .05/21

.00238095

We really want to avoid running all 21 tests, and we can skip most. Once the comparisons between
3 and 7 turn out not significant, it is unnecessary to compare 3 to 5 and 4. Once the comparison
between 3 and 6 turns out significant, it is not necessary to compare 3 to 1 and 2. Careful
examination of patterns can make this fairly quick.

For this particular problem, there are a few outliers and possible problems with the normality
assumption. The data set is on the web site - do the residual analysis, and try transforming itchtime
with something like the square root to handle outliers a little better. Boxplots can be very valuable
here. Redo the comparisons to see if anything has changed in the transformed scale.

A final note: An analysis that ignored person (the blocking factor), i.e. a simple one-way
ANOVA, would be incorrect here since it would be assuming all observations are independent. In
fact, that analysis finds no differences because the MSE is too large when ignoring blocks (you still
should not treat that p-value as valid).

66



6 TWO-FACTOR EXPERIMENTS

6 Two-factor Experiments

Last week we considered a CRD (completely randomized design) for comparing insecticides where
the levels of one factor (insecticide) vary while controlling other factors that influence survival time.
The inferences from the one-way ANOVA apply to beetles with a given age from the selected strain
that might be given the selected concentration of the insecticides. Any generalization of the conclu-
sions to other situations must be justified scientifically, typically through further experimentation.

Recall the way we set up the model: yij is the response for the jth experimental unit (replicate)
in the ith treatment group, where i = 1, 2, ..., I;

yij = µi + εij ,

where µi is the (unknown) population mean for all potential responses to the ith treatment, and εij

is the residual or deviation of the response from the population mean. The responses within and
across treatments are assumed to be independent, normal random variables with constant variance.
We further decomposed µi as µi = µ + αi.

There are several ways to broaden the scope of the study. For example, several strains of beetles
or several concentrations of the insecticide might be used. For simplicity, consider a simple two-
factor experiment where three concentrations (Low, Medium, and High) are applied with each of the
four insecticides. This is a completely crossed two-factor experiment where each of the 4×3 = 12
combinations of the two factors (insecticide and dose) are included in the comparison of survival
times. With this experiment, the scientist can compare insecticides, compare concentrations, and
check for an interaction between dose and insecticide.

Assuming that 48 beetles are available, the scientist would randomly assign them to the 12
experimental groups, giving prespecified numbers of beetles to the 12 groups. For simplicity, assume
that the experiment is balanced, that is, the same number of beetles (4) is assigned to each group
(12× 4 = 48). This is a CRD with two factors.

A Balanced Two-Factor Model

We will analyze survival times of groups of four beetles randomly allocated to twelve treatment
groups obtained by crossing the levels of four insecticides (1,2,3,4) at each of three concentrations
of the insecticides (1=Low, 2=Medium, 3=High). This is a balanced 4-by-3 factorial design (two-
factor design) that is replicated four times. Three variables are needed to uniquely represent each
response in the spreadsheet: dose (1-3, nominal), insecticide (1-4, nominal), and the survival time
(called time). The unit of measure for the survival times is 10 hours. That is, .3 is a survival time
of 3 hours. The data are given below, collected into 12 cells (4 rows and 3 columns):

Dose
Insecticide 1 2 3

1 .31, .45, .46, .43 .36, .29, .40, .23 .22, .21, .18, .23
2 .82, 1.10, .88, .72 .92, .61, .49, 1.24 .30, .37, .38, .29
3 .43, .45, .63, .76 .44, .35, .31, .40 .23, .25, .24, .22
4 .45, .71, .66, .62 .56, 1.02, .71, .38 .30, .36, .31, .33

We model this in terms of population means, just as we did in the one-way ANOVA. Now,
though, population means are indexed two ways, by insecticide and by dose, so we write

yijk = µij + εijk; i = 1, 2, . . . , I; j = 1, 2, . . . , J ; k = 1, 2, . . . , K
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where i refers to insecticide (I=4), j refers to dose (J=3), and k refers to replicate (K=4). For
instance y314 = .76. Since we have the same number (4) of replicates in each cell this is called
balanced. More generally it happens that k = 1, 2, . . . ,Kij , i.e. there can be different numbers
of replicates (usually not designed that way, but things happen!), and the analysis gets somewhat
more complicated. We will consider an unbalanced problem later.

In the one-way problem, the basic test of hypothesis is that all the means are equal. That is not
very useful here. What we want to do is compare insecticides, compare doses, and see if the effect
of dose varies with insecticide. We need to define some additional population averages to attack all
these hypotheses. The population marginal mean for Insecticide i is µ̄i. = 1

J

∑J
j=1 µij = 1

3

∑3
j=1 µij ,

the average of Insecticide i across Dose levels. The population marginal mean for Dose j is µ̄.j =
1
I

∑I
i=1 µij = 1

4

∑4
i=1 µij , the average of Dose j across Insecticide levels. There also is an overall

population average, µ̄.. = 1
IJ

∑I
i=1

∑J
j=1 µij = 1

12

∑4
i=1

∑3
j=1 µij , the average of all 12 population

means. What we are interested in is the structure in the following table of population mean values:

Dose
Insecticide 1 2 3 Insecticide marginal

1 µ11 µ12 µ13 µ̄1.

2 µ21 µ22 µ23 µ̄2.

3 µ31 µ32 µ33 µ̄3.

4 µ41 µ42 µ43 µ̄4.

Dose marginal µ̄.1 µ̄.2 µ̄.3 µ̄..

The basic unit of analysis is sample cell means, which are the direct estimators of the above
population averages. We have a sample of K observations in cell ij - the natural estimator of µij

is ȳij. = 1
K

∑K
k=1 yijk = 1

4

∑4
k=1 yijk . We define sample marginal means as we did for population

values above (row averages and column averages), ȳi.. = 1
J

∑J
j=1 ȳij., ȳ.j. = 1

I

∑I
i=1 ȳij., and ȳ... =

1
IJ

∑I
i=1

∑J
j=1 ȳij. . this gives us natural estimators of the above population values as the sample

values:

Dose
Insecticide 1 2 3 Insecticide marginal

1 ȳ11. ȳ12. ȳ13. ȳ1..

2 ȳ21. ȳ22. ȳ23. ȳ2..

3 ȳ31. ȳ32. ȳ33. ȳ3..

4 ȳ41. ȳ42. ȳ43. ȳ4..

Dose marginal ȳ.1. ȳ.2. ȳ.3. ȳ...

Values calculated with these data are as follows:

Dose
Insecticide 1 2 3 Insect marg

1 .413 .320 .210 .314
2 .880 .815 .335 .677
3 .568 .375 .235 .393
4 .610 .667 .325 .534

Dose marg .618 .544 .276 .479

Because the experiment is balanced, a marginal mean also is the average of all observations that
receive a given treatment. For example, the marginal mean for insecticide 1 is the average survival
time for the 12 beetles given insecticide 1.
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The basic model for the two-factor design, as applied to this experiment is that the

Response = GrandMean + Insect Effect + Dose Effect + Insect ∗Dose Interaction + Residual.

or
yijk = µ + αi + βj + (αβ)ij + εijk

i.e. µij = µ + αi + βj + (αβ)ij . The assumptions for the analysis of the model are identical to
those for a one-way ANOVA on the 12 treatment combinations (insecticide and dose), i.e. all 48
residual effects εijk are independent and variances are all the same, σ2

ij = σ2. There are constraints
put on the terms above, since there are too many, but those depend upon the software used. We
will discuss this at some length.

The ANOVA table for this experimental design decomposes the total variation in the data, as
measured by the Total SS, into components that measure the variation of marginal sample means
of insecticide and dose individually (the Insecticide SS and Dose SS), a component that measures
the degree to which the factors interact (the insecticide by dose SS), and a component that pools
the sample variances across the 12 samples (the Error SS). Each SS has a df, given in the following
ANOVA table. As usual, the MS for each source of variation is the corresponding SS divided by
the df. The MS Error estimates the common population variance for the 12 treatments.

Source df SS MS = SS/df
Insecticide I − 1 = 4− 1 = 3 JK

∑I
i=i(ȳi.. − ȳ...)2

Dose J − 1 = 3− 1 = 2 IK
∑J

j=i(ȳ.j. − ȳ...)2

Interaction (I − 1)(J − 1) = (3)(2) = 6 K
∑I

i=1

∑J
j=1(ȳij. − ȳi. − ȳ.j. + ȳ...)2

Error IJ(K − 1) = (4)(3)(3) = 36
∑I

i=1

∑J
j=1

∑K
k=1(yijk − ȳij.)2

Total IJK − 1 = 48− 1 = 47
∑I

i=1

∑J
j=1

∑K
k=1(yijk − ȳ...)2

Believe it or not, these formulas actually make sense! SS for Insecticide just compares the Insecticide
marginal means to each other by computing their variance (up to a constant), and similarly with
the SS for Dose. SS Total is the usual sum of all squared deviations from the overall mean. MS
Error is just 1

IJ

∑I
i=1

∑J
j=1 s2

ij = s2
pooled, the average of the sample variances from each of the cells,

a natural way to estimate σ2 (this is the within cell variability). The only term that is not easily
understood is SS for Interaction. We will turn to that in a little while (after we have decided what
interaction is).

There are three usual tests of interest.

1. The test of no insecticide effect. The absence of an insecticide effect implies that each level
of insecticide has the same population mean response when the means are averaged over
levels of dose. The test for no insecticide effect is based on the p-value for the F−statistic:
Fobs = MS Insecticide/MS Error. This hypothesis is rejected when the insecticide marginal means
vary significantly relative to the within cell variation. Formally, this is a test of H0 : µ̄1. = µ̄2. =
µ̄3. = µ̄4.(= µ̄..). The form of the SS certainly matches this hypothesis.

2. The test of no dose effect. The absence of a dose effect implies that each dose level has the same
population mean response when the means are averaged over levels of insecticide. The
test for no dose effect is based on the p-value for the F−statistic: Fobs = MS Dose/MS Error. This
hypothesis is rejected when the marginal means for dose vary significantly relative to the within
cell variation. Formally, this is a test of H0 : µ̄.1 = µ̄.2 = µ̄.3(= µ̄..). The form of the SS certainly
matches this hypothesis.

3. The test of no interaction between dose and insecticide is based on the p-value for the F−statistic:
Fobs = MS Interaction/MS Error. This is a test of a hypothesis that the structure is simple. Let’s
explore what that means.
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Interpretation of Interaction

The idea of no interaction is that the margins of the table tell you what the structure is. If row
2, for instance, is “large” for one column, it is similarly large for all the other columns. This
gets awkward to quantify, though, and we need a better approach. We have already seen the
decomposition µij = µ + αi + βj + (αβ)ij . This imposes no restrictions on the cell means. We can
impose a restriction if we force (αβ)ij ≡ 0 so that µij = µ + αi + βj . This additive model is how
we force the margins of the table to tell us everything. The hypothesis of no interaction is thus
formally H0 : (αβ)ij = 0 for all i and j.

There are serious implications of this hypothesis. One is that µij = µ̄i. + µ̄.j − µ̄.. . If you look
back at the SS for Interaction, this is exactly what is being tested. That is not nearly as useful
or interesting, though, as this: If i, i′, j, j′ are legal indexes, then µij − µij′ = µi′j − µi′j′ , which is
to say the difference between doses j and j’ is the same for insecticide i as for insecticide i’; and
µij − µi′j = µij′ − µi′j′ , which is to say the difference between insecticides i and i’ is the same for
dose j as it is for dose j’. These differences in cell means are slopes of line segments in interaction
plots. What no interaction tells you is that the slopes of the line segments (connecting) sample
cell means should be approximately parallel, and the formal test for no interaction is a check on
whether the profile plots of the population means are perfectly parallel.

Prototype Interaction Plots

These profile plots are extremely important tools for understanding our analysis, so let us examine
various possible patterns. Consider the simplest example with two factors A and B each at two
levels, and let the population cell means µij be broken down as µij = µ+αi+βj +(αβ)ij . Following
are plots of those population cell means (those based on data have noise in them so will not be so
perfect) for various combinations of effects present. Make sure you understand why each appears
as it does and match it with the appropriate model.
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Stata Analysis of Insecticide Data

The data need to go into three columns in the spreadsheet with full information for each observation
as follows (note that I folded output to save space – this should go on for 48 rows):

poison dose time poison dose time poison dose time
1 1 .43 2 2 1.24 3 3 .23
1 1 .46 2 2 .61 3 3 .25
1 1 .31 2 2 .49 3 3 .24
1 1 .45 2 2 .92 3 3 .22
1 2 .4 2 3 .29 4 1 .66
1 2 .29 2 3 .3 4 1 .45
1 2 .36 2 3 .37 4 1 .62
1 2 .23 2 3 .38 4 1 .71
1 3 .23 3 1 .63 4 2 .56
1 3 .21 3 1 .43 4 2 .71
1 3 .18 3 1 .76 4 2 1.02
1 3 .22 3 1 .45 4 2 .38
2 1 .88 3 2 .4 4 3 .3
2 1 1.1 3 2 .35 4 3 .31
2 1 .72 3 2 .31 4 3 .36
2 1 .82 3 2 .44 4 3 .33

The table of cell and marginal means
Dose

Insecticide 1 2 3 Insect marg
1 .413 .320 .210 .314
2 .880 .815 .335 .677
3 .568 .375 .235 .393
4 .610 .667 .325 .534

Dose marg .618 .544 .276 .479

is produced within Stata thus

. tabulate poison dose,summarize(time) means
Means of time

| dose
poison | 1 2 3 | Total

-----------+---------------------------------+----------
1 | .4125 .32 .21 | .31416667
2 | .88000001 .81500001 .335 | .67666667
3 | .5675 .375 .235 | .3925
4 | .61 .66749999 .32500001 | .53416667

-----------+---------------------------------+----------
Total | .6175 .544375 .27625 | .479375

The ANOVA table is produced using the anova command forcing the software to fit the model
µij = µ + αi + βj + (αβ)ij
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. anova time poison dose poison*dose
Number of obs = 48 R-squared = 0.7335
Root MSE = .149139 Adj R-squared = 0.6521

Source | Partial SS df MS F Prob > F
------------+----------------------------------------------------

Model | 2.20435628 11 .200396025 9.01 0.0000
|

poison | .921206282 3 .307068761 13.81 0.0000
dose | 1.03301249 2 .516506246 23.22 0.0000

poison*dose | .250137502 6 .041689584 1.87 0.1123
|

Residual | .800724989 36 .022242361
------------+----------------------------------------------------

Total | 3.00508126 47 .063937899

To examine interaction, consider the Dose*Insecticide profile plot given below. For each dose, we
have a plot of the mean survival times across insecticides, giving 3 profiles. There is no interaction
in the data if these profiles are parallel. The formal test for no interaction is a check on whether
the profile plots of the population means are perfectly parallel. Every statistical package requires
some special means to obtain these plots. In earlier versions of Stata we downloaded a command
named cmeans, but that appears no longer available. The method now is easy enough if a little
obscure looking:

anova time poison dose poison*dose
predict yhat,xb
sort dose poison
scatter yhat poison,c(L) mlabel(dose) title(Dose X Poison Profiles)

The points being plotted by this method are those actually fit by the anova model – with the
poison*dose term we are imposing no restrictions so these are the averages we calculated earlier.
Had we left that term off we would have forced the profiles to be parallel since we would have
imposed an additive model. The order of the sort is very important here. The c(L) option is a
very special connected line version suited to this application (c(l) does not work). mlabel lets us
label dose levels.
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The last two lines above could be modified to produce four profiles, one for each poison. The
plots are equally useful – sometimes both are worth examining.

sort poison dose
scatter yhat dose,c(L) mlabel(poison) title(Poison X Dose Profiles)
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These lines are not parallel, but they have the same general trend. If we accept that the
interaction is not significant, we may fit the additive model instead and base inferences on ad-
ditive structure. To fit the model with the interaction term we type anova time poison dose
poison*dose; the additive model is fit using anova time poison dose.

Interpretation of the ANOVA

The “Model” row in the ANOVA table gives a p-value for testing no differences among the popula-
tion mean survival times for the 12 dose and insecticide combinations (or whatever model we fit –
in this case we allow all 12 means to vary with no restriction because we fit the interaction term).
The p-value of .0000 strongly suggests that the population mean survival times are not equal across
all 12 groups.

The ANOVA table gives a breakdown of the Model SS into the SS for insecticide, dose, and
the insecticide by dose interaction. The Mean Squares, F-statistics and p-values for testing these
effects are given. The p-values indicate that the dose and insecticide effects are significant at the
.0001 level. However, the F-test for no dose by insecticide interaction is not significant at the .10
level (p-value=.1123).

The cell means give us an idea about the nature of the differences among doses and insecticides
(the F-tests only tell us if some difference appears to be there). In particular, the insecticides have
noticeably different mean survival times averaged over doses, with insecticide 1 having the lowest
mean survival time averaged over doses. Similarly, higher doses tend to produce lower survival
times. More formal comparisons of the doses and insecticides are possible using the output from
the Tukey comparisons of LS MEANS in JMP-IN or SAS, or from Fisher comparisons in Stata.
For example, using JMP-IN output for the Tukey comparisons (not shown here), the high dose
is significantly different from the low and medium doses, which are not significantly different from
each other. We obtain Fisher’s method in Stata using the commands

test _b[dose[2]]=_b[dose[1]]
test _b[dose[3]]=_b[dose[1]]
test _b[dose[3]]=_b[dose[2]]

These test the hypotheses H0 : β1 = β2, H0 : β1 = β3, and H0 : β2 = β3 respectively. This is
the same as testing H0 : µ̄.1 = µ̄.2, H0 : µ̄.1 = µ̄.3, and H0 : µ̄.2 = µ̄.3 We obtain:

( 1) - dose[1] + dose[2] = 0
F( 1, 36) = 0.30

Prob > F = 0.5889
( 1) - dose[1] + dose[3] = 0

F( 1, 36) = 7.30
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Prob > F = 0.0104
( 1) - dose[2] + dose[3] = 0

F( 1, 36) = 10.55
Prob > F = 0.0025

We see that doses 1 and 2 are not significantly different from each other, but dose 3 is signifi-
cantly different from doses 1 or 2, averaged over the poison effects. Bonferroni comparisons simply
multiply the above p-values by 3 (the number of comparisons), so Bonferroni, Tukey, and Fisher
all agree here.

Assuming the interaction is not important, we can obtain the three estimated pairwise differ-
ences in the three doses using any poison with the commands

lincom _b[dose[2]]-_b[dose[1]]
lincom _b[dose[3]]-_b[dose[1]]
lincom _b[dose[3]]-_b[dose[2]]

we obtain

. lincom _b[dose[2]]-_b[dose[1]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | .0575 .105457 0.55 0.589 -.1563767 .2713767
------------------------------------------------------------------------------
. lincom _b[dose[3]]-_b[dose[1]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | -.285 .105457 -2.70 0.010 -.4988767 -.0711233
------------------------------------------------------------------------------
. lincom _b[dose[3]]-_b[dose[2]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | -.3425 .105457 -3.25 0.003 -.5563767 -.1286233
------------------------------------------------------------------------------

We see, for instance, that we are 95% confident that the mean difference in survival time between
dose 2 and dose 3 is between 0.13 and 0.56. Put another way, beetles given dose 2 last between 1.3
and 5.6 hours longer on average than those given dose 3, regardless of the insecticide used. The
last part of this statement would not hold if we had an important interaction and a more detailed
analysis of how the difference changed with the insecticide used would be warranted.

Results from fitting the additive model are similar, although the confidence intervals are tighter:

. lincom _b[dose[2]]-_b[dose[1]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | -.073125 .0559247 -1.31 0.198 -.1859855 .0397355
------------------------------------------------------------------------------
. lincom _b[dose[3]]-_b[dose[1]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | -.34125 .0559247 -6.10 0.000 -.4541105 -.2283895
------------------------------------------------------------------------------
. lincom _b[dose[3]]-_b[dose[2]]
------------------------------------------------------------------------------

time | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | -.268125 .0559247 -4.79 0.000 -.3809855 -.1552645
------------------------------------------------------------------------------
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More Interpretation of the Dose Effect

The interpretation of the dose and insecticide effects (called the main-effects) depends on whether
interaction is present. The distinction is important, so I will give both interpretations to emphasize
the differences. Given that the test for interaction was not significant, I would likely summarize
the main effects assuming no interaction. For simplicity, I will restrict attention to the dose effect.

The average survival time decreases as the dose increases, with estimated mean survival times
of .618, .544, and .276, respectively. If dose and insecticide interact, you can conclude that beetles
given a high dose of the insecticide typically survive for shorter periods of time averaged over
insecticides. You can not, in general, conclude that the highest dose yields the lowest survival
time regardless of insecticide. For example, the difference in the medium and high dose marginal
means of .544 - .276 = .268 estimates the typical decrease in survival time achieved by using the
high dose instead of the medium dose, averaged over insecticides.

If the two factors interact, then the difference in mean times between the medium and high
doses on a given insecticide may be significantly greater than .268, significantly less than .268, or
even negative. In the latter case the medium dose would be better than the high dose for the
given insecticide, even though the high dose gives better performance averaged over insecticides.
An interaction forces you to use the cell means to decide which combination of dose and insecticide
gives the best results.

If dose and insecticide do not interact, then the difference in marginal dose means averaged
over insecticides also estimates the difference in population mean survival times between two doses,
regardless of the insecticide. This follows from the parallel profiles definition of no interaction.
Thus, the difference in the medium and high dose marginal means (.544 - .276 = .268) estimates
the expected decrease in survival time anticipated from using the high dose instead of the medium
dose, regardless of the insecticide (and hence also when averaged over insecticides).

A practical implication of no interaction is that you can conclude that the high dose is best,
regardless of the insecticide used. The difference in marginal means for two doses estimates the
difference in average survival expected, regardless of the insecticide.

As a final note, I will mention that the residual plot suggests that the variability in the survival
times increases with increasing mean (obtained using rvfplot). A transformation to the reciprocal
scale (which turns the response into a rate) is often suggested with these data. You should repeat
the analysis on that scale to see the improvement.
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An Unbalanced Two-Factor Experiment and Analysis

The sample sizes are rarely equal for the different treatments in an experiment. This has no
consequence on the specification of a model, and we proceed as in the balanced case.

Example: Insulin Levels in Rats

The data below are the insulin levels in rats a certain length of time after a fixed dose of insulin
was injected into their jugular or portal veins. This is a two-factor study with two vein types
(jugular=1, portal=2) and three time levels (0 minutes = 1, 30 minutes = 2, and 60 minutes = 3).
A feature of this experiment is that the rats used in the six vein and time combinations are distinct.
I will fit a two-factor interaction model, which assumes that the responses are independent within
and across treatments. The design is unbalanced, with sample sizes varying from 3 to 12.

Vein Time Insulin Levels
-----------------------------------------
jugular 0 18 36 12 24 43
jugular 30 61 116 63 132 68 37
jugular 60 18 133 33
portal 0 96 72 34 41 98 77 120 49 92 111 99 94
portal 30 146 193 78 127 136 144 115 199 253 338
portal 60 132 110 141 204 69 152 196 195 84 105 71 83

An alternative experimental design might randomly assign rats to the two vein groups, and
then measure the insulin levels of each rat at the three time points. Depending on the questions of
interest, you could compare veins using a one-way MANOVA, or a repeated measures design that
allows correlated responses within rats.

The model written abstractly is

Yijk = µ + αi + βj + (αβ)ij + εijk.

Here, i = 1, 2 denote the two vein types, j = 1, 2, 3 denote the three times, and k = 1, 2, . . . , Kij

denotes the kth rat out of Kij in the group with vein i and time j. You should verify that K11 = 5,
K12 = 6, K13 = 3, K21 = 12, K22 = 10, and K13 = 12. The tabulate command makes that fairly
easy

. tabulate vein time,summarize(insulin)
Means, Standard Deviations and Frequencies of Insulin
| Time

Vein | 1 2 3 | Total
-----------+---------------------------------+----------

1 | 26.6 79.5 61.333333 | 56.714286
| 12.75931 36.44585 62.516664 | 41.899933
| 5 6 3 | 14

-----------+---------------------------------+----------
2 | 81.916667 172.9 128.5 | 125.11765
| 27.747099 76.117526 49.718297 | 63.525115
| 12 10 12 | 34

-----------+---------------------------------+----------
Total | 65.647059 137.875 115.06667 | 105.16667

| 35.284453 78.10239 57.218212 | 65.621848
| 17 16 15 | 48

In order to get the interaction (profile) plots, we need to fit the ANOVA with interaction present.
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. anova insulin vein time vein*time
Number of obs = 48 R-squared = 0.4915
Root MSE = 49.5009 Adj R-squared = 0.4310

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 99478.4833 5 19895.6967 8.12 0.0000
|

vein | 48212.7037 1 48212.7037 19.68 0.0001
time | 37734.188 2 18867.094 7.70 0.0014

vein*time | 2745.9139 2 1372.95695 0.56 0.5752
|

Residual | 102914.183 42 2450.3377
-----------+----------------------------------------------------

Total | 202392.667 47 4306.22695

It probably makes sense to look at both profile plots:

predict yhat
sort vein time
scatter yhat time, c(L) ml(vein) title(Vein X Time Profile Plot)
sort time vein
scatter yhat time, c(L) ml(vein) title(Vein X Time Profile Plot)
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The profile or interaction plots show roughly parallel profiles indicating that the interaction
term may not be important. The profile plots, along with the table of means , indicate that the
insulin level is at its highest (of the three times considered) at 30 minutes for either vein considered
alone, or averaged over veins. The portal vein yields a higher insulin level at any of the three time
periods and averaged over the three time periods.

The ANOVA table indicates that the vein and time effects are significant, with p-values of .0001
and .0014, respectively, but that the interaction is not significant (p-value=.575). Recall that the
profiles are reasonably parallel, which is consistent with a lack of interaction.

The means table above shows that the mean insulin level in the portal vein is significantly
greater than the mean insulin level in the jugular vein. Because of the lack of interaction, the
difference in mean levels for the portal veins is reasonably consistent across times.

Since we accept that there is no interaction here, it makes sense to compare the overall main
effects vein and time using pairwise comparisons. A test that there is no difference in vein types
(test b[vein[2]] = b[vein[1]]) yields a p-value of 0.0416; we reject that there is no difference.
We estimate the difference in insulin levels from the portal versus the jugular veins in Stata using
the command lincom b[vein[2]]- b[vein[1]] and find the estimate to be α̂2−α̂1 = 67.2 with a
95% CI of (2.7, 132), independent of time. This is close to the estimate obtained from the marginal
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means as 125 - 57 = 68, but need not be in unbalanced designs!! For this reason, one should always
use the model estimates from Stata rather than estimates obtained from looking at a raw means
table.

Since there is no interaction here, the difference in insulin levels is the same at time = 0, time =
30, and time = 60 minutes. Recall that when no interaction is present we say the model is additive.
Similarly we may look at differences in insulin levels at the three times independent of vein type.
The p-values for testing that there is no difference between (1) 30 minutes and 0 minutes, (2) 60
minutes and 0 minutes, and (3) 60 minutes and 30 minutes are (1) 0.0001, (2) 0.0262, and (3)
0.0423. These are Fisher values. The corresponding Bonferroni-adjusted values are obtained by

multiplying each by

(
3
2

)
= 3: (1) 0.0003 (2) 0.078, and (3) 0.13; the only significant difference

is between 30 minutes and 0 minutes. Using lincom we would estimate this difference in insulin
levels to be about 72, independent of vein type.

What are your thoughts on the residual plots?
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Finally, note that we accept H0 : (αβ)ij = 0 at any reasonable significance level. We can thus fit
and base inferences on the additive model if we choose to do so. The ANOVA table is

Number of obs = 48 R-squared = 0.4779
Root MSE = 49.0037 Adj R-squared = 0.4424

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 96732.5694 3 32244.1898 13.43 0.0000
|

vein | 51594.4685 1 51594.4685 21.49 0.0000
time | 50332.2893 2 25166.1447 10.48 0.0002

|
Residual | 105660.097 44 2401.36585

-----------+----------------------------------------------------
Total | 202392.667 47 4306.22695

Now, using estimates from the additive model, we obtain the estimated mean difference in vein
effects to be α̂2−α̂1 = 73.0 with a 95% CI of (41, 105). The CI is now smaller than when calculated
with a model that includes an interaction term!! This is good news as it provides a tighter range
of plausible values and thus more powerful inference.

78



7 TWO-FACTOR EXPERIMENTS, CONTINUED

7 Two-factor Experiments, Continued

In the last lecture and in lab we dealt with the parameters Stata (and most software packages)
use to fit the additive and the interaction models for two-way ANOVA. The lincom command was
one way we learned to deal with the parameters. That probably is not the easiest approach in
many problems, however. If we learn a little more about the parameters, some information is fairly
immediate.

Let’s continue with the insecticide problem, where we have 4 poisons and 3 doses. Remember
the pattern of population cell means as follows (ignoring marginal means for now):

Dose
Insecticide 1 2 3

1 µ11 µ12 µ13

2 µ21 µ22 µ23

3 µ31 µ32 µ33

4 µ41 µ42 µ43

Consider the full interaction model first. The parameterization for this is µij = µ + αi + βj +
(αβ)ij , i = 1, . . . , 4; j = 1, . . . , 3 . We dodged the issue of constraints last time, but recall the
problem: There are 12 real parameters (the µij), but 20 new parameters (1 + 4 + 3 + 12). We need
to put 8 constraints (restrictions) on these new parameters to bring us back down to 12. An old
standard textbook solution to this, and one that makes the math look a lot simpler (for marginal
means at least) is

0 =
∑

i

αi =
∑

j

βj =
∑

i

(αβ)ij =
∑

j

(αβ)ij

(that looks like 9 constraints but one is redundant so it is 8). Software packages like Stata and
SAS use an algorithm called the sweep algorithm that makes a completely different and much
more useful set of constraints more natural, though. Effectively, they start adding parameters in
the model and as soon as they hit a redundant one, they set the new parameter to 0. The new
constraints become

0 = α4 = β3 = (αβ)41 = (αβ)42 = (αβ)43 = (αβ)13 = (αβ)23 = (αβ)33

i.e. if there are I levels of i and J levels of j then any time i reaches level I or j reaches level J
then the parameter becomes 0. It is a little easier to see 8 constraints here.

If we plug in these constraints and rewrite all 12 cell means, we see the following pattern:

Dose
Insecticide 1 2 3

1 µ + α1 + β1 + (αβ)11 µ + α1 + β2 + (αβ)12 µ + α1

2 µ + α2 + β1 + (αβ)21 µ + α2 + β2 + (αβ)22 µ + α2

3 µ + α3 + β1 + (αβ)31 µ + α3 + β2 + (αβ)32 µ + α3

4 µ + β1 µ + β2 µ

At first this may not seem like much simplification, but let’s examine it a bit more carefully. µ is
often refereed to as the grand mean (this comes from the old textbook parameterization) but here
we see µ = µ43. The last cell of the table has become the reference group with all other parameters
being deviations from that reference group. β2 is the difference between doses 2 and 3 for the 4th

poison, β1 is the difference between doses 1 and 3 for the 4th poison. α3 is the difference between
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poisons 3 and 4 for the 3rd dose, α2 is the difference between poisons 2 and 4 for the 3rd dose, and
α1 is the difference between poisons 1 and 4 for the 3rd dose. The difference between poisons 3 and
4 for the 2nd dose is α3 + (αβ)32 rather than just α3 (if the difference does not depend on poison
then there is no interaction).

With these constraints then (µ32−µ42)− (µ33−µ43) = (αβ)32. Recall last lecture we said that
no interaction (parallel profiles in an interaction plot) was this: If i, i′, j, j′ are legal indexes, then
µij−µij′ = µi′j−µi′j′ , which is to say the difference between doses j and j′ is the same for insecticide
i as for insecticide i′; and µij −µi′j = µij′ −µi′j′ , which is to say the difference between insecticides
i and i′ is the same for dose j as it is for dose j′. Last week we saw that [µij −µij′ ]− [µi′j −µi′j′ ] =
[(αβ)ij−(αβ)ij′ ]−[(αβ)i′j−(αβ)i′j′ ] . The constraints that 0 = (αβ)Ij = (αβ)iJ allow us to simplify
greatly the lincom command for many such terms. Since (µ32 − µ42)− (µ33 − µ43) = (αβ)32 (only
for these constraints, though!) then a simple lincom(_b[poison[3]*dose[2]]) gets that term.
Better yet, we can have it automatically printed.

Stata Implementation

Anova problems actually are specialized regression problems (we will grapple with this idea later).
What we want are regression estimates of all the effects (µ, αi, βj , (αβ)ij). The regress option
with anova gets that for us in a form that matches the lincom syntax. This can be treated as
a post-estimation command, i.e. after issuing the anova time poison dose poison*dose com-
mand (and examining the the ANOVA table, interaction plots, etc.) just type another command
anova,regress to get the following results

. anova, regress
Source | SS df MS Number of obs = 48

-------------+------------------------------ F( 11, 36) = 9.01
Model | 2.20435628 11 .200396025 Prob > F = 0.0000

Residual | .800724989 36 .022242361 R-squared = 0.7335
-------------+------------------------------ Adj R-squared = 0.6521

Total | 3.00508126 47 .063937899 Root MSE = .14914
------------------------------------------------------------------------------

time Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------------------------------------------------------
_cons .325 .0745694 4.36 0.000 .1737663 .4762337
poison

1 -.115 .105457 -1.09 0.283 -.3288767 .0988767
2 .01 .105457 0.09 0.925 -.2038767 .2238767
3 -.09 .105457 -0.85 0.399 -.3038767 .1238767
4 (dropped)

dose
1 .285 .105457 2.70 0.010 .0711233 .4988767
2 .3425 .105457 3.25 0.003 .1286233 .5563767
3 (dropped)

poison*dose
1 1 -.0825 .1491387 -0.55 0.584 -.3849674 .2199674
1 2 -.2325 .1491387 -1.56 0.128 -.5349673 .0699674
1 3 (dropped)
2 1 .26 .1491387 1.74 0.090 -.0424673 .5624674
2 2 .1375 .1491387 0.92 0.363 -.1649673 .4399674
2 3 (dropped)
3 1 .0475 .1491387 0.32 0.752 -.2549674 .3499674
3 2 -.2025 .1491387 -1.36 0.183 -.5049673 .0999674
3 3 (dropped)
4 1 (dropped)
4 2 (dropped)
4 3 (dropped)

------------------------------------------------------------------------------

Let’s try to make sense of these coefficients by relating them both to the table of sample cell means
and to an interaction plot from the last lecture. First, try to reconstruct the sample cell means
from the coefficients. Recall that the full interaction model imposes no restrictions.
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Various questions arise. Why is poison highly significant yet none of the poison coefficients is
significant? – Get your answer from the interaction plot and what these coefficients are estimating.
One of the large differences appears to be between poisons 1 and 2 at dose level 2. How would you
estimate that difference? How would you test for specific interactions (i.e. different slopes in the
above plot?). We will spend some time examining all this.

Dose
Insecticide 1 2 3 Insect marg

1 .413 .320 .210 .314
2 .880 .815 .335 .677
3 .568 .375 .235 .393
4 .610 .668 .325 .534

Dose marg .618 .544 .277 .480
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The Additive Model

Since interaction was not significant (there is not much data so this might just be poor power)
we should see how all this looks when we fit the no-interaction (additive) model. This is a highly
restricted model and we will not reproduce all the sample cell means from this model. Now we fit
µij = µ + αi + βj using the command, with ensuing results given below:

. anova time poison dose
Number of obs = 48 R-squared = 0.6503
Root MSE = .158179 Adj R-squared = 0.6087

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 1.95421877 5 .390843755 15.62 0.0000
|

poison | .921206282 3 .307068761 12.27 0.0000
dose | 1.03301249 2 .516506246 20.64 0.0000

|
Residual | 1.05086249 42 .025020536

-----------+----------------------------------------------------
Total | 3.00508126 47 .063937899

All constraints are as previously described, and easily seen from the following:

. anova,regress
Source | SS df MS Number of obs = 48

-------------+------------------------------ F( 5, 42) = 15.62
Model | 1.95421877 5 .390843755 Prob > F = 0.0000

Residual | 1.05086249 42 .025020536 R-squared = 0.6503
-------------+------------------------------ Adj R-squared = 0.6087
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Total | 3.00508126 47 .063937899 Root MSE = .15818
------------------------------------------------------------------------------

time Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------------------------------------------------------
_cons .3310417 .0559247 5.92 0.000 .2181811 .4439022
poison

1 -.22 .0645762 -3.41 0.001 -.3503201 -.0896799
2 .1425 .0645762 2.21 0.033 .0121799 .2728201
3 -.1416667 .0645762 -2.19 0.034 -.2719868 -.0113466
4 (dropped)

dose
1 .34125 .0559247 6.10 0.000 .2283895 .4541105
2 .268125 .0559247 4.79 0.000 .1552645 .3809855
3 (dropped)

------------------------------------------------------------------------------

What we have fit now is the much simpler structure for population cell means (all the parameters
have very easy interpretations – what are they?):

Dose
Insecticide 1 2 3

1 µ + α1 + β1 µ + α1 + β2 µ + α1

2 µ + α2 + β1 µ + α2 + β2 µ + α2

3 µ + α3 + β1 µ + α3 + β2 µ + α3

4 µ + β1 µ + β2 µ

You should confirm that you no longer reproduce the sample cell means ȳij. from the estimated
regression coefficients, but you do reproduce the sample marginal means ȳi.. and ȳ.j. . We can
look at an interaction plot of predicted cell means, but note that we have forced it to look this way.
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Estimable Functions

What we have been covering is expanded upon at considerable length in the SAS manual and many
textbooks under the topic of estimable functions. This is a fairly advanced topic, but the gist of
it is that only linear combinations of population cell means can legally be estimated (things of the
form

∑
i

∑
j cijµij for some constants cij – we have been using 0, 1 and -1 as constants). Anything

we estimate or test has to be a linear combination of population cell means. In particular, µ and
αi, for instance, are not estimable since there is ambiguity about what they are until constraints
are put on them. Different constraints give different interpretations. What we have been doing is
relating everything back to the µij in order to keep it all “legal”. I can run an analysis on two
different packages (or even the same package with different options) and get considerably different
estimates of α1 reported. As long as I stick to estimable functions, though, I always get the same
estimate.
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Parameters in the One-Way Problem

A look back at the one-way ANOVA problem shows the constraints can make some things simpler
there too. In that case we have a model yij = µi + εij ; i = 1, . . . , I; j = 1, . . . , ni . Let’s do the
same type of decomposition of µi, i.e. µi = µ + αi, with the same problem that we have I “real”
group means and now I + 1 new parameters. We need a constraint, and the one Stata and SAS
impose is αI = 0 (set the first redundant parameter to 0).

What is the implication? Now µ = µI and αi = µi − µI , i.e. the last group has become a
reference group and all the parameter estimates (the αi) are deviations from this reference group.
In the CHDS example this means we could get mostly for free the t-tests comparing non-smokers to
heavy smokers and light smokers to heavy smokers. It might be more convenient to reorder so that
nonsmokers were last, so that the easy tests would compare the two smoking groups to nonsmokers.
The lincom command can fill in the last comparison in either case (µ1 − µ2 = α1 − α2). The idea
of estimable functions still applies; we need to make sure we are looking at linear combinations of
the means.

Unbalanced Data

Returning to the two-way problem, we wrote a model

yijk = µ + αi + βj + (αβ)ij + εijk; i = 1, 2, . . . , I; j = 1, 2, . . . , J ; k = 1, 2, . . . , K

where the sample size in each cell (i, j) was the same number K. Unbalanced data allow the sample
size to vary with cell, so now

yijk = µ + αi + βj + (αβ)ij + εijk; i = 1, 2, . . . , I; j = 1, 2, . . . , J ; k = 1, 2, . . . , Kij

What difference does it make? — In practice, not much. The reason the topic gets mentioned is
that there are disagreeable aspects to unbalanced designs. There are multiple ways to formulate
SSs and F-tests. SAS provides 4, Types I-IV, and Stata provides the same as SAS Types I and
III. With balanced data all the types agree, but for unbalanced data they do not all agree. The
only reason this is not much of a practical problem is that most analysts use Type III (Stata’s
default) and don’t anguish much over it. The t-tests on coefficients are not obviously affected (i.e.
lincom results), although comparing main effects in the presence of interaction is a subtle business
in unbalanced designs (the preferred approach being least squares means, and Stata makes those
awkward to get).

Let’s return to the unbalanced example of rat insulin levels from the last lecture. The ANOVA
table indicates that the vein and time effects are significant, with p-values of .0001 and .0014,
respectively, but that the interaction is not significant (p-value=.575). Recall that the jugular and
portal profiles are reasonably parallel, which is consistent with a lack of interaction. Looking at
the estimates below, let us figure out as an in-class exercise how to interpret the various coefficient
estimates, and how to test for significance of the important effects. We really ought to see if we
can transform to a scale where the residuals look better, too.
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. anova,regress
Source | SS df MS Number of obs = 48

-------------+------------------------------ F( 5, 42) = 8.12
Model | 99478.4833 5 19895.6967 Prob > F = 0.0000

Residual | 102914.183 42 2450.3377 R-squared = 0.4915
-------------+------------------------------ Adj R-squared = 0.4310

Total | 202392.667 47 4306.22695 Root MSE = 49.501
------------------------------------------------------------------------------

insulin Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------------------------------------------------------
_cons 128.5 14.28967 8.99 0.000 99.66227 157.3377
vein

1 -67.16667 31.95268 -2.10 0.042 -131.6498 -2.68354
2 (dropped)

time
1 -46.58333 20.20865 -2.31 0.026 -87.36604 -5.800623
2 44.4 21.19501 2.09 0.042 1.626732 87.17327
3 (dropped)

vein*time
1 1 11.85 41.41541 0.29 0.776 -71.72969 95.42969
1 2 -26.23333 40.9194 -0.64 0.525 -108.812 56.34536
1 3 (dropped)
2 1 (dropped)
2 2 (dropped)
2 3 (dropped)

------------------------------------------------------------------------------

. anova insulin vein time
Number of obs = 48 R-squared = 0.4779
Root MSE = 49.0037 Adj R-squared = 0.4424

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 96732.5694 3 32244.1898 13.43 0.0000
|

vein | 51594.4685 1 51594.4685 21.49 0.0000
time | 50332.2893 2 25166.1447 10.48 0.0002

|
Residual | 105660.097 44 2401.36585

-----------+----------------------------------------------------
Total | 202392.667 47 4306.22695

. anova,regress
Source | SS df MS Number of obs = 48

-------------+------------------------------ F( 3, 44) = 13.43
Model | 96732.5694 3 32244.1898 Prob > F = 0.0000

Residual | 105660.097 44 2401.36585 R-squared = 0.4779
-------------+------------------------------ Adj R-squared = 0.4424

Total | 202392.667 47 4306.22695 Root MSE = 49.004
------------------------------------------------------------------------------

insulin Coef. Std. Err. t P>|t| [95% Conf. Interval]
------------------------------------------------------------------------------
_cons 129.6685 13.03897 9.94 0.000 103.3902 155.9468
vein

1 -73.00912 15.75087 -4.64 0.000 -104.7529 -41.26531
2 (dropped)

time
1 -42.54816 17.42256 -2.44 0.019 -77.66102 -7.435306
2 35.58493 17.82622 2.00 0.052 -.3414601 71.51132
3 (dropped)

------------------------------------------------------------------------------

To see one difference with the unbalanced design, consider the following two ANOVA tables; the
first is the usual one, the second is an optional one. Note the differences for SS of main effects. If
the data were balanced, the default (SAS Type III SS) and the sequential (SAS Type I SS) would
be the same. The second form even depends upon the order terms are entered into the model.
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7 TWO-FACTOR EXPERIMENTS, CONTINUED

. anova insulin vein time vein*time
Number of obs = 48 R-squared = 0.4915
Root MSE = 49.5009 Adj R-squared = 0.4310

Source | Partial SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 99478.4833 5 19895.6967 8.12 0.0000
|

vein | 48212.7037 1 48212.7037 19.68 0.0001
time | 37734.188 2 18867.094 7.70 0.0014

vein*time | 2745.9139 2 1372.95695 0.56 0.5752
|

Residual | 102914.183 42 2450.3377
-----------+----------------------------------------------------

Total | 202392.667 47 4306.22695
. anova insulin vein time vein*time,seq

Number of obs = 48 R-squared = 0.4915
Root MSE = 49.5009 Adj R-squared = 0.4310

Source | Seq. SS df MS F Prob > F
-----------+----------------------------------------------------

Model | 99478.4833 5 19895.6967 8.12 0.0000
|

vein | 46400.2801 1 46400.2801 18.94 0.0001
time | 50332.2893 2 25166.1447 10.27 0.0002

vein*time | 2745.9139 2 1372.95695 0.56 0.5752
|

Residual | 102914.183 42 2450.3377
-----------+----------------------------------------------------

Total | 202392.667 47 4306.22695

Regression on Dummy Variables: Stata’s xi

The way anova works is that it creates special variables called indicator or dummy variables for
categorical variables and performs regression on them. One dummy variable is created for each
level of a categorical variable and has a value of 1 if the observation has that level of the category
else the value is 0. We do not need to worry much about this if we can use the anova command, but
if we want to do all this in logistic regression we have to get explicit about it. All the big statistics
packages do this, and if we were using SAS I could hide it all from you, but Stata requires you to
learn about it. The xi facility in Stata is one we will need for many problems.

Following is the insecticide data analyzed as a regression problem using xi:

. xi: regress time i.poison i.dose i.poison*i.dose
i.poison _Ipoison_1-4 (naturally coded; _Ipoison_1 omitted)
i.dose _Idose_1-3 (naturally coded; _Idose_1 omitted)
i.poi~n*i.dose _IpoiXdos_#_# (coded as above)

Source | SS df MS Number of obs = 48
-------------+------------------------------ F( 11, 36) = 9.01

Model | 2.20435628 11 .200396025 Prob > F = 0.0000
Residual | .800724989 36 .022242361 R-squared = 0.7335

-------------+------------------------------ Adj R-squared = 0.6521
Total | 3.00508126 47 .063937899 Root MSE = .14914

------------------------------------------------------------------------------
time | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Ipoison_2 | .4675 .105457 4.43 0.000 .2536233 .6813767
_Ipoison_3 | .155 .105457 1.47 0.150 -.0588767 .3688767
_Ipoison_4 | .1975 .105457 1.87 0.069 -.0163767 .4113767

_Idose_2 | -.0925 .105457 -0.88 0.386 -.3063767 .1213767
_Idose_3 | -.2025 .105457 -1.92 0.063 -.4163767 .0113767

_Ipoison_2 | (dropped)
_Ipoison_3 | (dropped)
_Ipoison_4 | (dropped)
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7 TWO-FACTOR EXPERIMENTS, CONTINUED

_Idose_2 | (dropped)
_Idose_3 | (dropped)

_IpoiXdo~2_2 | .0275 .1491387 0.18 0.855 -.2749674 .3299674
_IpoiXdo~2_3 | -.3425 .1491387 -2.30 0.028 -.6449674 -.0400326
_IpoiXdo~3_2 | -.1 .1491387 -0.67 0.507 -.4024674 .2024674
_IpoiXdo~3_3 | -.13 .1491387 -0.87 0.389 -.4324674 .1724674
_IpoiXdo~4_2 | .15 .1491387 1.01 0.321 -.1524674 .4524674
_IpoiXdo~4_3 | -.0825 .1491387 -0.55 0.584 -.3849674 .2199674

_cons | .4125 .0745694 5.53 0.000 .2612663 .5637337
------------------------------------------------------------------------------

You should do this and then examine the variables Stata has placed in the data set. This does
not give us the tests from the ANOVA table. The test on interaction is easy:

. testparm _IpoiXdo*
( 1) _IpoiXdos_2_2 = 0
( 2) _IpoiXdos_2_3 = 0
( 3) _IpoiXdos_3_2 = 0
( 4) _IpoiXdos_3_3 = 0
( 5) _IpoiXdos_4_2 = 0
( 6) _IpoiXdos_4_3 = 0

F( 6, 36) = 1.87
Prob > F = 0.1123

but the tests on main effects (equality of marginal means) are a lot less obvious (don’t worry, you
won’t have to do it this way for anova problems). Because this is such a mess, we probably would
not test for main effects if interaction were present if we had to go through these steps. With no
interaction the procedure is just like the test above.

. test _Ipoison_2 + (_IpoiXdos_2_2+_IpoiXdos_2_3)/3 = _Ipoison_3 + (_IpoiXdos_3_2+_IpoiXdo
> s_3_3)/3 = _Ipoison_4 + (_IpoiXdos_4_2+_IpoiXdos_4_3)/3 =0
( 1) _Ipoison_2 - _Ipoison_3 + .3333333 _IpoiXdos_2_2 + .3333333 _IpoiXdos_2_3 - .333333

> 3 _IpoiXdos_3_2 - .3333333 _IpoiXdos_3_3 = 0
( 2) _Ipoison_2 - _Ipoison_4 + .3333333 _IpoiXdos_2_2 + .3333333 _IpoiXdos_2_3 - .333333

> 3 _IpoiXdos_4_2 - .3333333 _IpoiXdos_4_3 = 0
( 3) _Ipoison_2 + .3333333 _IpoiXdos_2_2 + .3333333 _IpoiXdos_2_3 = 0

F( 3, 36) = 13.81
Prob > F = 0.0000

. test _Idose_2+(_IpoiXdos_2_2+_IpoiXdos_3_2+_IpoiXdos_4_2)/4 =_Idose_3+(_IpoiXdos_2_3+_I
> poiXdos_3_3+_IpoiXdos_4_3)/4=0
( 1) _Idose_2 - _Idose_3 + .25 _IpoiXdos_2_2 - .25 _IpoiXdos_2_3 + .25 _IpoiXdos_3_2 - .

> 25 _IpoiXdos_3_3 + .25 _IpoiXdos_4_2 - .25 _IpoiXdos_4_3 = 0
( 2) _Idose_2 + .25 _IpoiXdos_2_2 + .25 _IpoiXdos_3_2 + .25 _IpoiXdos_4_2 = 0

F( 2, 36) = 23.22
Prob > F = 0.0000

Annoyingly, Stata has changed constraints on us (now the first level of a categorical variable
gets zeroed out). We can set what level gets zeroed out (and thus becomes the reference level) with
the char command

. char poison[omit] 4

. char dose[omit] 3

. xi: regress time i.poison i.dose i.poison*i.dose

Execute these commands and confirm the original parameters from anova,regress are reproduced.
We rarely use xi and explicit regression on dummy variables in anova problems. We will need it
with logistic regression, though.
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8 ANALYSIS OF COVARIANCE

8 Analysis of Covariance

Let us recall our previous one-way ANOVA problem, where we compared the mean birth weight
(weight) for children in three groups defined by the mother’s smoking habits. The three groups
had mothers that did not smoke during pregnancy (group 1), mothers that smoked a pack or less
of cigarettes per day during their pregnancy (group 2), and mothers that smoked more than one
pack of cigarettes per day during their pregnancy (group 3). We concluded that children born to
non-smoking mothers were, on average, heavier than children born to mothers in the two smoking
groups (and there was no significant difference in birth weights between the two smoking groups).

A deficiency with the analysis is that the differences among groups may be due to other fac-
tors that could not be controlled; for example, the mother’s intake of caffeine, the mother’s pre-
pregnancy weight (mweight), and so on. This, of course, is a standard problem with observational
studies. If the primary interest is to assess the potential effect of mother’s smoking on birth weight,
then a proper analysis would need to account for the possible effect of these other features on birth
weight. For simplicity, I will consider an analysis that accounts, or adjusts, for the effect of mother’s
pre-pregnancy weight (mweight) when assessing the effect of smoking. We will see how to adjust
for more effects as well.

Let weightij be the birth weight for the jth child born to a mother in group i (i = 1, 2, 3) with
pre-pregnancy weight mweightij . The statistical technique for comparing weights across groups,
adjusting for mother’s mweight, is called the analysis of covariance (ANCOVA), and is based on
the model:

weightij = µ + αi + β mweightij + εij ,

where µ is a ”grand mean”, αi is the ith group effect, and β is a regression effect. If β = 0 this is
the standard one-way ANOVA model for comparing weights across smoking groups. In words:

weight = Grand Mean + Group Effect + mweight Effect + Residual.

The ANCOVA model implies that the relationship between the mean weight and mother’s
mweight is linear in each group, but that the regression lines for the groups have different intercepts
(and equal slopes). The intercept for group i is µ + αi. Figure 1 illustrates one possible realization
of the model (PPW is mweight).
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Figure 1: Possible population regression lines for ANCOVA model
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8 ANALYSIS OF COVARIANCE

Primary interest is in testing the hypothesis of no group effects, which is equivalent to testing
that the intercepts of the population regression lines are equal: H0 : α1 = α2 = α3 = 0. If H0

is true then the relationship between weight and mweight does not depend on the smoking group
to which the mother belongs, that is, there is no effect of mother’s smoking on the child’s weight,
after adjusting for mweight (by including mweight in the model).

Fitting the ANCOVA Model in Stata

ANCOVA is a hybrid of ANOVA and Regression. In Stata both the anova and regress commands
assume a continuous response (dependent or y-variable); with regress all predictors are continuous,
with anova all predictors are by default categorical (and a separate indicator variable is created
for each level of each predictor). ANCOVA is implemented most easily using the anova command
(or by using xi: regress), but you need to specify what is continuous and what is categorical.
The regress form is more awkward but is needed when we move to logistic regression. Continuous
predictors are known as covariates.

Recall the syntax for one-way ANOVA was anova weight ms_gp where weight is child’s birth
weight and ms_gp is mother’s smoking group (Note I coded group as 0,1,2 in the example. This
actually serves to illustrate a point, because Stata will in subsequent analysis decide to recode
groups as 1-3. I don’t want you surprised by this). Page 1 of the Stata output has the analysis for
this one-way problem. In order to adjust for mweight (Maternal pre-pregnancy weight) the usual
method in Stata is the command anova weight ms_gp mweight,cont(mweight) where the option
“,cont(mweight)” tells anova that mweight is continuous. Everything not listed as continuous is
assumed to be categorical. You may also use the syntax anova weight Smoke mweight,cat(Smoke)
to list the categorical variables, with remaining variables treated as continuous.

Page 2 of the Stata output begins the summaries of the ANCOVA model. At this time, I will
not worry about whether the model fits the data. The F-test for the model gives a p-value for
testing no significant effects in the model. The p-value of 0.0000 strongly suggests that either the
smoking groups or mweight, or both, have an effect on the weight. The p-values for smoking group
and mweight also are both 0.0000, indicating that the group and mweight effects are significant. In
particular, there are significant differences in the intercepts of the population regression lines, or
put another way, there are significant differences in the mean weights of the three groups defined
by mother’s smoking habits, after adjusting for the effect of mweight. Figure 2 shows the
predicted values for the groups from this analysis.
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Figure 2: Fitted regression lines for ANCOVA model
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8 ANALYSIS OF COVARIANCE

A Little More Explanation of the Model

To better understand why ANCOVA is preferred to the one-way ANOVA on birth weights, suppose
for argument’s sake that weight is strongly positively related to mweight. If smoking behavior is
strongly related to mother’s mweight, then differences in the mean weights for the three groups could
be due solely to differences in mother’s mweight. For example, consider the hypothetical population
in Figure 3 where I have plotted the relationship between the mean weight and mother’s mweight
in each group. Suppose that any data collected from these populations falls exactly on the lines in
the plot.
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Figure 3: More possible population regression lines for ANCOVA model

A simple linear regression model relating weight to mweight, with no group effects, is appropri-
ate, yet the distributions for weights, ignoring groups, would differ dramatically. The regression line
suggests that you would have identical mean weights for mothers in the different smoking groups,
if mothers with a fixed weight could be compared across groups.

A one-way ANOVA comparing smoking groups, ignoring mother’s mweight would find signifi-
cant differences in weight across groups. The ANCOVA would conclude, appropriately, that there
are no differences across groups once mweight was taken into account. (A more fundamental ques-
tion is whether these groups, as drawn, are even comparable!)

Interpreting Parameter Estimates

We have already tackled most of the confusing issues with parameter estimates in the two-way
ANOVA problem. We have the same issues of constraints here (because we use more model pa-
rameters than we actually have “real” parameters). We have 3 intercepts and one slope; we have 1
µ, 3 αi s, and one β in the model. One of the αi s is redundant, and Stata will take care of that by
setting the last one to 0. Again, that is just one possible solution, and different software packages
can make different decisions.

We have three lines, and we want the equations for all three. We have forced parallel lines, so
the slope is the same for each smoking group, .0118683. The intercept for the ith smoking group
has been modelled as µ + αi, but α3 has been constrained to 0, so

Intercept group 0 = Constant for model + gp[0] effect
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8 ANALYSIS OF COVARIANCE

= 5.7517 + 0.4477 = 6.1994
Intercept group 1 = Constant for model + gp[1] effect

= 5.7517 + .0318 = 5.7835
Intercept group 2 = Constant for model = 5.7517

The fitted relationships are

Predicted weight = 6.1994 + .00187 mweight, for group 0
= 5.7835 + .00187 mweight, for group 1
= 5.7517 + .00187 mweight, for group 2

A plot of the fitted relationships is given in Figure 2.

Group Differences

Group differences in the ANCOVA model are differences in intercepts, i.e. vertical distances between
the lines. Using a Bonferroni criterion, we see significant differences between Groups 0 and 2
(from _b[ms_gp[1]]), and Groups 0 and 1 (from the lincom (_b[ms_gp[1]]-_b[Smoke[2]])
command), but no significant difference between Groups 1 and 2 (from _b[Smoke[2]]). (Note that
Stata has renumbered groups as 1, 2, 3 even though we had made them 0, 1, 2 — I apologize for
making this confusing, but this “feature” could catch you off guard someday.) This is very similar
to what we found in the one-way problem both in direction and size of all effects. Adjusting for
mweight has not given us all that much insight here, but needed to be done in order to believe the
group differences were “real”. The slope of the line has the same interpretation as in regression
(what is the interpretation?), but is not of primary interest here.

Checking the ANCOVA Model

I have explained the basics of ANCOVA, without considering whether this model describes the
CHDS data. The ANCOVA model constrains the slopes of the regression lines for the 3 groups to
be identical, so we should check if this is sensible. We can fit three completely different lines (to
see if we do any better than by forcing them to be parallel) by adding a smoking group by mweight
interaction (crossed effect) to the ANCOVA model.

Pages 4-5 of the Stata output show results, as well as three separate linear regressions for the
three groups. Let us spend some time in class making sure we see what the parameter constraints
have done for us, and that the resulting lines are identical to separate linear regressions.

The p-value of .2491 for the test of no Smoke group * mweight interaction indicates there
is no significant improvement by allowing different slopes, so the original ANCOVA model looks
reasonable in that regard. The plot of all three fitted lines does not suggest much difference in
slopes. The residual plot was not very suggestive of problems – there appears to be little difficulty
with this model.

You should note that there is a huge disadvantage to needing a Group*covariate interaction
term. With parallel lines we know what group differences mean – the distances between lines.
With non-parallel lines the distance between lines depends upon what value of the covariate you
are considering, and that distance thus can be anything you want it to be. Confirm this with a plot.

Extending the Analysis of Covariance

In the CHDS study, there are several possible effects in addition to mother’s pre-pregnancy weight
(mweight) that we may wish to consider when assessing whether mother’s smoking impacts a child’s
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birth weight. For example, the mother’s height and age, and the gestation length, may be important
features to account for in the analysis.

The natural way to account for each effect is through a multiple regression model with a group
effect:

weightij = µ + αi + β1mweightij + β2AGEij + β3HTij + β4GLij + εij .

As before, weightij is the birth weight for the jth child born to a mother in group i (i = 1, 2, 3)
with pre-pregnancy weight mweightij , age AGEij , height HTij , and gestation length GLij .

The multiple regression model has 4 four predictors (mweight, AGE, HT, GL) and 1 factor
(groups). The model assumes that the effect of each predictor is the same across groups, leading
to a multiple regression model with identical regression effects for each predictor in each group. In
words:

weight = Grand Mean + Group Effect + mweight Effect + Age Effect

+HT Effect + GL Effect + Residual.

A primary interest is testing the hypothesis of no group effects: H0 : α1 = α2 = α3 = 0. If H0 is
true then the relationship between weight and mweight, AGE, HT, and GL does not depend on the
smoking group to which the mother belongs, that is, there is no effect of mother’s smoking on the
child’s weight, after adjusting for mweight, AGE, HT, and GL (by including them as predictors in
the model). More generally, the model could include other factors (group variables) or predictors.

Stata Implementation

Six variables are needed to fit this model in Stata: child’s weight (continuous), smoking group (1-3,
categorical), mother’s mweight (continuous), mother’s age (continuous), mother’s height (continu-
ous), and gestation length (continuous). The command
anova weight Smoke mweight mage mheight gest,cat(ms_gp) fits the model. Results are on
p. 6 of the output.

The F-tests show all effects but age are important in this model. Confirm that intercepts are
-5.838, -6.159, and -6.244 for, respectively, groups 0, 1, and 2. What is of interest of course is the
actual group differences. Notice that they are smaller than when ignoring covariates altogether
(group differences are the _b[ms_gp[i]] terms as before).

Further Thoughts

The approach that I have taken here is consistent with the way epidemiologists assess the impact
of a risk factor on a response, adjusting for the effects of confounders. In our analysis, the response
is child’s weight, mother’s smoking habits play the role of a risk factor, and the other features play
the roles of confounders (even if they are not strictly so).

A sensible further step in the analysis would be to eliminate, one at a time, the unimportant
predictors of weight (i.e. backward elimination). This is easily automated. Once AGE is omitted,
the remaining effects are significant at the 1% level. Furthermore, the differences for the smoking
groups are nearly identical to those obtained with the previous model, so omitting AGE has little
impact on our conclusions. Another reasonable question to examine is whether the smoking groups
interact with any of the predictors in the model.

I will note that epidemiologists often adjust for all confounders (at least all that they have
measured), regardless of their statistical significance.
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Two Simulated Examples

Just to see how much difference covariates can make, I simulated two extreme examples. In the
first, the group effect is not at all significant using a simple one-way ANOVA, yet introducing
a covariate makes the group effect extremely significant. In this case the covariate is crucial for
finding group differences.

In the second example, group differences seem clear from a one-way ANOVA, yet disappear
completely when the covariate is introduced. Differences in covariate values completely explain
apparent group differences.

We will discuss these examples in class.

Adjusted means

It is very common to report adjusted means in ANCOVA problems. Let us consider the second
simulated data set. The table of (raw) means is obtained as follows:

. tabstat y,by(group) stat(mean semean)

Summary for variables: y
by categories of: group

group | mean se(mean)
---------+--------------------

1 | 4.472125 .1028853
2 | 5.50423 .1216309
3 | 6.472919 .0959465

---------+--------------------
Total | 5.483091 .1203481

------------------------------

We can obtain a table of means adjusted for the covariate x as follows:

. adjust x, by(group) se
----------------------------------------------------------

Dependent variable: y Command: anova
Covariate set to mean: x = 3.4761906

----------------------------------------------------------
----------------------------------

group | xb stdp
----------+-----------------------

1 | 5.04042 (.227786)
2 | 5.50423 (.101776)
3 | 5.90462 (.227785)

----------------------------------
Key: xb = Linear Prediction

stdp = Standard Error

What is the adjust command doing? Match its results with the following:

. tabstat x
variable | mean

-------------+----------
x | 3.47619

------------------------

. lincom(_b[_cons] + _b[group[1]]+_b[x]*3.47619)
( 1) _cons + group[1] + 3.47619 x = 0
------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | 5.040422 .2277854 22.13 0.000 4.584625 5.49622
------------------------------------------------------------------------------
. lincom(_b[_cons] + _b[group[2]]+_b[x]*3.47619)
( 1) _cons + group[2] + 3.47619 x = 0
------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
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-------------+----------------------------------------------------------------
(1) | 5.50423 .1017763 54.08 0.000 5.300576 5.707883

------------------------------------------------------------------------------
. lincom(_b[_cons] + _b[x]*3.47619)
( 1) _cons + 3.47619 x = 0
------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | 5.904621 .2277856 25.92 0.000 5.448823 6.360419
------------------------------------------------------------------------------

The problem is that when groups differ on covariate values, the differences in raw means may
possibly be attributed just to that, not to real group differences. How can we devise a single
summary of a group that is as simple as a mean yet does not suffer this limitation? We fix a single
value of the covariate and take the point on the predicted least squares line at that value for each
group. This is the estimated mean of the group for that value of the covariate. The default is to
take the mean covariate value, but Stata will allow you to take any other value. In this case we are
estimating the mean of each population at a value of x = 3.47619

Note that differences in adjusted means are just differences in intercepts, and those are the
group differences we have been calculating. If we fit an interaction term it is no longer so simple,
however. We still can calculate adjusted means, but differences are very specific to the x-value fit.

SAS does the same thing but uses the term LSMEANS (Least Squares Means) instead of
adjusted means. The marginal means calculated at the end of the last chapter of notes are more
easily obtained using SAS’s approach, but can be calculated as adjusted means in Stata as well.

Returning to the preceding example, we see that the adjusted means are not nearly as different
as are the raw means. The differences in covariate values explain the apparent differences in groups.
The analysis in the separate output is the proper approach, but the table of adjusted means is easier
for quick group comparisons on a familiar scale (assuming y has a familiar scale).

Now consider the first simulated data set:

. tabstat y,by(group) stat(mean semean)
Summary for variables: y

by categories of: group
group | mean se(mean)

---------+--------------------
1 | 4.398373 .2309875
2 | 4.62633 .2657725
3 | 4.417013 .2081521

---------+--------------------
Total | 4.480572 .1347717

------------------------------
. adjust x, by(group) se
---------------------------------------------------

Dependent variable: y Command: anova
Covariate set to mean: x = 3.5

---------------------------------------------------
----------------------------------

group | xb stdp
----------+-----------------------

1 | 5.41749 (.135878)
2 | 4.62633 (.114672)
3 | 3.3979 (.135878)

----------------------------------
Key: xb = Linear Prediction

stdp = Standard Error

The very small differences in raw means become very large (and have much smaller standard errors
when adjusted by x.

You should compute adjusted means in the CHDS data set as an exercise.
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9 Review of Discrete Data Analysis

The material in this section was covered last semester. Since Stata differs from Minitab in how
the methods are implemented, we will review those methods and see how to use Stata for them.
The huge difference from what we have been doing is that the response or outcome variable is now
categorical instead of continuous. Our goal is to extend all the t-test, regression, ANOVA, and
ANCOVA methods we have studied to the case of categorical outcomes.

Comparing Two Proportions: Independent Samples

The New Mexico state legislature is interested in how the proportion of registered voters that
support Indian gaming differs between New Mexico and Colorado. Assuming neither population
proportion is known, the state’s statistician might recommend that the state conduct a survey
of registered voters sampled independently from the two states, followed by a comparison of the
sample proportions in favor of Indian gaming.

Statistical methods for comparing two proportions using independent samples can be formulated
as follows. Let p1 and p2 be the proportion of populations 1 and 2, respectively, with the attribute
of interest. Let p̂1 and p̂2 be the corresponding sample proportions, based on independent random
or representative samples of size n1 and n2 from the two populations.

Large Sample CI and Tests for p1 − p2

A large sample CI for p1 − p2 is (p̂1 − p̂2)± zcritSECI(p̂1 − p̂2), where zcrit is the standard normal
critical value for the desired confidence level, and

SECI(p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)
n2

is the CI standard error.
A large sample p-value for a test of the null hypothesis H0 : p1 − p2 = 0 against the two-sided

alternative HA : p1 − p2 6= 0 is evaluated using tail areas of the standard normal distribution
(identical to 1 sample evaluation) in conjunction with the test statistic

zs =
p̂1 − p̂2

SEtest(p̂1 − p̂2)
,

where

SEtest(p̂1 − p̂2) =

√
p̄(1− p̄)

n1
+

p̄(1− p̄)
n2

=

√
p̄(1− p̄)

(
1
n1

+
1
n2

)

is the test standard error for p̂1 − p̂2. The pooled proportion

p̄ =
n1p̂1 + n2p̂2

n1 + n2

is the proportion of successes in the two samples combined. The test standard error has the same
functional form as the CI standard error, with p̄ replacing the individual sample proportions.

The pooled proportion is the best guess at the common population proportion when H0 : p1 = p2

is true. The test standard error estimates the standard deviation of p̂1 − p̂2 assuming H0 is true.

Example Two hundred and seventy nine French skiers were studied during two one-week periods
in 1961. One group of 140 skiers receiving a placebo each day, and the other 139 receiving 1
gram of ascorbic acid (Vitamin C) per day. The study was double blind - neither the subjects
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nor the researchers knew who received what treatment. Let p1 be the probability that a member
of the ascorbic acid group contracts a cold during the study period, and p2 be the corresponding
probability for the placebo group. Linus Pauling and I are interested in testing whether p1 = p2.
The data are summarized below as a two-by-two table of counts (a contingency table)

Outcome Ascorbic Acid Placebo
# with cold 17 31

# with no cold 122 109
Totals 139 140

The sample sizes are n1 = 139 and n2 = 140. The sample proportion of skiers developing colds
in the placebo and treatment groups are p̂2 = 31/140 = .221 and p̂1 = 17/139 = .122, respectively.
The pooled proportion is the number of skiers that developed colds divided by the number of skiers
in the study: p̄ = 48/279 = .172.

The test standard error is:

SEtest(p̂1 − p̂2) =

√
.172 ∗ (1− .172)

(
1

139
+

1
140

)
= .0452.

The test statistic is
zs =

.122− .221
.0452

= −2.19.

The p-value for a two-sided test is twice the area under the standard normal curve to the right of
2.19 (or twice the area to the left of -2.19), which is 2 ∗ (.014) = .028 At the 5% level, we reject the
hypothesis that the probability of contracting a cold is the same whether you are given a placebo
or Vitamin C.

A CI for p1 − p2 provides a measure of the size of the treatment effect. For a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
.221 ∗ (1− .221)

140
+

.122 ∗ (1− .122)
139

= 1.96 ∗ (.04472) = .088.

The 95% CI for p1 − p2 is (.122 − .221) ± .088, or (−.187,−.011). We are 95% confident that p2

exceeds p1 by at least .011 but not by more than .187.
On the surface, we would conclude that a daily dose of Vitamin C decreases a French skier’s

chance of developing a cold by between .011 and .187 (with 95% confidence). This conclusion was
somewhat controversial. Several reviews of the study felt that the experimenter’s evaluations of
cold symptoms were unreliable. Many other studies refute the benefit of Vitamin C as a treatment
for the common cold.

To implement this test and obtain a CI using Stata’s prtesti command (immediate from of
prtest command – uses data on the command line rather than in memory), we must provide the
raw number of skiers receiving ascorbic acid (139) along with the proportion of these skiers that got
a cold (p̂1 = 0.122), as well as the raw number of skiers receiving placebo (140) along with the pro-
portion of these skiers that got a cold (p̂2 = 0.221). I actually like using the GUI (Statistics ->
Summaries, tables & tests -> Classical tests of hypotheses -> Two sample proportion
calculator) instead of the command line for this, in which case it all looks just like Minitab. Op-
tions and entries are a little more obvious from the GUI.
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. prtesti 139 0.122 140 0.221
Two-sample test of proportion x: Number of obs = 139

y: Number of obs = 140
------------------------------------------------------------------------------

Variable | Mean Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

x | .122 .02776 .0675914 .1764086
y | .221 .0350672 .1522696 .2897304

-------------+----------------------------------------------------------------
diff | -.099 .044725 -.1866594 -.0113406

| under Ho: .045153 -2.19 0.028
------------------------------------------------------------------------------

Ho: proportion(x) - proportion(y) = diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
z = -2.193 z = -2.193 z = -2.193

P < z = 0.0142 P > |z| = 0.0283 P > z = 0.9858

It actually is a little more direct to use counts instead of proportions you calculate, by typing
prtesti 139 17 140 31, count.

Example A case-control study was designed to examine risk factors for cervical dysplasia (Becker
et al. 194). All the women in the study were patients at UNM clinics. The 175 cases were women,
aged 18-40, who had cervical dysplasia. The 308 controls were women aged 18-40 who did not have
cervical dysplasia. Each women was classified as positive or negative, depending on the presence
of HPV (human papilloma virus).

The data are summarized below.

HPV Outcome Cases Controls
Positive 164 130
Negative 11 178

Sample size 175 308

Let p1 be the probability that a case is HPV positive and let p2 be the probability that a control
is HPV positive. The sample sizes are n1 = 175 and n2 = 308. The sample proportions of positive
cases and controls are p̂1 = 164/175 = .937 and p̂2 = 130/308 = .422.

For a 95% CI

zcritSECI(p̂1 − p̂2) = 1.96

√
.937 ∗ (1− .937)

175
+

.422 ∗ (1− .422)
308

= 1.96 ∗ (.03336) = .0659.

A 95% CI for p1− p2 is (.937− .422)± .066, or .515± .066, or (.449, .581). I am 95% confident that
p1 exceeds p2 by at least .45 but not by more than .58.

Not surprisingly, a two-sided test at the 5% level would reject H0 : p1 = p2. In this problem
one might wish to do a one-sided test, instead of a two-sided test. Can you find the p-value for the
one-sided test in the Stata output below?
. prtesti 175 0.937 308 0.422
Two-sample test of proportion x: Number of obs = 175

y: Number of obs = 308
------------------------------------------------------------------------------

Variable | Mean Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

x | .937 .0183663 .9010028 .9729972
y | .422 .0281413 .366844 .477156

-------------+----------------------------------------------------------------
diff | .515 .0336044 .4491366 .5808634

| under Ho: .0462016 11.15 0.000
------------------------------------------------------------------------------

Ho: proportion(x) - proportion(y) = diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
z = 11.147 z = 11.147 z = 11.147

P < z = 1.0000 P > |z| = 0.0000 P > z = 0.0000
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Appropriateness of the Large Sample Test and CI

The standard two sample CI and test used above are appropriate when each sample is large. A rule
of thumb suggests a minimum of at least five successes (i.e. observations with the characteristic of
interest) and failures (i.e. observations without the characteristic of interest) in each sample before
using these methods. This condition is satisfied in our two examples.

Effect Measures in Two-by-Two Tables

Consider a study of a particular disease, where each individual is either exposed or not-exposed to
a risk factor. Let p1 be the proportion diseased among the individuals in the exposed population,
and p2 be the proportion diseased among the non-exposed population. This population information
can be summarized as a two-by-two table of population proportions:

Outcome Exposed population Non-Exposed population
Diseased p1 p2

Non-Diseased 1− p1 1− p2

A standard measure of the difference between the exposed and non-exposed populations is the
absolute difference: p1 − p2. We have discussed statistical methods for assessing this difference.

In many epidemiological and biostatistical settings, other measures of the difference between
populations are considered. For example, the relative risk

RR =
p1

p2

is commonly reported when the individual risks p1 and p2 are small. The odds ratio

OR =
p1/(1− p1)
p2/(1− p2)

is another standard measure. Here p1/(1− p1) is the odds of being diseased in the exposed group,
whereas p2/(1− p2) is the odds of being diseased in the non-exposed group.

Note that each of these measures can be easily estimated from data, using the sample proportions
as estimates of the unknown population proportions. For example, in the vitamin C study:

Outcome Ascorbic Acid Placebo
# with cold 17 31

# with no cold 122 109
Totals 139 140

the proportion with colds in the placebo group is p̂2 = 31/140 = .221. The proportion with colds
in the vitamin C group is p̂1 = 17/139 = .122.

The estimated absolute difference in risk is p̂1 − p̂2 = .122− .221 = −.099. The estimated risk
ratio and odds ratio are

R̂R =
.122
.221

= .55

and
ÔR =

.122/(1− .122)

.221/(1− .221)
= .49,

respectively.
In the literature it probably is most common to see OR (actually ÔR or adjusted ÔR) reported,

usually from a logistic regression analysis — that will be covered in the next section). We will be
interested in testing H0 : OR = 1 (or H0 : RR = 1). We will estimate OR with ÔR and will need
the sampling distribution of ÔR in order to construct tests and confidence intervals.
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Testing for Homogeneity of Proportions

Example The following two-way table of counts summarizes the location of death and age at
death from a study of 2989 cancer deaths (Public Health Reports, 1983):

(Obs Counts) Location of death
Age Home Acute Care Chronic care Row Total

15-54 94 418 23 535
55-64 116 524 34 674
65-74 156 581 109 846
75+ 138 558 238 934

Col Total 504 2081 404 2989

The researchers want to compare the age distributions across locations. A one-way ANOVA
would be ideal if the actual ages were given. Because the ages are grouped, the data should be
treated as categorical. Given the differences in numbers that died at the three types of facilities, a
comparison of proportions or percentages in the age groups is appropriate. A comparison of counts
is not.

The table below summarizes the proportion in the four age groups at each location. For example,
in the acute care facility 418/2081 = .201 and 558/2081 = .268. The pooled proportions are the
Row Totals divided by the total sample size of 2989. The pooled summary gives the proportions
in the four age categories, ignoring location of death.

The age distributions for home and for the acute care facilities are similar, but are very different
from the age distribution at chronic care facilities.

To formally compare the observed proportions, one might view the data as representative sample
of ages at death from the three locations. Assuming independent samples from the three locations
(populations), a chi-squared statistic is used to test whether the population proportions of ages at
death are identical (homogeneous) across locations. The chi-squared test for homogeneity of
population proportions can be defined in terms of proportions, but is traditionally defined in terms
of counts.

(Proportions) Location of death
Age Home Acute Care Chronic care Pooled

15-54 .187 .201 .057 .179
55-64 .230 .252 .084 .226
65-74 .310 .279 .270 .283
75+ .273 .268 .589 .312
Total 1.000 1.000 1.000 1.000

In general, assume that the data are independent samples from c populations (strata, groups,
sub-populations), and that each individual is placed into one of r levels of a categorical variable.
The raw data will be summarized as a r × c contingency table of counts, where the columns
correspond to the samples, and the rows are the levels of the categorical variable. In the age
distribution problem, r = 4 and c = 3. (SW uses k to identify the number of columns.)

To implement the test:

1. Compute the (estimated) expected count for each cell in the table as follows:

E =
Row Total ∗ Column Total

Total Sample Size
.
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2. Compute the Pearson test statistic

χ2
S =

∑

all cells

(O − E)2

E
,

where O is the observed count.

3. For a size α test, reject the hypothesis of homogeneity if χ2
S ≥ χ2

crit, where χ2
crit is the upper

α critical value from the chi-squared distribution with df = (r − 1)(c− 1).

The p-value for the chi-squared test of homogeneity is equal to the area under the chi-squared curve
to the right of χ2

S ; see Figure 1.

0 5 10 15
χCrit

2

α = .05 (fixed)

Reject H0 for χS
2 here

χ2 with 4 degrees of freedom

0 5 10 15
χCrit

2 χS
2

p − value (random)

χ2 with 4 degrees of freedom

χS
2 significant

Figure 1: The p-value is the shaded area on the right

For a two-by-two table of counts, the chi-squared test of homogeneity of proportions
is identical to the two-sample proportion test we discussed earlier.

Stata Analysis

One way to obtain the test statistic and p-value in Stata is to use the tabi command. The tables
put out from that command are too poorly labelled to be very useful, though, so it’s preferable to
put the data into the worksheet so that it looks like this:

Age Location Count
1. 1 1 94
2. 1 2 418
3. 1 3 23
4. 2 1 116
5. 2 2 524
6. 2 3 34
7. 3 1 156
8. 3 2 581
9. 3 3 109

10. 4 1 138
11. 4 2 558
12. 4 3 238

The Hills and De Stavola book explains the following sequence,
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. label define agemap 1 "15-54" 2 "55-64" 3 "65-74" 4 "75+"

. label define locmap 1 "Home" 2 "Acute Care" 3 "Chronic Care"

. label values Age agemap

. label values Location locmap

. list,clean
Age Location Count

1. 15-54 Home 94
2. 15-54 Acute Care 418
3. 15-54 Chronic Care 23
4. 55-64 Home 116
5. 55-64 Acute Care 524
6. 55-64 Chronic Care 34
7. 65-74 Home 156
8. 65-74 Acute Care 581
9. 65-74 Chronic Care 109

10. 75+ Home 138
11. 75+ Acute Care 558
12. 75+ Chronic Care 238

If I typed list,clean nolabel I would get the original listing.
Why am I bothering with this? I actually could put those labels in as variable values, and not

bother with labels. When I form tables, though, Stata wants to alphabetize according to variable
values which will force Home as the last column. By keeping values numeric I can get Stata to
order correctly and print the correct labels.

I find it easiest to go through the menu path Summaries, tables, & tests -> Tables ->
Two-way tables with measures of association to generate the following commands. Note in
particular the [fweight = Count] (frequency weight given by Count variable) syntax to tell Stata
that each line represents many observations. Minitab and SAS have similar options.

. tabulate Age Location [fweight = Count], chi2 column expected lrchi2 row
+--------------------+
| Key |
|--------------------|
| frequency |
| expected frequency |
| row percentage |
| column percentage |
+--------------------+

| Location
Age | Home Acute Car Chronic C | Total

-----------+---------------------------------+----------
15-54 | 94 418 23 | 535

| 90.2 372.5 72.3 | 535.0
| 17.57 78.13 4.30 | 100.00
| 18.65 20.09 5.69 | 17.90

-----------+---------------------------------+----------
55-64 | 116 524 34 | 674

| 113.6 469.3 91.1 | 674.0
| 17.21 77.74 5.04 | 100.00
| 23.02 25.18 8.42 | 22.55

-----------+---------------------------------+----------
65-74 | 156 581 109 | 846

| 142.7 589.0 114.3 | 846.0
| 18.44 68.68 12.88 | 100.00
| 30.95 27.92 26.98 | 28.30

-----------+---------------------------------+----------
75+ | 138 558 238 | 934

| 157.5 650.3 126.2 | 934.0
| 14.78 59.74 25.48 | 100.00
| 27.38 26.81 58.91 | 31.25

-----------+---------------------------------+----------
Total | 504 2,081 404 | 2,989

| 504.0 2,081.0 404.0 | 2,989.0
| 16.86 69.62 13.52 | 100.00
| 100.00 100.00 100.00 | 100.00

Pearson chi2(6) = 197.6241 Pr = 0.000
likelihood-ratio chi2(6) = 200.9722 Pr = 0.000
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The Pearson statistic is 197.6241 on 6 = (4-1)(3-1) df . The p-value is 0 to three places. The
data strongly suggest that there are differences in the age distributions among locations.

Testing for Homogeneity in Cross-Sectional and Stratified Studies

Two-way tables of counts are often collected either by stratified sampling or by cross-sectional
sampling.

In a stratified design, distinct groups, strata, or sub-populations are identified. Independent
samples are selected from each group, and the sampled individuals are classified into categories.
The HPV study is an illustration of a stratified design (and a case-control study). Stratified
designs provide estimates for the strata (population) proportion in each of the categories. A test
for homogeneity of proportions is used to compare the strata.

In a cross-sectional design, individuals are randomly selected from a population and classified
by the levels of two categorical variables. With cross-sectional samples you can test homogeneity
of proportions by comparing either the row proportions or by comparing the column proportions.

Example The following data (The Journal of Advertising, 1983, p. 34-42) are from a cross-sectional
study that involved soliciting opinions on anti-smoking advertisements. Each subject was asked
whether they smoked and their reaction (on a five-point ordinal scale) to the ad. The data are
summarized as a two-way table of counts, given below:

Str. Dislike Dislike Neutral Like Str. Like Row Tot
Smoker 8 14 35 21 19 97

Non-smoker 31 42 78 61 69 281
Col Total 39 56 113 82 88 378

The row proportions are

(Row Prop) Str. Dislike Dislike Neutral Like Str. Like Row Tot
Smoker .082 .144 .361 .216 .196 1.000

Non-smoker .110 .149 .278 .217 .245 1.000

For example, the entry for the (Smoker, Str. Dislike ) cell is: 8/97 = .082.

Similarly, the column proportions are

(Col Prop) Str. Dislike Dislike Neutral Like Str. Like
Smoker .205 .250 .310 .256 .216

Non-smoker .795 .750 .690 .744 .784
Total 1.000 1.000 1.000 1.000 1.000

Although it may be more natural to compare the smoker and non-smoker row proportions, the
column proportions can be compared across ad responses. There is no advantage to comparing
“rows” instead of “columns” in a formal test of homogeneity of proportions with cross-sectional
data. The Pearson chi-squared test treats the rows and columns interchangeably, so you get the
same result regardless of how you view the comparison. However, one of the two comparisons may
be more natural to interpret.

Note that checking for homogeneity of proportions is meaningful in stratified stud-
ies only when the comparison is across strata! Further, if the strata correspond to columns of
the table, then the column proportions or percentages are meaningful whereas the row proportions
are not.
Question: How do these ideas apply to the age distribution problem?
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Testing for Independence in a Two-Way Contingency Table

The row and column classifications for a population where each individual is cross-classified by two
categorical variables are said to be independent if each population cell proportion in the two-way
table is the product of the proportion in a given row and the proportion in a given column. One can
show that independence is equivalent to homogeneity of proportions. In particular, the two-way
table of population cell proportions satisfies independence if and only if the population column
proportions are homogeneous. If the population column proportions are homogeneous then so are
the population row proportions.

This suggests that a test for independence or no association between two variables based on a
cross-sectional study can be implemented using the chi-squared test for homogeneity of proportions.
This suggestion is correct. If independence is not plausible, I tend to interpret the dependence as
a deviation from homogeneity, using the classification for which the interpretation is most natural.

Example: Stata output for testing independence between smoking status and ad reaction is given
below. The Pearson chi-squared test is not significant (p-value = 0.559). The observed association
between smoking status and the ad reaction is not significant. This suggests, for example, that
the smoker’s reactions to the ad were not statistically significantly different from the non-smoker’s
reactions, which is consistent with the smokers and non-smokers attitudes being fairly similar. The
data were coded as opinion from 1 to 5 and smoke as 1 or 2, and then label define applied as before.

. tabulate Smoke Opinion [fweight=count],chi2 lrchi2 exp col row
+--------------------+
| Key |
|--------------------|
| frequency |
| expected frequency |
| row percentage |
| column percentage |
+--------------------+

| Opinion
Smoke | Str. Disl Dislike Neutral Like Str. Like | Total

-----------+-------------------------------------------------------+----------
Smoker | 8 14 35 21 19 | 97

| 10.0 14.4 29.0 21.0 22.6 | 97.0
| 8.25 14.43 36.08 21.65 19.59 | 100.00
| 20.51 25.00 30.97 25.61 21.59 | 25.66

-----------+-------------------------------------------------------+----------
Non-smoker | 31 42 78 61 69 | 281

| 29.0 41.6 84.0 61.0 65.4 | 281.0
| 11.03 14.95 27.76 21.71 24.56 | 100.00
| 79.49 75.00 69.03 74.39 78.41 | 74.34

-----------+-------------------------------------------------------+----------
Total | 39 56 113 82 88 | 378

| 39.0 56.0 113.0 82.0 88.0 | 378.0
| 10.32 14.81 29.89 21.69 23.28 | 100.00
| 100.00 100.00 100.00 100.00 100.00 | 100.00

Pearson chi2(4) = 2.9907 Pr = 0.559
likelihood-ratio chi2(4) = 2.9797 Pr = 0.561

One-sample procedures

Last semester we spent some time on the situation where we obtained a SRS of n observations
from a binomial population (binary outcome variable) with probability p of Success. We learned
how to calculate CIs for p and tests of H0 : p = p0 for some fixed p0. The large sample form of this
is also done with the prtesti command or through the GUI, and the (preferable) exact binomial
test is done through the bitesti command (or through the menus). The extension to 3 or more
categories was the chi-squared goodness of fit test, done in Stata using the csgof command. That
command is not automatically installed but you can locate and install it from the findit csgof
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command. Since we do these one sample procedures relatively infrequently, I am going to leave it
to you to learn them in Stata if you need them.

10 Logistic Regression - Two Introductory Examples

The chi-squared tests in the previous section are used very frequently, along with Fisher’s exact
test (asked for with the ,fisher option in tabulate – note that it is often feasible to calculate only
for small sample sizes). Those “classical” methods have been around a very long time and are often
the best choice for analysis. In order to consider problems with more complicated predictors we
need newer technology, so we now turn to logistic regression.

The data below are from a study conducted by Milicer and Szczotka on pre-teen and teenage
girls in Warsaw. The subjects were classified into 25 age categories. The number of girls in each
group (sample size) and the number that reached menarche (# RM) at the time of the study were
recorded. The age for a group corresponds to the midpoint for the age interval.

Sample size # RM Age Sample size # RM Age
376 0 9.21 106 67 13.33
200 0 10.21 105 81 13.58
93 0 10.58 117 88 13.83
120 2 10.83 98 79 14.08
90 2 11.08 97 90 14.33
88 5 11.33 120 113 14.58
105 10 11.58 102 95 14.83
111 17 11.83 122 117 15.08
100 16 12.08 111 107 15.33
93 29 12.33 94 92 15.58
100 39 12.58 114 112 15.83
108 51 12.83 1049 1049 17.58
99 47 13.08

The researchers were interested in whether the proportion of girls that reached menarche ( #
RM/ sample size ) varied with age. One could perform a test of homogeneity by arranging the data
as a 2 by 25 contingency table with columns indexed by age and two rows: ROW1 = # RM and
ROW2 = # that have not RM = sample size − # RM. A more powerful approach treats these
as regression data, using the proportion of girls reaching menarche as the “response” and age as a
predictor.

The data were imported into Stata using the infile command and labelled menarche, total,
and age. A plot of the observed proportion of girls that have reached menarche (obtained in Stata
with the two commands generate phat = menarche / total and twoway (scatter phat age))
shows that the proportion increases as age increases, but that the relationship is nonlinear.

The observed proportions, which are bounded between zero and one, have a lazy S-shape (a
sigmoidal function) when plotted against age. The change in the observed proportions for a
given change in age is much smaller when the proportion is near 0 or 1 than when the proportion
is near 1/2. This phenomenon is common with regression data where the response is a proportion.

The trend is nonlinear so linear regression is inappropriate. A sensible alternative might be to
transform the response or the predictor to achieve near linearity. A better approach is to use a
non-linear model for the proportions. A common choice is the logistic regression model.
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Figure 2: Estimated proportions p̂i versus AGEi, for i = 1, . . . , 25.

The Simple Logistic Regression Model

The simple logistic regression model expresses the population proportion p of individuals with a
given attribute (called a success) as a function of a single predictor variable X. The model assumes
that p is related to X through

logit(p) = log
(

p

1− p

)
= α + βX (1)

or, equivalently, as

p =
exp(α + βX)

1 + exp(α + βX)
.

The logistic regression model is a binary response model, where the response for each case
falls into one of 2 exclusive and exhaustive categories, often called success (cases with the attribute
of interest) and failure (cases without the attribute of interest). In many biostatistical applications,
the success category is presence of a disease, or death from a disease.

I will often write p as p(X) to emphasize that p is the proportion of all individuals with score
X that have the attribute of interest. In the menarche data, p = p(X) is the population proportion
of girls at age X that have reached menarche.

The odds of success are p/(1 − p). For example, the odds of success are 1 (or 1 to 1) when
p = 1/2. The odds of success are 2 (or 2 to 1) when p = 2/3. The logistic model assumes that the
log-odds of success is linearly related to X. Graphs of the logistic model relating p to X are given
in Figure 3. The sign of the slope refers to the sign of β.

There are a variety of other binary response models that are used in practice. The probit
regression model or the complementary log-log regression model might be appropriate when the
logistic model does not fit the data.

Data for Simple Logistic Regression

For the formulas below, I assume that the data are given in summarized or aggregate form:
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Figure 3: logit(p) and p as a function of X
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where di is the number of individuals with the attribute of interest (number of diseased) among ni

randomly selected or representative individuals with predictor variable value Xi. The subscripts
identify the group of cases in the data set. In many situations, the sample size is 1 in each group,
and for this situation di is 0 or 1.

For raw data on individual cases, the sample size column n is usually omitted and D takes on
1 of two coded levels, depending on whether the case at Xi is a success or not. The values 0 and 1
are typically used to identify “failures” and “successes” respectively.

Estimating Regression Coefficients

The principle of maximum likelihood is commonly used to estimate the two unknown parameters
in the logistic model:

log
(

p

1− p

)
= α + βX.

The maximum likelihood estimates (MLE) of the regression coefficients are estimated itera-
tively by maximizing the so-called Binomial likelihood function for the responses, or equivalently,
by minimizing the deviance function (also called the likelihood ratio LR chi-squared statistic)

LR = 2
m∑

i=1

{
dilog

(
di

nipi

)
+ (ni − di)log

(
ni − di

ni − nipi

)}

over all possible values of α and β, where the pis satisfy

log
(

pi

1− pi

)
= α + βXi.
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The ML method also gives standard errors and significance tests for the regression estimates.
The deviance is an analog of the residual sums of squares in linear regression. The choices for

α and β that minimize the deviance are the parameter values that make the observed and fitted
proportions as close together as possible in a “likelihood sense”.

Suppose that α̂ and β̂ are the MLEs of α and β. The deviance evaluated at the MLEs:

LR = 2
m∑

i=1

{
dilog

(
di

nip̃i

)
+ (ni − di)log

(
ni − di

ni − nip̃i

)}
,

where the fitted probabilities p̃i satisfy

log
(

p̃i

1− p̃i

)
= α̂ + β̂Xi,

is used to test the adequacy of the model. The deviance is small when the data fits the model, that
is, when the observed and fitted proportions are close together. Large values of LR occur when
one or more of the observed and fitted proportions are far apart, which suggests that the model is
inappropriate.

If the logistic model holds, then LR has a chi-squared distribution with m−r degrees of freedom,
where m is the number of groups and r (here 2) is the number of estimated regression parameters.
A p-value for the deviance is given by the area under the chi-squared curve to the right of LR. A
small p-value indicates that the data does not fit the model.

Stata does not provide the deviance statistic, but rather the Pearson chi-squared test statistic,
which is defined similarly to the deviance statistic and is interpreted in the same manner:

X2 =
m∑

i=1

(di − nip̃i)2

nip̃i(1− p̃i)
.

This statistic can be interpreted as the sum of standardized, squared differences between the
observed number of successes di and expected number of successes nip̃i for each covariate Xi. When
what we expect to see under the model agrees with what we see, the Pearson statistic is close
to zero, indicating good model fit to the data. When the Pearson statistic is large, we have an
indication of lack of fit. Often the Pearson residuals ri = (di − nip̃i)/

√
nip̃i(1− p̃i) are used to

determine exactly where lack of fit occurs. These residuals are obtained in Stata using the predict
command after the logistic command. Examining these residuals is very similar to looking for
large values of (O−E)2

E in a χ2 analysis of a contingency table as discussed in the last lecture. We
will not talk further of logistic regression diagnostics.

Age at Menarche Data: Stata Implementation

A logistic model for these data implies that the probability p of reaching menarche is related to age
through

log
(

p

1− p

)
= α + β AGE.

If the model holds, then a slope of β = 0 implies that p does not depend on AGE, i.e. the proportion
of girls that have reached menarche is identical across age groups. However, the power of the logistic
regression model is that if the model holds, and if the proportions change with age, then you have
a way to quantify the effect of age on the proportion reaching menarche. This is more appealing
and useful than just testing homogeneity across age groups.

A logistic regression model with a single predictor can be fit using one of the many commands
available in Stata depending on the data type and desired results: logistic (raw data, outputs
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odds ratios), logit (raw data, outputs model parameter estimates), and blogit (grouped data).
The logistic command has many more options than either logit or blogit, but requires you to
reformat the data into individual records, one for each girl. For an example of how to do this, check
out the online Stata help at http://www.stata.com/support/faqs/stat/grouped.html. The
Stata command blogit menarche total age yields the following output:

Logit estimates Number of obs = 3918
LR chi2(1) = 3667.18
Prob > chi2 = 0.0000

Log likelihood = -819.65237 Pseudo R2 = 0.6911
------------------------------------------------------------------------------

_outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | 1.631968 .0589509 27.68 0.000 1.516427 1.74751
_cons | -21.22639 .7706558 -27.54 0.000 -22.73685 -19.71594

------------------------------------------------------------------------------

The output tables the MLEs of the parameters: α̂ = −21.23 and β̂ = 1.63. Thus, the fitted or
predicted probabilities satisfy:

log
(

p̃

1− p̃

)
= −21.23 + 1.63AGE

or
p̃(AGE) =

exp(−21.23 + 1.63AGE)
1 + exp(−21.23 + 1.63AGE)

.

The p-value for testing H0 : β = 0 (i.e. the slope for the regression model is zero) based upon the
chi-squared test p-value (P>|z|) is 0.000, which leads to rejecting H0 at any of the usual test levels.
Thus, the proportion of girls that have reached menarche is not constant across age groups.

The likelihood ratio test statistic of no logistic regression relationship (LR chi2(1) = 3667.18)
and p-value (Prob > chi2 = 0.0000) gives the logistic regression analogue of the overall F-statistic
that no predictors are important to multiple regression. In general, the chi-squared statistic pro-
vided here is used to test the hypothesis that the regression coefficients are zero for each predictor
in the model. There is a single predictor here, AGE, so this test and the test for the AGE effect
are both testing H0 : β = 0.

To obtain the Pearson goodness of fit statistic and p-value we must reformat the data and use
the logistic command as described in the webpage above:

generate w0 = total - menarche
rename menarche w1
generate id = _n
reshape long w, i(id) j(y)
logistic y age [fw=w]
lfit

We obtain the following output:

Logistic regression Number of obs = 3918
LR chi2(1) = 3667.18
Prob > chi2 = 0.0000

Log likelihood = -819.65237 Pseudo R2 = 0.6911
------------------------------------------------------------------------------

y | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | 5.113931 .3014706 27.68 0.000 4.555917 5.740291
------------------------------------------------------------------------------
Logistic model for y, goodness-of-fit test

number of observations = 3918
number of covariate patterns = 25

Pearson chi2(23) = 21.87
Prob > chi2 = 0.5281
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Using properties of exponential functions, the odds of reaching menarche is exp(1.632) = 5.11
times larger for every year older a girl is. To see this, let p(Age + 1) and p(Age) be probabilities of
reaching menarche for ages one year apart. The odds ratio OR satisfies

log(OR) = log
(

p(Age + 1)/(1− p(Age + 1))
p(Age)/(1− p(Age))

)

= log (p(Age + 1)/(1− p(Age + 1)))− log (p(Age)/(1− p(Age)))
= (α + β(Age + 1))− (α + β Age)
= β

so OR = eβ. If we considered ages 5 years apart, the same derivation would give us OR = e5β =
(eβ)5. You often see a continuous variable with a significant though apparently small OR, but
when you examine the OR for a reasonable range of values (by raising to the power of the range in
this way), then the OR is substantial.

You should pick out the estimated regression coefficient β̂ = 1.632 and the estimated odds ratio
exp(β̂) = exp(1.632) = 5.11 from the output obtained using the blogit and logistic commands
respectively. We would say that, for example, that the odds of 15 year old girls having reached
menarche are between 4.5 and 5.7 times larger than for 14 year old girls.

The Pearson chi-square statistic is 21.87 on 23 df, with a p-value of 0.5281. The large p-value
suggests no gross deficiencies with the logistic model.

Logistic Regression with Two Effects: Leukemia Data

Feigl and Zelen reported the survival time in weeks and the white cell blood count (WBC) at time
of diagnosis for 33 patients who eventually died of acute leukemia. Each person was classified
as AG+ or AG- (coded as IAG = 1 and 0, respectively), indicating the presence or absence of a
certain morphological characteristic in the white cells. The researchers are interested in modelling
the probability p of surviving at least one year as a function of WBC and IAG. They believe that
WBC should be transformed to a log scale, given the skewness in the WBC values. Where Live=0,
1 indicates whether the patient died or lived respectively, the data are

IAG WBC Live IAG WBC Live IAG WBC Live
---------------------------------------------
1 75 1 1 230 1 1 430 1
1 260 1 1 600 0 1 1050 1
1 1000 1 1 1700 0 1 540 0
1 700 1 1 940 1 1 3200 0
1 3500 0 1 5200 0 1 10000 1
1 10000 0 1 10000 0 0 440 1
0 300 1 0 400 0 0 150 0
0 900 0 0 530 0 0 1000 0
0 1900 0 0 2700 0 0 2800 0
0 3100 0 0 2600 0 0 2100 0
0 7900 0 0 10000 0 0 10000 0

As an initial step in the analysis, consider the following model:

log
(

p

1− p

)
= α + β1LWBC + β2IAG,
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where LWBC = log WBC. This is a logistic regression model with 2 effects, fit using the logistic
command. The parameters α, β1 and β2 are estimated by maximum likelihood.

The model is best understood by separating the AG+ and AG- cases. For AG- individuals,
IAG=0 so the model reduces to

log
(

p

1− p

)
= α + β1LWBC + β2 ∗ 0 = α + β1LWBC.

For AG+ individuals, IAG=1 and the model implies

log
(

p

1− p

)
= α + β1LWBC + β2 ∗ 1 = (α + β2) + β1LWBC.

The model without IAG (i.e. β2 = 0) is a simple logistic model where the log-odds of surviving
one year is linearly related to LWBC, and is independent of AG. The reduced model with β2 = 0
implies that there is no effect of the AG level on the survival probability once LWBC has been taken
into account.

Including the binary predictor IAG in the model implies that there is a linear relationship
between the log-odds of surviving one year and LWBC, with a constant slope for the two AG
levels. This model includes an effect for the AG morphological factor, but more general models
are possible. Thinking of IAG as a factor, the proposed model is a logistic regression analog of
ANCOVA.

The parameters are easily interpreted: α and α + β2 are intercepts for the population logistic
regression lines for AG- and AG+, respectively. The lines have a common slope, β1. The β2

coefficient for the IAG indicator is the difference between intercepts for the AG+ and AG- regression
lines. A picture of the assumed relationship is given below for β1 < 0. The population regression
lines are parallel on the logit (i.e. log odds ) scale only, but the order between IAG groups is
preserved on the probability scale.
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Figure 4: Predicted relationships on the logit and probability scales

The data are in the raw data form for individual cases. There are three columns: the binary
or indicator variable iag (with value 1 for AG+, 0 for AG-), wbc (continuous), live (with value
1 if the patient lived at least 1 year and 0 if not). Note that a frequency column is not needed with
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raw data (and hence using the logistic command) and that the success category corresponds to
surviving at least 1 year.

Before looking at output for the equal slopes model, note that the data set has 30 distinct IAG
and WBC combinations, or 30 “groups” or samples that could be constructed from the 33 individual
cases. Only two samples have more than 1 observation. The majority of the observed proportions
surviving at least one year (number surviving ≥ 1 year/ group sample size) are 0 (i.e. 0/1) or 1
(i.e. 1/1). This sparseness of the data makes it difficult to graphically assess the suitability of the
logistic model (Why?). Although significance tests on the regression coefficients do not require large
group sizes, the chi-squared approximations to the deviance and Pearson goodness-of-fit statistics
are suspect in sparse data settings. With small group sizes as we have here, most researchers would
not interpret the p-values for the deviance or Pearson tests literally. Instead, they would use the
p-values to informally check the fit of the model. Diagnostics would be used to highlight problems
with the model.

We obtain the following modified output:

. infile iag wbc live using c:/biostat/notes/leuk.txt

. generate lwbc = log(wbc)

. logistic live iag lwbc

. logit

. lfit
Logistic regression Number of obs = 33

LR chi2(2) = 15.18
Prob > chi2 = 0.0005

Log likelihood = -13.416354 Pseudo R2 = 0.3613
------------------------------------------------------------------------------

live | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iag | 12.42316 13.5497 2.31 0.021 1.465017 105.3468
lwbc | .3299682 .1520981 -2.41 0.016 .1336942 .8143885

------------------------------------------------------------------------------
Logit estimates Number of obs = 33

LR chi2(2) = 15.18
Prob > chi2 = 0.0005

Log likelihood = -13.416354 Pseudo R2 = 0.3613
------------------------------------------------------------------------------

live | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iag | 2.519562 1.090681 2.31 0.021 .3818672 4.657257
lwbc | -1.108759 .4609479 -2.41 0.016 -2.0122 -.2053178
_cons | 5.543349 3.022416 1.83 0.067 -.380477 11.46718

------------------------------------------------------------------------------
Logistic model for live, goodness-of-fit test

number of observations = 33
number of covariate patterns = 30

Pearson chi2(27) = 19.81
Prob > chi2 = 0.8387

The large p-value (0.8387) for the lack-of-fit chi-square (i.e. the Pearson statistic) indicates
that there are no gross deficiencies with the model. Given that the model fits reasonably well, a
test of H0 : β2 = 0 might be a primary interest here. This checks whether the regression lines
are identical for the two AG levels, which is a test for whether AG affects the survival probability,
after taking LWBC into account. The test that H0 : β2 = 0 is equivalent to testing that the odds
ratio exp(β2) is equal to 1: H0 : eβ2 = 1. The p-value for this test is 0.021. The test is rejected
at any of the usual significance levels, suggesting that the AG level affects the survival probability
(assuming a very specific model). In fact we estimate that the odds of surviving past a year in the
AG+ population is 12.4 times the odds of surviving past a year in the AG- population, with a 95%
CI of (1.4, 105.4); see below for this computation carried out explicitly.
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The estimated survival probabilities satisfy

log
(

p̃

1− p̃

)
= 5.54− 1.11LWBC + 2.52IAG.

For AG- individuals with IAG=0, this reduces to

log
(

p̃

1− p̃

)
= 5.54− 1.11LWBC,

or equivalently,

p̃ =
exp(5.54− 1.11LWBC)

1 + exp(5.54− 1.11LWBC)
.

For AG+ individuals with IAG=1,

log
(

p̃

1− p̃

)
= 5.54− 1.11LWBC + 2.52 ∗ (1) = 8.06− 1.11LWBC,

or
p̃ =

exp(8.06− 1.11LWBC)
1 + exp(8.06− 1.11LWBC)

.

Using the logit scale, the difference between AG+ and AG- individuals in the estimated log-
odds of surviving at least one year, at a fixed but arbitrary LWBC, is the estimated IAG regression
coefficient:

(8.06− 1.11LWBC)− (5.54− 1.11LWBC) = 2.52.

Using properties of exponential functions, the odds that an AG+ patient lives at least one year is
exp(2.52) = 12.42 times larger than the odds that an AG- patient lives at least one year, regardless
of LWBC.

Although the equal slopes model appears to fit well, a more general model might fit better. A
natural generalization here would be to add an interaction, or product term, IAG ∗LWBC to the
model. The logistic model with an IAG effect and the IAG ∗ LWBC interaction is equivalent to
fitting separate logistic regression lines to the two AG groups. This interaction model provides an
easy way to test whether the slopes are equal across AG levels. I will note that the interaction
term is not needed here.
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11 Logistic Regression - Interpreting Parameters

Let us expand on the material in the last section, trying to make sure we understand the logistic
regression model and can interpret Stata output. Consider first the case of a single binary predictor,
where

x =

{
1 if exposed to factor
0 if not

, and y =

{
1 if develops disease
0 does not

.

Results can be summarized in a simple 2 X 2 contingency table as

Exposure
Disease 1 0

1 (+) a b
0 (– ) c d

where ÔR = ad
bc (why?) and we interpret ÔR > 1 as indicating a risk factor, and ÔR < 1 as

indicating a protective factor.
Recall the logistic model: p(x) is the probability of disease for a given value of x, and

logit(p(x)) = log
(

p(x)
1− p(x)

)
= α + βx.

Then for x = 0 (unexposed), logit(p(x)) = logit(p(0)) = α + β(0) = α
x = 1 (exposed), logit(p(x)) = logit(p(1)) = α + β(1) = α + β

Also,
odds of disease among unexposed: p(0)/(1− p(0))

exposed: p(1)/(1− p(1))
Now

OR =
odds of disease among exposed

odds of disease among unexposed
=

p(1)/(1− p(1))
p(0)/(1− p(0))

and
β = logit(p(1))− logit(p(0))

= log
(

p(1)
(1−p(1))

)
− log

(
p(0)

(1−p(0))

)

= log
(

p(1)/(1−p(1))
p(0)/(1−p(0))

)

= log(OR)

The regression coefficient in the population model is the log(OR), hence the OR is obtained by
exponentiating β,

eβ = elog(OR) = OR

Remark: If we fit this simple logistic model to a 2 X 2 table, the estimated unadjusted OR (above)
and the regression coefficient for x have the same relationship.

Example: Leukemia Survival Data (Section 10 p. 108). We can find the counts in the following
table from the tabulate live iag command:

Surv ≥ 1 yr? Ag+ (x=1) Ag- (x=0)
Yes 9 2
No 8 14

and (unadjusted) ÔR = 9(14)
2(8) = 7.875 .

Before proceeding with the Stata output, let me comment about coding of the outcome variable.
Some packages are less rigid, but Stata enforces the (reasonable) convention that 0 indicates a
negative outcome and all other values indicate a positive outcome. If you try to code something
like 2 for survive a year or more and 1 for not survive a year or more, Stata coaches you with the
error message
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outcome does not vary; remember:
0 = negative outcome,

all other nonmissing values = positive outcome

This data set uses 0 and 1 codes for the live variable; 0 and -100 would work, but not 1 and 2.
Let’s look at both regression estimates and direct estimates of unadjusted odds ratios from Stata.

. logit live iag
Logit estimates Number of obs = 33

LR chi2(1) = 6.45
Prob > chi2 = 0.0111

Log likelihood = -17.782396 Pseudo R2 = 0.1534
------------------------------------------------------------------------------

live | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iag | 2.063693 .8986321 2.30 0.022 .3024066 3.82498
_cons | -1.94591 .7559289 -2.57 0.010 -3.427504 -.4643167

------------------------------------------------------------------------------
. logistic live iag
Logistic regression Number of obs = 33

LR chi2(1) = 6.45
Prob > chi2 = 0.0111

Log likelihood = -17.782396 Pseudo R2 = 0.1534
------------------------------------------------------------------------------

live | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iag | 7.875 7.076728 2.30 0.022 1.353111 45.83187
------------------------------------------------------------------------------

Stata has fit logit(p̂(x)) = log
(

p̂(x)
1−p̂(x)

)
= α̂ + β̂x = −1.946 + 2.064 IAG, with

ÔR = e2.064 = 7.875. This is identical to the “hand calculation” above. A 95% Confidence Interval
for β (IAG coefficient) is .3024066 ≤ β ≤ 3.82498. This logit scale is where the real work and
theory is done. To get a Confidence Interval for the odds ratio, just exponentiate everything

e.3024066 ≤ eβ ≤ e3.82498

1.353111 ≤ OR ≤ 45.83187

What do you conclude?

A More Complex Model

log
(

p
1−p

)
= α + β1x1 + β2x2, where x1 is binary (as before) and x2 is a continuous predictor. The

regression coefficients are adjusted log-odds ratios.

To interpret β1, fix the value of x2:
For x1 = 0

log odds of disease = α + β1(0) + β2x2 = α + β2x2

odds of disease = eα+β2x2

For x1 = 1
log odds of disease = α + β1(1) + β2x2 = α + β1 + β2x2

odds of disease = eα+β1+β2x2

Thus the odds ratio (going from x1 = 0 to x1 = 1 is

OR =
odds when x1 = 1
odds when x1 = 0

=
eα+β1+β2x2

eα+β2x2
= eβ1

(remember ea+b = eaeb, so ea+b

ea = eb), i.e. β1 = log(OR). Hence eβ1 is the relative increase in the
odds of disease, going from x1 = 0 to x1 = 1 holding x2 fixed (or adjusting for x2).
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To interpret β2, fix the value of x1:
For x2 = k (any given value k)

log odds of disease = α + β1x1 + β2k
odds of disease = eα+β1x1+β2k

For x2 = k + 1
log odds of disease = α + β1x1 + β2(k + 1)

= α + β1x1 + β2k + β2

odds of disease = eα+β1x1+β2k+β2

Thus the odds ratio (going from x2 = k to x2 = k + 1 is

OR =
odds when x2 = k + 1

odds when x2 = k
=

eα+β1x1+β2k+β2

eα+β1x1+β2k
= eβ2

i.e. β2 = log(OR). Hence eβ2 is the relative increase in the odds of disease, going from x2 = k to
x2 = k + 1 holding x1 fixed (or adjusting for x1). Put another way, for every increase of 1 in x2

the odds of disease increases by a factor of eβ2 . More generally, if you increase x2 from k to k + ∆
then

OR =
odds when x2 = k + ∆

odds when x2 = k
= eβ2∆ =

(
eβ2

)∆

The Leukemia Data

log
(

p

1− p

)
= α + β1 IAG + β2 LWBC

where IAG is a binary variable and LWBC is a continuous predictor. Stata output seen earlier

------------------------------------------------------------------------------
live | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
iag | 2.519562 1.090681 2.31 0.021 .3818672 4.657257

lwbc | -1.108759 .4609479 -2.41 0.016 -2.0122 -.2053178
_cons | 5.543349 3.022416 1.83 0.067 -.380477 11.46718

------------------------------------------------------------------------------

shows a fitted model of

log
(

p̂

1− p̂

)
= 5.54 + 2.52 IAG− 1.11 LWBC

The estimated (adjusted) OR for IAG is e2.52 = 12.42, which of course we saw earlier in the Stata
output

------------------------------------------------------------------------------
live | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
iag | 12.42316 13.5497 2.31 0.021 1.465017 105.3468

lwbc | .3299682 .1520981 -2.41 0.016 .1336942 .8143885
------------------------------------------------------------------------------

The estimated odds that an Ag+ individual (IAG=1) survives at least one year is 12.42 greater
than the corresponding odds for an Ag- individual (IAG=0), regardless of the LWBC (although
the LWBC must be the same for both individuals).

The estimated OR for LWBC is e−1.11 = .33 (≈ 1
3). For each increase in 1 unit of LWBC, the

estimated odds of surviving at least a year decreases by roughly a factor of 3, regardless of ones
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IAG. Stated differently, if two individuals have the same Ag factor (either + or -) but differ on
their values of LWBC by one unit, then the individual with the higher value of LWBC has about
1/3 the estimated odds of survival for a year as the individual with the lower LWBC value.

Confidence intervals for coefficients and ORs are related as before. For IAG the 95% CI for β1

yields the 95% CI for the adjusted IAG OR as follows:

.382 ≤ β1 ≤ 4.657
e.382 ≤ eβ1 ≤ e4.657

1.465 ≤ OR ≤ 105.35

We estimate that the odds of an Ag+ individual (IAG=1) surviving at least a year to be 12.42
times the odds of an Ag- individual surviving at least one year. We are 95% confident the odds
ratio is between 1.465 and 105.35. How does this compare with the unadjusted odds ratio?

Similarly for LWBC, the 95% CI for β2 yields the 95% CI for the adjusted LWBC OR as follows:

−2.012 ≤ β2 ≤ −.205
e−2.012 ≤ eβ2 ≤ e−.205

.134 ≤ OR ≤ .814

We estimate the odds of surviving at least a year is reduced by a factor of 3 (i.e. 1/3) for each
increase of 1 LWBC unit. We are 95% confindent the reduction in odds is between .134 and .814.

Note that while this is the usual way of defining the OR for a continuous predictor variable,
software may try to trick you. JMP IN for instance would report

ÔR = e−1.11(max(LWBC)−min(LWBC)) = .33max(LWBC)−min(LWBC),

the change from the smallest to the largest LWBC. That is a lot smaller number. You just have to
be careful and check what is being done by knowing these relationships.

General Model

We can have a lot more than complicated models than we have been analyzing, but the principles
remain the same. Suppose we have k predictor variables where k can be considerably more than 2
and the variables are a mix of binary and continuous. then we write

log
(

p

1− p

)
= log odds of disease = α + β1x1 + β2x2 + . . . + βkxk

which is a logistic multiple regression model. Now fix values of x2, x3, . . . , xk, and we get

odds of disease for x1 = c : eα+β1c+β2x2+...+βkxk

x1 = c + 1 : eα+β1(c+1)+β2x2+...+βkxk

The odds ratio, increasing x1 by 1 and holding x2, x3, . . . , xk fixed at any values is

OR =
eα+β1(c+1)+β2x2+...+βkxk

eα+β1c+β2x2+...+βkxk
= eβ1

That is, eβ1 is the increase in odds of disease obtained by increasing x1 by 1 unit, holding
x2, x3, . . . , xk fixed (i.e. adjusting for levels of x2, x3, . . . , xk). For this to make sense

• x1 needs to be binary or continuous

• None of the remaining effects x2, x3, . . . , xk can be an interaction (product) effect with
x1. I will say more about this later! The essential problem is that if one or more of
x2, x3, . . . , xk depends upon x1 then you cannot mathematically increase x1 and simulta-
neously hold x2, x3, . . . , xk fixed.
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Example: The UNM Trauma Data

The data to be analyzed here were collected on 3132 patients admitted to The University of New
Mexico Trauma Center between the years 1991 and 1994. For each patient, the attending physician
recorded their age, their revised trauma score (RTS), their injury severity score (ISS), whether
their injuries were blunt (i.e. the result of a car crash: BP=0) or penetrating (i.e. gunshot wounds:
BP=1), and whether they eventually survived their injuries (DEATH = 1 if died, DEATH = 0 if
survived). Approximately 9% of patients admitted to the UNM Trauma Center eventually die from
their injuries.

The ISS is an overall index of a patient’s injuries, based on the approximately 1300 injuries
cataloged in the Abbreviated Injury Scale. The ISS can take on values from 0 for a patient with no
injuries to 75 for a patient with 3 or more life threatening injuries. The ISS is the standard injury
index used by trauma centers throughout the U.S. The RTS is an index of physiologic injury, and
is constructed as a weighted average of an incoming patient’s systolic blood pressure, respiratory
rate, and Glasgow Coma Scale. The RTS can take on values from 0 for a patient with no vital
signs to 7.84 for a patient with normal vital signs.

Champion et al. (1981) proposed a logistic regression model to estimate the probability of a
patient’s survival as a function of RTS, the injury severity score ISS, and the patient’s age, which is
used as a surrogate for physiologic reserve. Subsequent survival models included the binary effect
BP as a means to differentiate between blunt and penetrating injuries. We will develop a logistic
model for predicting death from ISS, AGE, BP, and RTS.

Figure 1 shows side-by-side boxplots of the distributions of ISS, AGE, and RTS for the survivors
and non-survivors, and a bar chart showing proportion penetrating injuries for survivors and non-
survivors. Survivors tend to have lower ISS scores, tend to be slightly younger, and tend to
have higher RTS scores, than non-survivors. The importance of the effects individually towards
predicting survival is directly related to the separation between the survivors and non-survivors
scores. There are no dramatic differences in injury type (BP) between survivors and non-survivors.

Figure 1 was generated with the following Stata code. Earlier in the semester I was avoiding
using the relabel option; it is much better to do things this way, but note the 1 and 2 refer to
alphabetic order of values, not to the actual values. Bar graphs in Stata are a little tricky – this
one worked, but had there been several values of BP or had they been coded other than 0 and 1
this would not have worked. In the latter case one needs to create separate indicator variables of
categories (as an option to tabulate): See
http://www.stata.com/support/faqs/graphics/piechart.html for a discussion.

graph box iss, over(death, relabel(1 "Survived" 2 "Died" ) descending) ///
ytitle(ISS) title(ISS by Death) name(iss)

graph box rts, over(death, relabel(1 "Survived" 2 "Died" ) descending) ///
ytitle(RTS) title(RTS by Death) name(rts)

graph box age, over(death, relabel(1 "Survived" 2 "Died" ) descending) ///
ytitle(Age) title(Age by Death) name(age)

graph bar bp,over(death,relabel(1 "Survived" 2 "Died") descending) ///
ytitle("Proportion Penetrating") title("Penetrating by Death") name(bp)

graph combine iss rts age bp
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Figure 1: Relationship of predictor variables to death

Stata Analysis of Trauma Data

. logistic death iss bp rts age,coef
Logistic regression Number of obs = 3132

LR chi2(4) = 933.34
Prob > chi2 = 0.0000

Log likelihood = -446.01414 Pseudo R2 = 0.5113
------------------------------------------------------------------------------

death | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iss | .0651794 .0071603 9.10 0.000 .0511455 .0792134
bp | 1.001637 .227546 4.40 0.000 .5556555 1.447619
rts | -.8126968 .0537066 -15.13 0.000 -.9179597 -.7074339
age | .048616 .0052318 9.29 0.000 .0383619 .05887

_cons | -.5956074 .4344001 -1.37 0.170 -1.447016 .2558011
------------------------------------------------------------------------------
. logistic death iss bp rts age
Logistic regression Number of obs = 3132

LR chi2(4) = 933.34
Prob > chi2 = 0.0000

Log likelihood = -446.01414 Pseudo R2 = 0.5113
------------------------------------------------------------------------------

death | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iss | 1.067351 .0076426 9.10 0.000 1.052476 1.082435
bp | 2.722737 .6195478 4.40 0.000 1.743083 4.252978
rts | .44366 .0238275 -15.13 0.000 .399333 .4929074
age | 1.049817 .0054924 9.29 0.000 1.039107 1.060637

------------------------------------------------------------------------------
. estat gof
Logistic model for death, goodness-of-fit test

number of observations = 3132
number of covariate patterns = 2096
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Pearson chi2(2091) = 2039.73
Prob > chi2 = 0.7849

. estat gof,group(10)
Logistic model for death, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 3132
number of groups = 10

Hosmer-Lemeshow chi2(8) = 10.90
Prob > chi2 = 0.2072

There are four effects in our model: ISS, BP (a binary variable), RTS, and AGE. Looking at the
goodness of fit tests, there is no evidence of gross deficiencies with the model. The small p-value
(< .0001) for the LR chi-squared statistic implies that one or more of the 4 effects in the model is
important for predicting the probability of death. The tests for parameters suggest that each of
the effects in the model is significant at the .001 level (p-values < .001).

The fitted logistic model is

log
(

p̂

1− p̂

)
= −.596 + .065ISS + 1.002BP− .813RTS + .049AGE,

where p̂ is the estimated probability of death.
The table below is in a form similar to Fisher et al’s AJPH article (with this lecture). The

estimated odds ratio was obtained by exponentiating the regression estimate. The CI endpoints
for the ORs were obtained by exponentiating the CI endpoints for the corresponding regression
parameter. JMP-IN (and some authors) would report different ORs for the continuous variables,
for instance 124.37 for ISS (instead of the 1.067 we are reporting). (Why?). Everybody will agree
on the coefficient, but you need to be very careful what OR is being reported and how you interpret
it.

The p-value for each regression effect is smaller than .05, so the 95% CI for each OR excludes
1 (i.e. each regression coefficient is significantly different from zero so each OR is significantly
different from 1). Thus, for example, the odds of dying from a penetrating injury (BP=1) is 2.72
times greater than the odds of dying from a blunt trauma (BP=0). We are 95% confident that the
population odds ratio is between 1.74 and 4.25.

Do the signs of the estimated regression coefficients make sense? That is, which coefficients
would you expect to be positive (leading to an OR greater than 1).

Effect Estimate Std Error P-value Odds Ratio 95% CI
ISS .065 .007 < .001 1.067 (1.052 , 1.082)
BP 1.002 .228 < .001 2.723 (1.743 , 4.253)
RTS -.813 .054 < .001 0.444 (0.399 , 0.493)
AGE .049 .005 < .001 1.050 (1.039 , 1.061)

Logistic Models with Interactions

Consider the hypothetical problem with two binary predictors x1 and x2

x2 = 0 x2 = 1
x1 x1

Disease 1 0 1 0
+ 1 9 9 1
– 45 45 45 45
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The OR for x1 = 1 versus x1 = 0 when x2 = 0: ÔR = 1(45)
9(45) = 1

9

The OR for x1 = 1 versus x1 = 0 when x2 = 1: ÔR = 9(45)
1(45) = 9

A simple logistic model for these data is logit(p) = α + β1x1 + β2x2. For this model, OR for
x1 = 1 versus x1 = 0 for fixed x2 is eβ1 . That is, the adjusted OR for x1 is independent of the value
of x2. This model would appear to be inappropriate for the data set above where the OR of x1 is
very different for x2 = 0 than it is for x2 = 1.

A simple way to allow for the odds ratio to depend on the level of x2 is through the interaction
model

logit(p) = α + β1x1 + β2x2 + β3 x1 ∗ x2

where the interaction term x1 ∗ x2 is the product (in this case) of x1 and x2. In some statistical
packages the interaction variable must be created in the spreadsheet (that always works), and in
others it can (much more conveniently) be added to the model directly. Stata is in the former
category, although the xi structure allows interaction terms to be generated automatically. That
becomes much more important with multi-level (3 or more) factors.

To interpret the model, let us consider the 4 possible combinations of the binary variables:

Group x1 x2 x1 ∗ x2

A 0 0 0
B 0 1 0
C 1 0 0
D 1 1 1

Group Log Odds of Disease Odds of Disease
A α + β1(0) + β2(0) + β3(0) = α eα

B α + β1(0) + β2(1) + β3(0) = α + β2 eα+β2

C α + β1(1) + β2(0) + β3(0) = α + β1 eα+β1

D α + β1(1) + β2(1) + β3(1) = α + β1 + β2 + β3 eα+β1+β2+β3

Group A is the baseline or reference group. The parameters α, β1, and β2 are easily interpreted.
The odds of disease for the baseline group (x1 = x2 = 0) is eα – the same interpretation applies
when interaction is absent. To interpret β1 note OR for Group C vs. Group A is eα+β1

eα = eβ1 . This
is OR for x1 = 1 vs. x1 = 0 when x2 = 0. Similarly OR for Group B vs. Group A is eα+β2

eα = eβ2 .
This is OR for x2 = 1 vs. x2 = 0 when x1 = 0.

In an interaction model, the OR for x1 = 1 vs. x1 = 0 depends on the level of x2. Similarly the
OR for x2 = 1 vs. x2 = 0 depends on the level of x1. For example,

OR for group D vs. B =
eα+β1+β2+β3

eα+β2
= eβ1+β3

This is OR for x1 = 1 vs. x1 = 0 when x2 = 1. Recalling that eβ1 is OR for x1 = 1 vs. x1 = 0
when x2 = 0, we have

OR(x1 = 1 vs. x1 = 0 when x2 = 1) = OR(x1 = 1 vs. x1 = 0 when x2 = 0) ∗ eβ3

eβ1+β3 = eβ1 ∗ eβ3

Thus eβ3 is the factor that relates the OR for x1 = 1 vs. x1 = 0 when x2 = 0 to the OR when
x2 = 1. If β3 = 0 the two OR are identical, i.e. x1 and x2 do not interact. Similarly,

OR(x2 = 1 vs. x2 = 0 when x1 = 1) = OR(x2 = 1 vs. x2 = 0 when x1 = 0) ∗ eβ3

eβ2+β3 = eβ2 ∗ eβ3
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so eβ3 is also the factor that relates the OR for x2 = 1 vs. x2 = 0 at the two levels of x1. An im-
portant and no doubt fairly obvious point to take away from this is that the regression coefficients
are harder to interpret in models with interactions!

Stata Analysis: Let’s fit this interaction example (data from page 118) using Stata. We could
actually do this particular example easily without using xi, but we won’t be so lucky in the future.
. list,clean

x2 x1 Disease Count
1. 0 1 1 1
2. 0 1 0 45
3. 0 0 1 9
4. 0 0 0 45
5. 1 1 1 9
6. 1 1 0 45
7. 1 0 1 1
8. 1 0 0 45

. xi: logistic Disease i.x1 i.x2 i.x1*i.x2 [fw=Count],coef
i.x1 _Ix1_0-1 (naturally coded; _Ix1_0 omitted)
i.x2 _Ix2_0-1 (naturally coded; _Ix2_0 omitted)
i.x1*i.x2 _Ix1Xx2_#_# (coded as above)
note: _Ix1_1 dropped due to collinearity
note: _Ix2_1 dropped due to collinearity
Logistic regression Number of obs = 200

LR chi2(3) = 13.44
Prob > chi2 = 0.0038

Log likelihood = -58.295995 Pseudo R2 = 0.1034
------------------------------------------------------------------------------

Disease | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Ix1_1 | -2.197225 1.074892 -2.04 0.041 -4.303975 -.090474
_Ix2_1 | -2.197225 1.074892 -2.04 0.041 -4.303975 -.090474

_Ix1Xx2_1_1 | 4.394449 1.520128 2.89 0.004 1.415054 7.373844
_cons | -1.609438 .3651484 -4.41 0.000 -2.325116 -.8937603

------------------------------------------------------------------------------
. xi: logistic Disease i.x1 i.x2 i.x1*i.x2 [fw=Count]
i.x1 _Ix1_0-1 (naturally coded; _Ix1_0 omitted)
i.x2 _Ix2_0-1 (naturally coded; _Ix2_0 omitted)
i.x1*i.x2 _Ix1Xx2_#_# (coded as above)
note: _Ix1_1 dropped due to collinearity
note: _Ix2_1 dropped due to collinearity
Logistic regression Number of obs = 200

LR chi2(3) = 13.44
Prob > chi2 = 0.0038

Log likelihood = -58.295995 Pseudo R2 = 0.1034
------------------------------------------------------------------------------

Disease | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Ix1_1 | .1111111 .1194325 -2.04 0.041 .0135147 .913498
_Ix2_1 | .1111111 .1194325 -2.04 0.041 .0135147 .913498

_Ix1Xx2_1_1 | 81 123.1303 2.89 0.004 4.116709 1593.749
------------------------------------------------------------------------------

The fitted model is

logit(p) = α + β1x1 + β2x2 + β3 x1 ∗ x2 = −1.61− 2.20x1 − 2.20x2 + 4.39x1 ∗ x2

Note that eβ̂1 = e−2.20 = 1
9 = estimated OR for x1 = 1 vs. x1 = 0 when x2 = 0. Also,

eβ̂1+β̂3 = e−2.20+4.39 = e2.19 = 9 = estimated OR for x1 = 1 vs. x1 = 0 when x2 = 1

Note that

eβ̂3 = e4.39 = 81 = mult. factor that relates OR for x1 = 1 vs. x1 = 0 at the 2 levels of x2

Make sure you see how Stata agrees with these calculations.
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A More Complex Interaction Model

The treatment regime to be adopted for patients who have been diagnosed as having prostate
cancer is crucially dependent on whether the cancer has spread to the surrounding lymph nodes. A
laparatomy (a surgical incision into the abdominal cavity) may be performed to ascertain the extent
of this nodal involvement. There are a number of variables that are indicative of nodal involvement
which can be measured without surgery. The aim of the study for which the data were collected
was to determine if a combination of 5 variables could be used to predict whether cancer has spread
to the lymph nodes. The 5 variables are: age of patient at diagnosis (years), level of serum acid
phosphatase (in King-Armstrong units), result of X-ray examination (0=negative, 1=positive), size
of tumor by rectal examination (0=small, 1=large), and a summary of pathological grade of tumor
from biopsy (0=less serious, 1=serious). The response variable is involvement of lymph node (0=no,
1=yes). Fifty-three patients were enrolled in the study.

A published analysis suggested the following model for the probability p of nodal involvement

log
(

p
1−p

)
= α + β1 Xray + β2 size + β3 grade + β4 log(acid)

+ β5 size*grade + β6 log(acid)*grade

The model contains 3 binary variables (Xray, size, and grade), 1 continuous variable (log(acid)),
and 2 interactions, or product effects (size*grade) and log(acid)*grade). the size*grade interaction
involves two binary variables, as considered in the previous example, whereas the log(acid)*grade
interaction term involves a binary and a continuous variable. for each case in the data set

log(acid)*grade =

{
0 if grade = 0

log(acid) if grade = 1

Note that the model excludes age.

Interpreting the Regression Coefficients

For any regression variable that is not included in an interaction, the regression coefficient is an
adjusted log OR, and is independent of levels of the other factors in the model. For example, for
fixed size, grade, and acid levels

(OR for Xray = 1 vs. Xray = 0) =
eα+β1(1)+β2 size + ···

eα+β1(0)+β2 size + ··· = eβ1

The size*grade interaction means that the adjusted OR for size = 1 vs. size = 0 depends on
grade. The log(acid)*grade interaction means that the adjusted OR for log(acid) depends on grade.
To see this, let LA = log(acid). Then odds of nodal involvement = eα+β1Xray+β2size+β3grade+β4LA+β5size∗grade+β6LA∗grade,
so for fixed Xray, size, and grade

odds of nodal involvment at LA + 1
odds of nodal involvment at LA = exp(α+β1Xray+β2size+β3grade+β4(LA+1)+β5size∗grade+β6(LA+1)∗grade)

exp(α+β1Xray+β2size+β3grade+β4LA+β5size∗grade+β6LA∗grade)

= eβ4+β6grade

=

{
eβ4 grade = 0

eβ4+β6 grade = 1

This adjusted OR depends on grade (because LA and grade interact), but not on size or Xray
(because LA does not interact with either). We can interpret β6, the LA*grade coefficient, as a
measure of how the adjusted OR for LA changes with grade.
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Given that the model contains a size*grade and a log(acid)*grade interaction, the adjusted OR
for grade depends on the size and log(acid) levels. I’ll note, but you can easily show,

odds for nodal involvement for grade = 1
odds for nodal involvement for grade = 0

= eβ3+β5size+β6log(acid)

where β5 is the grade*size coefficient and β6 is the log(acid)*grade coefficient.
In summary, interactions among variables make interpretations of effects of individual variables

on OR harder (OK, lots harder!) The ideal world has no interactions — but we don’t live in such
a world.

Stata Analysis

Raw data are available on the web page. Output from fitting the model in Stata follows:

. gen logacid=log(acid)

. xi: logistic nodal i.xray i.size i.grade logacid i.size*i.grade i.grade*logacid
i.xray _Ixray_0-1 (naturally coded; _Ixray_0 omitted)
i.size _Isize_0-1 (naturally coded; _Isize_0 omitted)
i.grade _Igrade_0-1 (naturally coded; _Igrade_0 omitted)
i.size*i.grade _IsizXgra_#_# (coded as above)
i.grade*logacid _IgraXlogac_# (coded as above)
note: _Isize_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: logacid dropped due to collinearity
Logistic regression Number of obs = 53

LR chi2(6) = 33.97
Prob > chi2 = 0.0000

Log likelihood = -18.143573 Pseudo R2 = 0.4835
------------------------------------------------------------------------------

nodal | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Ixray_1 | 10.38589 11.26382 2.16 0.031 1.239622 87.01579
_Isize_1 | 23.05661 26.99148 2.68 0.007 2.324485 228.6989
_Igrade_1 | 21187.36 98875.09 2.13 0.033 2.258257 1.99e+08

logacid | 5.520827 7.841721 1.20 0.229 .3411671 89.33903
_IsizXgra_~1 | .0035255 .0085831 -2.32 0.020 .0000298 .4164339
_IgraXloga~1 | 33724.72 223942.7 1.57 0.116 .0751111 1.51e+10
------------------------------------------------------------------------------
. xi: logistic nodal i.xray i.size i.grade logacid i.size*i.grade i.grade*logacid,coef
i.xray _Ixray_0-1 (naturally coded; _Ixray_0 omitted)
i.size _Isize_0-1 (naturally coded; _Isize_0 omitted)
i.grade _Igrade_0-1 (naturally coded; _Igrade_0 omitted)
i.size*i.grade _IsizXgra_#_# (coded as above)
i.grade*logacid _IgraXlogac_# (coded as above)
note: _Isize_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: _Igrade_1 dropped due to collinearity
note: logacid dropped due to collinearity
Logistic regression Number of obs = 53

LR chi2(6) = 33.97
Prob > chi2 = 0.0000

Log likelihood = -18.143573 Pseudo R2 = 0.4835
------------------------------------------------------------------------------

nodal | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Ixray_1 | 2.340448 1.084531 2.16 0.031 .2148063 4.46609
_Isize_1 | 3.137952 1.170661 2.68 0.007 .8434986 5.432406
_Igrade_1 | 9.96116 4.666701 2.13 0.033 .8145935 19.10773

logacid | 1.708528 1.420389 1.20 0.229 -1.075383 4.492438
_IsizXgra_~1 | -5.647741 2.434592 -2.32 0.020 -10.41945 -.8760275
_IgraXloga~1 | 10.42599 6.640313 1.57 0.116 -2.588787 23.44076

_cons | -2.552712 1.039703 -2.46 0.014 -4.590494 -.5149311
------------------------------------------------------------------------------
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***************** Make sure you understand what variables are being fit!
------------------------------------
variable name variable label
------------------------------------
_Ixray_1 xray==1
_Isize_1 size==1
_Igrade_1 grade==1
_IsizXgra_1_1 size==1 & grade==1
_IgraXlogac_1 (grade==1)*logacid
-------------------------------------

Note that I did not actually need to use xi here since the variables were already binary and coded
as 0 and 1, but this is the safe way to do things. The fitted model is

log
(

p̂

1− p̂

)
= −2.55 + 2.34 Xray + 3.14 size + 9.96 grade + 1.71 log(acid)

−5.65 size ∗ grade + 10.43 log(acid) ∗ grade

If a primary question was the impact of a positive Xray, we can conclude that for fixed levels of
size, grade, and log(acid)

ÔR for Xray = 1 vs. Xray = 0 is e2.34 = 10.39

i.e. the odds of nodal involvement are 10.39 times higher for patients with positive X-rays than for
patients with a negative X-rays (adjusting for size, grade, and log(acid)). The lack of interaction
makes this a clean interpretation.

If a primary question was the impact of log(acid) (LA) level, then for fixed size tumor and X-ray
result, recalling 1.709 is the LA coefficient and 10.43 is the grade coefficient,

ÔR for LA + 1 vs. LA is e1.709+10.43∗grade

=

{
e1.709 = 5.52 if grade = 0
e1.709+10.43 = 186, 838 if grade = 1

For less serious tumors (grade = 0) the odds of nodal involvement increase by 5.52 for each increase
in 1 LA unit. For more serious tumors (grade=1) the odds increase by 186,838.

Remark: The log(acid)*grade interaction is not significant at the 10% level (p-value = .116).
An implication is that the estimated adjusted OR for log(acid) when grade = 1 (i.e. 186,838) is
not statistically different from the adjusted OR for log(acid) when grade = 0 (i.e. 5.52) — why?
Because in a model without the log(acid)*grade interaction, those estimated ORs would be equal.

A sensible strategy would be to refit the model without this interaction. We will discuss such
strategies later.
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12 Odds Ratios for Multi-level Factors; Examples

The Framingham Study
The Framingham study was a prospective (follow-up, cohort) study of the occurrence of coronary

heart disease (CHD) in Framingham, Mass. The study involved 2187 men and 2669 women aged
between 30 and 62. More details on the study are given as a supplement to the lecture. Variables
and values of the variables are as follows:

Variable Name Codes
Gender 0 = Female, 1 = male
Age Group 0 is 30-49, 1 is 50-62
SCL (Serum Cholesterol) 1 is < 190, 2 is 190-219, 3 is 220-249, 4 is 250+
CHD (Coronary Heart Disease) 1 is Yes, 0 is No
Freq Count

I will consider a simple analysis of the association between serum cholesterol level (SCL) at the
start of the study and whether a subject had, or developed CHD, during the 12 year follow-up
period. A table with Stata analysis of counts relating CHD to SCL is given below.

. tabulate chd scl [fw=frequency],chi2 lrchi2 exp col
+--------------------+
| Key |
|--------------------|
| frequency |
| expected frequency |
| column percentage |
+--------------------+

| SCL
CHD | 1 2 3 4 | Total

-----------+--------------------------------------------+----------
0 | 1,022 1,203 1,119 1,125 | 4,469
| 978.3 1,169.7 1,127.4 1,193.6 | 4,469.0
| 96.14 94.65 91.35 86.74 | 92.03

-----------+--------------------------------------------+----------
1 | 41 68 106 172 | 387
| 84.7 101.3 97.6 103.4 | 387.0
| 3.86 5.35 8.65 13.26 | 7.97

-----------+--------------------------------------------+----------
Total | 1,063 1,271 1,225 1,297 | 4,856

| 1,063.0 1,271.0 1,225.0 1,297.0 | 4,856.0
| 100.00 100.00 100.00 100.00 | 100.00

Pearson chi2(3) = 86.7040 Pr = 0.000
likelihood-ratio chi2(3) = 85.8644 Pr = 0.000

The Pearson χ2 statistic, which can be viewed as testing that the probability of developing CHD
is independent of SCL, is highly significant (p-value < .001). Clearly observed counts of CHD are
below expected counts for this hypothesis with low SCL, and above with high SCL, so it looks like
CHD increases as SCL increases.

Let us do a closer look at the data for CHD vs. SCL using odds ratios. There are a lot of
possible ways to do this. Since SCL categories are ordered, many analysts would compare SCL
level 2 to 1, then 3 to 2, then 4 to 3. It is a little more conventional (and slightly more direct to
implement in Stata) to consider all OR relative to a fixed baseline SCL category, say SCL < 190
(Cat. 1).
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SCL
CHD 2 1

Y 68 41
N 1203 1022 ÔR(2vs.1) = 68·1022

41·1203 = 1.409

3 1
Y 106 41
N 1119 1022 ÔR(3vs.1) = 106·1022

41·1119 = 2.361

4 1
Y 172 41
N 1125 1022 ÔR(4vs.1) = 172·1022

41·1125 = 3.811

Any OR may be computed from this set of OR’s. For example,

SCL
CHD 4 2

Y 172 68

N 1125 1203 ÔR(4vs.2) = 172·1203
1125·68 = 2.705 = 3.811

1.409 = ÔR(4vs.1)

ÔR(2vs.1)

Think of this relationship as 4
2 = 4/1

2/1 . An important point to recognize is that the effect of SCL on
CHD can be captured through 3 effects (ORs), which is #SC levels - 1.

To get these ORs directly from Stata, we need to use xi. Actually, there are other, better,
options you can download and install, like xi3 and desmat. Since xi is built-in and commonly
used, we will stick with it but it does not allow higher order interaction terms in models, unlike
xi3 and desmat.

The code and output follow:

. xi:logistic chd i.scl [fweight=frequency]
i.scl _Iscl_1-4 (naturally coded;_Iscl_1 omitted)
Logistic regression Number of obs = 4856

LR chi2(3) = 85.86
Prob > chi2 = 0.0000

Log likelihood = -1307.1541 Pseudo R2 = 0.0318
------------------------------------------------------------------------------

chd | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Iscl_2 | 1.408998 .2849726 1.70 0.090 .9478795 2.094438
_Iscl_3 | 2.361255 .446123 4.55 0.000 1.630502 3.419514
_Iscl_4 | 3.811035 .6825005 7.47 0.000 2.682905 5.413532

------------------------------------------------------------------------------
. xi:logistic chd i.scl [fweight=frequency],coef
------------------------------------------------------------------------------

chd | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Iscl_2 | .3428787 .202252 1.70 0.090 -.0535279 .7392852
_Iscl_3 | .8591931 .1889347 4.55 0.000 .4888878 1.229498
_Iscl_4 | 1.337901 .1790853 7.47 0.000 .9869 1.688902
_cons | -3.215945 .1592756 -20.19 0.000 -3.528119 -2.90377

------------------------------------------------------------------------------
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Remember what xi is doing. It creates indicator variables with the first omitted, so we are
fitting a model for p = probability of CHD of

log
(

p

1− p

)
= α + βj Iscl j, where I scl j =





1 SCL = j, j ≥ 2
0 SCL 6= j, j ≥ 2
0 j = 1 (i.e.naturally coded; Iscl 1 omitted)

and proceeding as in the last lecture, for j > 1,

βj = (α + βj)− α
= log(Odds for SCL = j)− log(Odds for SCL = 1)
= log(OR(for SCL = j vs. SCL = 1))

which yields the result that

eβj = OR(for SCL = j vs. SCL = 1) j > 1

with confidence intervals for ORs produced by exponentiating limits of confidence intervals for
coefficients. The Stata output above gives us exactly the values of ÔR(2vs.1), ÔR(3vs.1), and
ÔR(4vs.1) we calculated previously, along with confidence limits. We also saw that ÔR(4vs.2) =
ÔR(4vs.1)

ÔR(2vs.1)
= 3.811

1.409 = 2.705 but this does not produce a confidence interval for OR(4vs.2). In order

to get full information about this OR, note that

ÔR(4vs.1)

ÔR(2vs.1)
=

eβ4

eβ2
= eβ4−β2

This looks like lincom should work, and it is exactly the solution.

. lincom _b[_Iscl_4] - _b[_Iscl_2]
( 1) - _Iscl_2 + _Iscl_4 = 0
------------------------------------------------------------------------------

chd | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | 2.704784 .4033665 6.67 0.000 2.01926 3.623039
------------------------------------------------------------------------------

lincom reports OR after logistic. If you actually want the difference in coefficients, you need to
use the logit form of the command, and then lincom reports

. lincom _b[_Iscl_4] - _b[_Iscl_2]
( 1) - _Iscl_2 + _Iscl_4 = 0
------------------------------------------------------------------------------

chd | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | .9950222 .1491307 6.67 0.000 .7027313 1.287313
------------------------------------------------------------------------------

This section has shown you how to generate unadjusted ORs in Stata. In practice we would add
confounding variables, such as Age and Sex, to the model and then evaluate adjusted ORs for the
SCL levels. You will get to do this in lab.

Model Building

There are a variety of systematic approaches to logistic regression models. Automated methods such
as the backward elimination approach described below are well suited for producing good predictive
models. Systematic approaches such as those advocated in Kleinbaum’s book on Logistic Regression
focus more attention on understanding the complex interdependencies among the predictors, and
their impact on odds ratios.
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Backward Elimination

1. Identify predictors or factors for which an association with outcome is biologically plausible
(based on literature, science, knowledge, etc.).

2. Identify biologically plausible interactions.

3. Fit the logistic model with all candidate effects identified in the first 2 steps.

4. Following the hierarchy principle, identify the least significant effect in the model, and se-
quentially eliminate the least significant effect until the step where the least significant effect
is “too important” to omit.

• The hierarchy principle implies that a main effect in a model can only be considered for
exclusion if the model does not contain an interaction involving the main effect.

• The impact of an effect is measured by a p-value for testing that the regression coefficient for
the effect is zero.

p− value

{
≤ α effect stays in model
> α effect is removed

In backwards elimination it is not uncommon to set α = .10 or .15 rather than α = .05.

Example: UNM Trauma Data
Response : Death (1=yes, 0 = no)
Predictors : ISS

Age
RTS
BP (0=Blunt, 1=Penetratin)

The surgeon who collected the data, Dr. Turner Osler, believes that all these effects are associ-
ated with the probability of death and that the three interactions involving BP (BP*ISS, BP*Age,
BP*RTS) are plausible.

Steps

0. Fit full model

log
(

p

1− p

)
= α+β1ISS+β2BP+β3RTS+β4Age+β5(BP ∗ ISS)+β6(BP ∗ RTS)+β7(BP ∗Age)

where p=probability of death from injuries. Stata does not allow specification of interaction
terms directly with logit or logistic, so we need to use xi.

. xi:logistic death iss i.bp rts age i.bp*iss i.bp*rts i.bp*age
i.bp _Ibp_0-1 (naturally coded; _Ibp_0 omitted)
i.bp*iss _IbpXiss_# (coded as above)
i.bp*rts _IbpXrts_# (coded as above)
i.bp*age _IbpXage_# (coded as above)
Logistic regression Number of obs = 3132

LR chi2(7) = 937.59
Prob > chi2 = 0.0000

Log likelihood = -443.88603 Pseudo R2 = 0.5136
------------------------------------------------------------------------------

death | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iss | 1.070319 .0090198 8.06 0.000 1.052785 1.088144
age | 1.047169 .0058718 8.22 0.000 1.035724 1.058741

_IbpXiss_1 | .9927199 .0161392 -0.45 0.653 .9615863 1.024861
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rts | .4714732 .0285804 -12.40 0.000 .4186563 .5309533
_IbpXrts_1 | .7540543 .1137513 -1.87 0.061 .5610433 1.013465

_Ibp_1 | 12.53281 14.3303 2.21 0.027 1.3328 117.8506
_IbpXage_1 | 1.013542 .0148866 0.92 0.360 .9847811 1.043143

------------------------------------------------------------------------------
. estat gof,group(10)
Logistic model for death, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)
number of observations = 3132

number of groups = 10
Hosmer-Lemeshow chi2(8) = 16.84

Prob > chi2 = 0.0318

At this point I am not happy about the goodness-of-fit test. The objection raised earlier in
class that age probably does not have a strictly linear effect may be coming back to bite us
here. I hate to proceed with a full model that does not seem to fit well. I experimented
with a couple of approaches to be more flexible with age. One was to create age groupings,
the other was to fit an additional term that allowed curvature in age in the logit scale. The
latter approach is more parsimonious and I liked the results more, although there was not a
lot of difference (older patients are fit with greatly reduced odds of survival either way). The
distribution of age already is skewed right in this data set, so instead of introducing a term
for square of age I introduced a term for square root of age – the difference in logit fits being
slight for older patients but substantial for very young ones. Now I fit the model above with
this new age term introduced along with the interaction:

log
(

p

1− p

)
= α + β1ISS + β2BP + β3RTS + β4Age + β5

√
Age + β6(BP ∗ ISS)

+β7(BP ∗ RTS) + β8(BP ∗Age) + β9(BP ∗√
Age)

. xi:logistic death iss i.bp rts age agesqrt i.bp*iss i.bp*rts i.bp*age i.bp*agesqrt
i.bp _Ibp_0-1 (naturally coded; _Ibp_0 omitted)
i.bp*iss _IbpXiss_# (coded as above)
i.bp*rts _IbpXrts_# (coded as above)
i.bp*age _IbpXage_# (coded as above)
i.bp*agesqrt _IbpXagesq_# (coded as above)
Logistic regression Number of obs = 3132

LR chi2(9) = 944.90
Prob > chi2 = 0.0000

Log likelihood = -440.23492 Pseudo R2 = 0.5176
------------------------------------------------------------------------------

death | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iss | 1.073518 .0092108 8.27 0.000 1.055616 1.091723
age | 1.110938 .0256408 4.56 0.000 1.061802 1.162347

agesqrt | .4900429 .1303889 -2.68 0.007 .2909038 .8255033
_IbpXiss_1 | .9906573 .0161779 -0.57 0.565 .9594513 1.022878

rts | .4779762 .0289156 -12.20 0.000 .4245337 .5381464
_IbpXrts_1 | .7347408 .1127582 -2.01 0.045 .5438801 .9925791
_IbpXage_1 | .872296 .0932179 -1.28 0.201 .7074574 1.075542

_Ibp_1 | .0760752 .3033795 -0.65 0.518 .0000307 188.6858
_IbpXagesq_1 | 6.322103 8.321638 1.40 0.161 .4791204 83.4216
------------------------------------------------------------------------------
. estat gof,group(10)
Logistic model for death, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)
number of observations = 3132

number of groups = 10
Hosmer-Lemeshow chi2(8) = 11.61

Prob > chi2 = 0.1695

We will look shortly at what is being fit in terms of age, but note how much larger is the
p-value for the goodness-of-fit test. We should be ready to proceed with reducing the model.

I will consider a backward elimination with α = .10. Following the hierarchy principle, the
only candidates for exclusion at step 1 are the interactions. Each of the 5 main effects is
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involved in 1 or more interactions, so we cannot eliminate any main effects initially. The least
significant interaction is BP*ISS with a p-value of .565, so this effect is removed (.565 > .10).

1. Omit BP*ISS and fit the model

log
(

p

1− p

)
= α + β1ISS + β2BP + β3RTS + β4Age + β5

√
Age

+β7(BP ∗ RTS) + β8(BP ∗Age) + β9(BP ∗√
Age)

. xi:logistic death iss i.bp rts age agesqrt i.bp*rts i.bp*age i.bp*agesqrt
i.bp _Ibp_0-1 (naturally coded; _Ibp_0 omitted)
i.bp*rts _IbpXrts_# (coded as above)
i.bp*age _IbpXage_# (coded as above)
i.bp*agesqrt _IbpXagesq_# (coded as above)
Logistic regression Number of obs = 3132

LR chi2(8) = 944.57
Prob > chi2 = 0.0000

Log likelihood = -440.39915 Pseudo R2 = 0.5175
------------------------------------------------------------------------------

death | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iss | 1.070782 .007818 9.37 0.000 1.055568 1.086216
age | 1.109481 .0254389 4.53 0.000 1.060726 1.160478

agesqrt | .4963908 .1314641 -2.64 0.008 .2953871 .8341726
rts | .4751856 .0283819 -12.46 0.000 .4226906 .5342

_IbpXrts_1 | .7451743 .11272 -1.94 0.052 .5539868 1.002343
_IbpXage_1 | .8700633 .0941304 -1.29 0.198 .7038191 1.075575

_Ibp_1 | .0480244 .1897495 -0.77 0.442 .0000208 110.8277
_IbpXagesq_1 | 6.604057 8.789526 1.42 0.156 .4863207 89.68069
------------------------------------------------------------------------------

At this step the candidates for exclusion are ISS, BP*Age, BP*
√

Age, and BP*RTS, of which
BP*Age is least significant with a p-value of .198. This interaction is then omitted. Why is
ISS a candidate for exclusion at this point?

2. Omit BP*Age and fit

log
(

p

1− p

)
= α + β1ISS + β2BP + β3RTS + β4Age + β5

√
Age

+β7(BP ∗ RTS) + β9(BP ∗√
Age)

. xi:logistic death iss i.bp rts age agesqrt i.bp*rts i.bp*agesqrt
i.bp _Ibp_0-1 (naturally coded; _Ibp_0 omitted)
i.bp*rts _IbpXrts_# (coded as above)
i.bp*agesqrt _IbpXagesq_# (coded as above)
Logistic regression Number of obs = 3132

LR chi2(7) = 942.67
Prob > chi2 = 0.0000

Log likelihood = -441.34771 Pseudo R2 = 0.5164
------------------------------------------------------------------------------

death | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iss | 1.070154 .0078046 9.30 0.000 1.054966 1.085561
rts | .475377 .0283584 -12.47 0.000 .4229219 .5343383
age | 1.100623 .0245862 4.29 0.000 1.053474 1.149881

_Ibp_1 | 5.772836 6.82775 1.48 0.138 .5683829 58.63236
_IbpXrts_1 | .7505693 .1117116 -1.93 0.054 .5606625 1.004801

agesqrt | .5432324 .1411161 -2.35 0.019 .3264886 .9038644
_IbpXagesq_1 | 1.228323 .213722 1.18 0.237 .8733895 1.727497
------------------------------------------------------------------------------

At this step the candidates for exclusion are ISS, BP*
√

Age, and BP*RTS, of which BP*
√

Age
is least significant with a p-value of .237. This interaction is then omitted.
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3. Omit BP*
√

Age and fit

log
(

p

1− p

)
= α + β1ISS + β2BP + β3RTS + β4Age + β5

√
Age + β7(BP ∗ RTS)

. xi:logistic death iss i.bp rts age agesqrt i.bp*rts
i.bp _Ibp_0-1 (naturally coded; _Ibp_0 omitted)
i.bp*rts _IbpXrts_# (coded as above)
note: _Ibp_1 dropped due to collinearity
note: rts dropped due to collinearity
Logistic regression Number of obs = 3132

LR chi2(6) = 941.24
Prob > chi2 = 0.0000

Log likelihood = -442.0633 Pseudo R2 = 0.5156
------------------------------------------------------------------------------

death | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iss | 1.070038 .007773 9.32 0.000 1.054912 1.085382
rts | .4705327 .0280666 -12.64 0.000 .4186169 .5288869
age | 1.102008 .0246182 4.35 0.000 1.054798 1.15133

agesqrt | .550232 .1433209 -2.29 0.022 .3302406 .916772
_Ibp_1 | 13.35317 12.52076 2.76 0.006 2.125423 83.89257

_IbpXrts_1 | .7906284 .1090461 -1.70 0.089 .6033535 1.036032
------------------------------------------------------------------------------

The candidates for exclusion at this point are ISS, Age,
√

Age, and BP*RTS. The least
significant effect is BP*RTS with a p-value of .089, which is less than our criterion of .10.

4. If we stick to the algorithm, we would stop and conclude that the important predictors are
ISS, BP, RTS, AGE, and

√
Age with an interaction between BP and RTS. All these steps can

be automated with sw, as in the following output. I used logit here in order to see coefficients.
Since I cannot combine xi and sw, I need to use xi alone to create indicator variables and
then use those in sw for variable selection. lockterm1 forces the first term in parentheses to
stay in the model.

. xi i.bp i.bp*iss i.bp*rts i.bp*age i.bp*agesqrt
i.bp _Ibp_0-1 (naturally coded; _Ibp_0 omitted)
i.bp*iss _IbpXiss_# (coded as above)
i.bp*rts _IbpXrts_# (coded as above)
i.bp*age _IbpXage_# (coded as above)
i.bp*agesqrt _IbpXagesq_# (coded as above)

. sw logit death (iss _Ibp_1 rts age agesqrt) _IbpXiss_1 _IbpXrts_1 _IbpXage_1
> _IbpXagesq_1, pr(.1) lockterm1

begin with full model
p = 0.5654 >= 0.1000 removing _IbpXiss_1
p = 0.1983 >= 0.1000 removing _IbpXage_1
p = 0.2372 >= 0.1000 removing _IbpXagesq_1
Logistic regression Number of obs = 3132

LR chi2(6) = 941.24
Prob > chi2 = 0.0000

Log likelihood = -442.0633 Pseudo R2 = 0.5156
------------------------------------------------------------------------------

death | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iss | .0676945 .0072642 9.32 0.000 .053457 .0819321
_Ibp_1 | 2.591754 .9376617 2.76 0.006 .7539709 4.429537

rts | -.7538899 .0596486 -12.64 0.000 -.8707991 -.6369807
age | .0971337 .0223394 4.35 0.000 .0533494 .1409181

agesqrt | -.5974152 .2604735 -2.29 0.022 -1.107934 -.0868965
_IbpXrts_1 | -.2349272 .1379234 -1.70 0.089 -.505252 .0353977

_cons | .6877421 .8100227 0.85 0.396 -.8998732 2.275357
------------------------------------------------------------------------------

. estat gof,group(10)
Logistic model for death, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)
number of observations = 3132

number of groups = 10
Hosmer-Lemeshow chi2(8) = 14.46

Prob > chi2 = 0.0704

130



12 ODDS RATIOS FOR MULTI-LEVEL FACTORS; EXAMPLES

The fitted model is

log
(

p̂

1− p̂

)
= .688 + .068 ISS + 2.59 BP− .754 RTS + .097 Age− .597

√
Age− .235 BP ∗ RTS

The regression effect for ISS is easily interpreted as a risk factor for death (why?). The effect of age
needs to be examined graphically since it is not simply linear. In the plot below the solid line is for
the fitted model above, and the dotted line is what happens if we use AGE and AGE2 instead. Can
you see why I preferred using

√
AGE to AGE2? The fitted model shows increased risk of death for

very young children, lowest risk for children and young adults, and substantially increased risk for
older adults.
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The effects of BP and RTS are more difficult to interpret because they interact. For example,
for any fixed ISS and Age,

ÔR = ôdds of death for BP=1 (Penetrating)

ôdds of death for BP=0 (Blunt)

= e.688+.068ISS+2.59(1)−.754RTS+.097Age−.597
√

Age−.235(1)RTS

e.688+.068ISS+2.59(0)−.754RTS+.097Age−.597
√

Age−.235(0)RTS

= e2.59−.235RTS

which decreases for increasing RTS. Looking at the ends of the RTS spectrum,

RTS ÔR
(no vitals) 0 13.35
(normal) 7.84 2.12

So, depending on ones RTS, the estimated odds of dying from a penetrating injury vary from 2 to
13 times the odds of dying from a blunt trauma, adjusting for ISS and Age. Before jumping on
this large difference very hard, though, let’s look at confidence intervals, which do overlap quite a
bit here.

. lincom _b[_Ibp_1],or
( 1) _Ibp_1 = 0
------------------------------------------------------------------------------

death | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | 13.35317 12.52076 2.76 0.006 2.125423 83.89257
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------------------------------------------------------------------------------
. lincom _b[_Ibp_1]+7.84*_b[_IbpXrts_1],or
( 1) _Ibp_1 + 7.84 _IbpXrts_1 = 0
------------------------------------------------------------------------------

death | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | 2.116841 .628437 2.53 0.012 1.183009 3.787814
------------------------------------------------------------------------------

Remarks

1. Some epidemiologists force confounders to be included in a logistic regression model regardless
of their statistical significance.

2. The BP*RTS interaction was barely significant at the α = .10 level. It might be interesting
to see whether ones conclusions change when this effect is omitted.

. xi:logistic death iss i.bp rts age agesqrt
i.bp _Ibp_0-1 (naturally coded; _Ibp_0 omitted)
Logistic regression Number of obs = 3132

LR chi2(5) = 937.89
Prob > chi2 = 0.0000

Log likelihood = -443.73652 Pseudo R2 = 0.5138
------------------------------------------------------------------------------

death | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

iss | 1.069022 .0077489 9.21 0.000 1.053942 1.084318
_Ibp_1 | 2.911404 .6711942 4.64 0.000 1.852963 4.574443

rts | .4474509 .0239457 -15.03 0.000 .4028958 .4969333
age | 1.102117 .0249277 4.30 0.000 1.054327 1.152073

agesqrt | .5548027 .1463495 -2.23 0.026 .3308286 .9304094
------------------------------------------------------------------------------
. estat gof,group(10)
Logistic model for death, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)
number of observations = 3132

number of groups = 10
Hosmer-Lemeshow chi2(8) = 14.77

Prob > chi2 = 0.0637

We see that remaining effects are highly significant and there is no evidence of gross deficien-
cies.

3. The ÔRs for ISS and Age are similar for the two models. If a primary interest was estimating
OR for ISS or Age, then it would not matter much which model we used. If BP is the
interesting effect, the simpler model yields an ÔR of 2.91, which is between the minimum
and maximum ÔR for the previous model.

4. The model without BP*RTS is simpler to interpret because it contains no interactions. How-
ever, most scientists are wary of omitting potentially important interactions, because of the
potentially misleading conclusions that might be reached in models that ignore them. I would
be inclined here to use the slightly more complex model with the BP*RTS interaction.

Case-Control Data

In epidemiological studies, the logistic model log
(

p
1−p

)
= α + β1x1 + β2x2 + · · ·+ βkxk is used to

relate p, say the probability of disease or death, to the collection x1, x2, . . . , xk of risk factors and
confounders. With prospective or cross-sectional studies, we have noted that risk (i.e. probability
of disease or death), relative risks, and ORs can be estimated using the logistic model – however
most of our focus has been on ORs.

In practice, data are often sampled retrospectively using a case-control design. Although it
is well known that risks and relative risks cannot be estimated using case-control data, ORs are
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estimable and agree with ORs defined from a prospective study. In terms of logistic regression, the
intercept cannot be estimated without bias using data from a case-control study, but regression
coefficients for predictors and confounders, which correspond to adjusted ORs, are estimated ap-
propriately. Thus, we can use standard methods to estimate regression effects and build regression
models using case-control data.

Diverticular Disease Example
There is a description of this data set on the web page as a supplement to this lecture. The data
set also is provided there. The data set has 64 rows with this content:

Variable Name Contents
Age Midpoint of age range (8 levels)
Sex Values are f and m
Cancer Colonic Cancer (1 is yes - case, 0 is no - control)
Lab Case - Control label (not used)
Disease Diverticular disease (values dd (yes) and ndd (no))
Count No. individuals with this combination of variables

There are a lot of possible strategies for building a model to predict Cancer. I proceeded this way:

1. The primary interest is the potential association with diverticular disease (DD) and colonic
cancer (CC). DD is considered an exposure variable.

2. Age and sex are viewed as confounders (potentially). Confounders are variables that are risk
factors for the disease and associated with, but not a consequence of, presence or absence of
the exposure variable.

Because age and sex are likely to confound the relationship between the occurrence of DD
and CC, most epidemiologists would argue that the effect of DD has to be assessed after
adjusting for the effects of age and sex. As a result, many epidemiologists would include age
and sex effects in a model, regardless of their statistical significance. Others might adopt a
slightly different view and consider the effect of removing insignificant sex and age effect on
adjusted ORs for DD. If removing insignificant effects has little impact on the estimate and
precision of the adjusted OR for DD it does not matter much whether they are included or
excluded. If the adjusted OR for DD changes dramatically upon removal, the insignificant
effect would typically remain in the model.

3. We have the option of treating Age, using midpoint of the age range, as a categorical variable
or on a continuous scale. If we consider Age as categorical, the odds of CC will be allowed
to vary freely across age categories – that is, the odds is not required to vary smoothly with
Age. If we choose this approach, interpretation of Age effects and interactions with Age will
be cumbersome. However, almost every logistic model with Age, Sex, and DD effects fits
well (using goodness of fit measures) when Age is categorical but fits poorly when Age is
continuous. This implies that the log odds of CC does not change linearly with Age, but
follows a more complex pattern. Consequently, I considered adding a quadratic term in Age,
and this improved the fit dramatically.

4. I then posed a full model with the following effects: Sex, DD, Age, Age2, Sex*Age, Sex*DD,
Age*DD. I then proceeded with a Backward Elimination. I decided to force DD, Sex, and
Age to be included in the model, regardless of their significance, but all other effects were
candidates for exclusion. Note: Count must be defined as a frequency variable.
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5. Stata is not going to let us use character variables directly in logistic, but that’s no
problem here since we need to create appropriate indicator variables and interactions anyway.
xi is accommodating, though, so first we generate the indicators and then perform the sw
procedure with the constraints listed above.

. xi i.sex i.disease i.sex*age i.sex*i.disease i.disease*age
i.sex _Isex_1-2 (_Isex_1 for sex==f omitted)
i.disease _Idisease_1-2 (_Idisease_1 for disease==dd omitted)
i.sex*age _IsexXage_# (coded as above)
i.sex*i.disease _IsexXdis_#_# (coded as above)
i.disease*age _IdisXage_# (coded as above)

. sw logit cancer (age _Isex_2 _Idisease_2) agesq _IsexXage_2 _IsexXdis_2_2
_IdisXage_2 [fweight=count],pr(.1) lockterm1

begin with full model
p = 0.4841 >= 0.1000 removing _IsexXdis_2_2
Logit estimates Number of obs = 193

LR chi2(6) = 46.54
Prob > chi2 = 0.0000

Log likelihood = -104.72637 Pseudo R2 = 0.1818
------------------------------------------------------------------------------

cancer | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | -.6267873 .2185572 -2.87 0.004 -1.055151 -.1984232
_Isex_2 | 4.009058 2.022184 1.98 0.047 .0456503 7.972465

_Idisease_2 | -4.604635 3.183622 -1.45 0.148 -10.84442 1.635149
agesq | .0053892 .0016092 3.35 0.001 .0022352 .0085432

_IsexXage_2 | -.0737373 .0318366 -2.32 0.021 -.1361359 -.0113386
_IdisXage_2 | .0806418 .0479469 1.68 0.093 -.0133323 .1746159

_cons | 16.93369 7.510259 2.25 0.024 2.213853 31.65353
------------------------------------------------------------------------------

The lockterm1 option forces (age _Isex_2 _Idisease_2) to stay in the model no matter
what. Only the DD*Sex interaction term was removed in the backward elimination, so we
have a model left with Age, Sex, DD, Age2, Age*Sex, and Age*DD effects.

6. The goodness of fit test for the final model shows no problems.

Logistic model for cancer, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 193
number of groups = 10

Hosmer-Lemeshow chi2(8) = 10.80
Prob > chi2 = 0.2131

7. The parameter estimates table is given only for the final model when using sw.

8. A primary interest is the effect of disease on CC. xi produced Idisease 2 and _IdisXage_2
where _Idisease_2 is 1 for ndd, 0 for dd; and _IdisXage_2 is 0 for dd and Age for ndd.
We want to measure odds of cancer for ndd and dd. Using the same reasoning as previously
(write the model, cancel common terms – the ones that are the same for dd and ndd),

ÔR (NDD vs. DD) = e−4.604635+.0806418Age

We could use this formula directly, but it is considerably easier to use lincom as before. I just
computed the estimated OR for each of the ages in the data set, with the following results.

. lincom _b[ _Idisease_2]+44.5*_b[ _IdisXage_2],or
( 1) _Idisease_2 + 44.5 _IdisXage_2 = 0

------------------------------------------------------------------------------
cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | .3620128 .3995044 -0.92 0.357 .0416264 3.148324

------------------------------------------------------------------------------
. lincom _b[ _Idisease_2]+52*_b[ _IdisXage_2],or
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( 1) _Idisease_2 + 52 _IdisXage_2 = 0
------------------------------------------------------------------------------

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

(1) | .6628131 .5182929 -0.53 0.599 .1431482 3.068995
------------------------------------------------------------------------------
. lincom _b[ _Idisease_2]+57*_b[ _IdisXage_2],or
( 1) _Idisease_2 + 57 _IdisXage_2 = 0

------------------------------------------------------------------------------
cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | .991979 .5875997 -0.01 0.989 .3106651 3.16747

------------------------------------------------------------------------------
. lincom _b[ _Idisease_2]+62*_b[ _IdisXage_2],or
( 1) _Idisease_2 + 62 _IdisXage_2 = 0

------------------------------------------------------------------------------
cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | 1.484615 .6725879 0.87 0.383 .6109234 3.607788

------------------------------------------------------------------------------
. lincom _b[ _Idisease_2]+67*_b[ _IdisXage_2],or
( 1) _Idisease_2 + 67 _IdisXage_2 = 0

------------------------------------------------------------------------------
cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | 2.221904 .928302 1.91 0.056 .9797086 5.039108

------------------------------------------------------------------------------
. lincom _b[ _Idisease_2]+72*_b[ _IdisXage_2],or
( 1) _Idisease_2 + 72 _IdisXage_2 = 0

------------------------------------------------------------------------------
cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | 3.325345 1.691708 2.36 0.018 1.226884 9.013008

------------------------------------------------------------------------------
. lincom _b[ _Idisease_2]+77*_b[ _IdisXage_2],or
( 1) _Idisease_2 + 77 _IdisXage_2 = 0

------------------------------------------------------------------------------
cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | 4.976776 3.368095 2.37 0.018 1.320952 18.75035

------------------------------------------------------------------------------
. lincom _b[ _Idisease_2]+84.5*_b[ _IdisXage_2],or
( 1) _Idisease_2 + 84.5 _IdisXage_2 = 0

------------------------------------------------------------------------------
cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) | 9.112032 8.985077 2.24 0.025 1.319086 62.94442

------------------------------------------------------------------------------

The confidence intervals indicate that OR really doesn’t differ significantly between DD and
NDD for patients under 70, but for older patients DD appears actually to be protective. We
should check to see if this is a real pattern in the data, or a fluke of the model we have fit.
How would you do such an analysis? We also need to make sure it makes some sense to
someone who knows the medicine.

I hope you see the value in including terms like Disease in the model, even though it is not
actually significant in this case. We needed to assess the potential for this variable to affect
CC through adjusted ORs, and we did find an interesting relationship (because age is so
important).

As an aside, I will note that if you remove the effect for Sex (and its interaction with age),
this has little effect on adjusted OR for DD. If age is completely ignored in the analysis
the adjusted OR for DD is reduced dramatically, implying that age is clearly an important
confounding variable in the relationship between DD and CC.

You can calculate any estimated adjusted OR using the above method. Remember, however,
that this is a case-control study, so risks or odds should not be evaluated!
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In-Lab Exercise

Return to the Framingham study data. Run the following code (make sure you understand what I
am doing here):

graph bar chd [fw=freq],over(scl, ///
relabel(1 "<190" 2 "190-219" 3 "220-249" 4 "250+")) ///
over(agegroup, relabel(1 "30-49" 2 "50-62")) ///
over(gender, relabel(1 "Female" 2 "Male")) ///
ytitle("Proportion CHD") ///
title("CHD vs. Gender, Age, and SCL")

bysort gender agegroup:tabulate chd scl [fw=frequency],chi2 exp col

Examine the output of the bar graphs and chi-squared tests.

1. What main effects appear to be present?

2. What interactions appear to be present?

3. Find a suitable model using logistic regression.

4. Summarize important odds ratios from your logistic regression model.

5. Give an overall summary of the analysis.
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13 Introduction to Survival Analysis

In many biomedical studies, the outcome variable is a survival time, or more generally a time to
an event. We will describe some of the standard tools for analyzing survival data.

Most studies of survival last a few years, and at completion many subjects may still be alive.
For those individuals, the actual survival time is not known – all we know is how long they survived
from their entry in the study. Similarly, certain individuals may drop out from the study or be lost
to follow-up. Each of these cases is said to be censored, and the recorded time for such individuals
is their time until the censoring event.

Example: HPA staining for breast cancer survival

We consider data from a retrospective study of 45 women who had surgery for breast cancer. Tumor
cells, surgically removed from each woman, were classified according to the results of staining on
a marker taken from the Roman snail, the Helix pomatia agglutinin (HPA). The marker binds to
cancer cells associated with metastasis to nearby lymph nodes. Upon microscopic examination, the
cancer cells stained with HPA are classified as positive, corresponding to a tumor with the potential
for metastasis, or negative. It is of interest to determine the relationship of HPA staining and the
survival of women with breast cancer.

The survival times in months timei and staining results (groupi = 0 for negative and groupi = 1
for positive) for the 45 women are presented in the following table. Also included is a censoring
indicator censi. Contrary to the normal definition of an indicator variable, the censoring indicator
is zero if the observation is right-censored, and one if the observation is uncensored. So it’s really
a non-censoring indicator! A woman’s survival time was right censored if the woman was alive at
the end of the study or if the woman died of causes unrelated to breast cancer.

time group cens time group cens
1. 23 0 1 24. 40 1 1
2. 47 0 1 25. 41 1 1
3. 69 0 1 26. 48 1 1
4. 70 0 0 27. 50 1 1
5. 71 0 0 28. 59 1 1
6. 100 0 0 29. 61 1 1
7. 101 0 0 30. 68 1 1
8. 148 0 1 31. 71 1 1
9. 181 0 1 32. 76 1 0

10. 198 0 0 33. 105 1 0
11. 208 0 0 34. 107 1 0
12. 212 0 0 35. 109 1 0
13. 224 0 0 36. 113 1 1
14. 5 1 1 37. 116 1 0
15. 8 1 1 38. 118 1 1
16. 10 1 1 39. 143 1 1
17. 13 1 1 40. 154 1 0
18. 18 1 1 41. 162 1 0
19. 24 1 1 42. 188 1 0
20. 26 1 1 43. 212 1 0
21. 26 1 1 44. 217 1 0
22. 31 1 1 45. 225 1 0
23. 35 1 1

This is the format the data should be in to work with it in Stata, but succinctly, the sorted
survival times for the negative stained women are

23, 47, 69, 70∗, 71∗, 100∗, 101∗, 148, 181, 198∗, 208∗, 212∗, 224∗,

where ∗ denotes a right-censored observation. The survival times for the positive stained group are

5, 8, 10, 13, 18, 24, 26, 26, 31, 35, 40, 41, 48, 50, 59, 61, 68, 71, 76∗, 105∗,

107∗, 109∗, 113, 116∗, 118, 143, 154∗, 162∗, 188∗, 212∗, 217∗, 225∗.
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In the breast cancer study, 8 individuals in the negative stained group, and 11 in the positive
stained group are censored. Although it is common for studies to have right-censored cases, such
as we have here, left-censoring and interval-censoring are found in other clinical studies.

Survival Curves

A first step in survival analysis is often to estimate the survival curve, or survival time distribution.
Suppose we are considering a single (homogeneous) population. Let T be the survival time (from
some reference point) for a randomly selected individual from the population. Where t is any
arbitrary positive value, the survival time distribution is defined to be

S(t) = Pr(T ≥ t)
= probability randomly selected individual survives at least until time t

= proportion of population that survives at least until time t.

The function might look like Figure 1.

5 10
t

0.5

1

Figure 1: S(t) versus t;median survival time for population is 5.

Estimating the Survival Curve

Case I: No censoring

If we have a random sample from the population, we use the empirical survival function:

Ŝ(t) = sample proportion that survive at least until time t

to estimate S(t). This is easy to compute and plot as a function of t.
Suppose we have a sample of 5 survival times (in days): 5, 8, 20, 30, and 33. Ŝ(t) has “jumps”

of size 1/5 (i.e. 1 divided by the sample size) at each survival time; see Figure 2.

Case II: Right censoring

Recall the data on the survival of women with breast cancer whose cells were negatively stained
with HPA:

23, 47, 69, 70∗, 71∗, 100∗, 101∗, 148, 181, 198∗, 208∗, 212∗, 224∗,

where the ∗ superscript identifies a right-censored observation.
The following algorithm describes the Kaplan-Meier (KM) method for estimating the survival

curve (Kaplan-Meier product-limit estimate).
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Figure 2: Empirical survival function Ŝ(t) for the data 5, 8, 20, 30, and 33.

1. Identify times for non-censored cases 0 = t0 < t1 < t2 < · · · < tr. That is, t1 is the smallest
non-censored survival time, t2 is the second smallest, et cetera. For the example r = 5 and
t0 = 0, t1 = 23, t2 = 47, t3 = 69, t4 = 148, and t5 = 181.

2. For the jth interval, where tj−1 ≤ t < tj , evaluate

nj = number at risk (of dying) at beginning of interval,
dj = number of deaths in interval,

nj − dj

nj
= estimated probability of surviving past tj−1, given survival to tj−1

= P̂ (T ≥ tj−1|T ≥ tj−2).

3. For tj−1 ≤ t < tj ,

Ŝ(t) = P̂ (T ≥ t)
= P̂ (T ≥ tj−1|T ≥ tj−2)×

P̂ (T ≥ tj−2|T ≥ tj−3)× · · · ×
P̂ (T ≥ t1|T ≥ t0)

=
nj − dj

nj
× nj−1 − dj−1

nj−1
× · · · × n1 − d1

n1
.

Remark: Censored observations are taken into account by being treated as cases at risk at the
beginning of the interval in which they fail.

To illustrate the calculation for our data, consider the table:

139



13 INTRODUCTION TO SURVIVAL ANALYSIS

j Interval nj dj
nj−dj

nj
Ŝ(t)

1 0 ≤ t < 23 13 0 13−0
13 = 1 1.0

2 23 ≤ t < 47 13 1 13−1
13 = 12

13
.= 0.923 1.0× 0.923 = 0.923

3 47 ≤ t < 69 12 1 12−1
12 = 11

12
.= 0.917 0.923× 0.917 = 0.846

4 69 ≤ t < 148 11 1 10
11

.= 0.909 0.846× 0.909 = 0.769

5 148 ≤ t < 181 6 1 5
6

.= 0.833 0.769× 0.833 = 0.641

6 181 ≤ t 5 1 4
5 = 0.8 0.641× 0.8 = 0.513

To obtain the KM estimate in Stata we must declare the data we are working with to be
survival data. Stata then uses the survival time variable and the censoring variable together in
analyses. For the breast cancer data we first read in the variables using something like infile time
group cens using c:/breast.txt. We declare the data to be survival data using stset time,
failure(cens). Stata creates several internal variables when we do this. Note that the option
,failure(cens) makes the variable cens into an indicator of known death (“failure”). Finally
we obtain the KM survival curve estimates across the two groups with the command sts graph,
by(group). In Figure 3 we have a picture of Ŝ(t) from the negatively stained group as well as the
estimate from the positively stained group. Note that the negatively stained group tends to live
longer, as we would expect.

0.
00

0.
25

0.
50

0.
75

1.
00

0 50 100 150 200 250
analysis time

group = 0 group = 1

Kaplan−Meier survival estimates, by group

Figure 3: KM survival curves for positively and negatively stained groups.

The estimated quartiles for survival across the two groups are obtained by stsum, by(group).
Annotated output follows; for example, we see that the median survival in the positive stained
group is estimated to be 61 months.
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. stsum,by(group)
failure _d: cens

analysis time _t: time
| incidence no. of |------ Survival time -----|

group | time at risk rate subjects 25% 50% 75%
---------+---------------------------------------------------------------------

0 | 1652 .0030266 13 148 . .
1 | 2679 .0078387 32 26 61 .

---------+---------------------------------------------------------------------
total | 4331 .0060032 45 40 113 .

Some remarks:

• The estimated survival curve “drops to zero” only if the last case is not censored.

• The KM curve allows us to estimate percentiles of the survival distribution, with a primary
interest being the median survival time (50th percentile). In the example above (group 0),
the 90th percentile is approximately 47 months (i.e. we estimate that 90% of the population
will survive at least 47 months). The median cannot be estimated here – all we can say is
that we estimate the median to be at least 181 months.

• The KM estimate is the usual empirical estimate if no cases are censored.

• Statistical methods are available to

– Estimate the mean survival time. This sounds good, but survival time distributions tend
to be highly skewed right, so usually we are much more interested in the median.

. stci,by(group) rmean
failure _d: cens

analysis time _t: time
| no. of restricted

group | subjects mean Std. Err. [95% Conf. Interval]
-------------+-------------------------------------------------------------

0 | 13 167.7436(*) 20.80779 126.961 208.526
1 | 32 104.0477(*) 15.6278 73.4177 134.678

-------------+-------------------------------------------------------------
total | 45 121.9075(*) 13.3793 95.6846 148.13

(*) largest observed analysis time is censored, mean is underestimated.

. stci,by(group) emean
failure _d: cens

analysis time _t: time
| no. of extended

group | subjects mean
-------------+----------------------

0 | 13 339.7513
1 | 32 158.5235

-------------+----------------------
total | 45 196.3361

– Get a C.I. for the survival curve. You need to ask for pointwise Greenwood confidence
bands.

. sts graph,by(group) gwood
failure _d: cens

analysis time _t: time
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Kaplan−Meier survival estimates, by group

– Compare survival curves across groups – you can think of this as the censored data
analogue of (non-parametric) ANOVA. There are a lot of available tests, though most
common probably is the log-rank test (Stata’s default). A few of them follow.

. sts test group
failure _d: cens

analysis time _t: time

Log-rank test for equality of survivor functions
| Events Events

group | observed expected
------+-------------------------
0 | 5 9.57
1 | 21 16.43
------+-------------------------
Total | 26 26.00

chi2(1) = 3.51
Pr>chi2 = 0.0608

. sts test group,wilc
failure _d: cens

analysis time _t: time

Wilcoxon (Breslow) test for equality of survivor functions
| Events Events Sum of

group | observed expected ranks
------+--------------------------------------
0 | 5 9.57 -159
1 | 21 16.43 159
------+--------------------------------------
Total | 26 26.00 0

chi2(1) = 4.18
Pr>chi2 = 0.0409

. sts test group,cox
failure _d: cens

analysis time _t: time

Cox regression-based test for equality of survival curves
| Events Events Relative

group | observed expected hazard
------+--------------------------------------
0 | 5 9.57 0.5633
1 | 21 16.43 1.3966
------+--------------------------------------
Total | 26 26.00 1.0000

LR chi2(1) = 3.87
Pr>chi2 = 0.0491

. sts test group,peto
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failure _d: cens
analysis time _t: time

Peto-Peto test for equality of survivor functions
| Events Events Sum of

group | observed expected ranks
------+--------------------------------------
0 | 5 9.57 -3.509069
1 | 21 16.43 3.509069
------+--------------------------------------
Total | 26 26.00 0

chi2(1) = 4.12
Pr>chi2 = 0.0425

. sts test group,tware
failure _d: cens

analysis time _t: time

Tarone-Ware test for equality of survivor functions
| Events Events Sum of

group | observed expected ranks
------+--------------------------------------
0 | 5 9.57 -26.921999
1 | 21 16.43 26.921999
------+--------------------------------------
Total | 26 26.00 0

chi2(1) = 4.05
Pr>chi2 = 0.0441

These tests do not necessarily all agree with each other – some emphasize different parts
of the distribution than others, and different principles for approximating distributions are
employed. In this case there is little difference, except the minor differences are right at the
0.05 significance level.

The Cox Proportional Hazards Model

The risk of failing at time t is defined to be the probability of an individual dying in the “next
instant” (e.g. in a time frame of length ∆) given this individual has survived at least until time t:

P (t ≤ T < t + ∆|t ≤ T ).

We define the hazard function h(t) such that for small enough ∆,

P (t ≤ T < t + ∆|t ≤ T ) = h(t)∆.

The hazard function is proportional to the instantaneous “risk of failing” at any time t, given that
an individual has lived at least to time t.

Now consider two individuals, 1 and 2, each with their own hazard functions h1(t) and h2(t). If
we assume that one individual’s instantaneous rate of failing is a constant multiple of the other’s, i.e.
h2(t) = ah1(t) for some constant a, then these two individuals have proportional hazard functions.
Figure 4 shows an example of this phenomenon where the hazard ratio is 1/2.

Proportional hazards may or may not be a reasonable assumption to make. For example,
consider two people, roughly the same age and demographic except that at the age of 20, person
2 takes up smoking while person 1 does not. You will hopefully agree with me that initially, the
smoker and the non-smoker will most likely have identical hazards. As the years roll by, and
smoking takes its toll, we would think that the smoker’s instantaneous rate of failing, which is
proportional to the probability of dying in the next minute, say, will increase relative to the hazard
for the non-smoker. In this example proportional hazards probably is an unreasonable assumption.

The proportional hazards model generalizes the above concept for n individuals, each with their
own covariate value xi or set of p covariate values xi = (xi1, xi2, . . . , xip). In the case where the
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Figure 4: An example of proportional hazard functions; here the constant of proportionality is 0.5.

n individuals only have one covariate, the model stipulates for individuals i and j, with hazard
functions hi(t) and hj(t) respectively, that

hi(t)e−βxi = hj(t)e−βxj .

Note that this implies
hi(t)
hj(t)

=
eβxi

eβxj
= eβ(xi−xj).

Here, eβ(xi−xj) is the relative risk of instantaneous failure at any time t for individuals i and
j. That is the power of the proportional hazards assumption: the relative risk of dying for two
individuals is a simple function of the model parameters and holds for all t, independent of the
value of t. If individual i has covariate value x + 1 and individual j has covariate value x, i.e. their
covariate values only differ by 1 unit on the covariate measurement scale, then

hi(t)
hj(t)

=
eβ(x+1)

eβx
= eβ.

Thus, eβ is the relative risk of failing in the next instant when we increase the covariate by one
unit. Note that if xi is a simple zero/one variable denoting which group individual i falls into, then
eβ is the relative risk of failing in the next instant for the group denoted by xi = 1 versus xi = 0.

The Cox PH model is fit as follows (everything had to be stset prior to this command). We
do not have to specify the dependent variable as in other regression routines because it is defined
(survival time) with stset.

. stcox group
failure _d: cens

analysis time _t: time
Iteration 0: log likelihood = -86.983777
Iteration 1: log likelihood = -85.087844
Iteration 2: log likelihood = -85.048003
Iteration 3: log likelihood = -85.047944
Refining estimates:
Iteration 0: log likelihood = -85.047944
Cox regression -- Breslow method for ties
No. of subjects = 45 Number of obs = 45
No. of failures = 26
Time at risk = 4331
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LR chi2(1) = 3.87
Log likelihood = -85.047944 Prob > chi2 = 0.0491
------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

group | 2.479398 1.241987 1.81 0.070 .9288808 6.618086
------------------------------------------------------------------------------
*************
************* Note: stcox group,nohr reports coefficients, not hazard ratios
------------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

group | .9080157 .5009228 1.81 0.070 -.0737749 1.889806
------------------------------------------------------------------------------

We have an estimate of β̂ = 0.908 and the estimated relative risk is eβ̂ = e0.908 .= 2.5. That
is, those with positive staining are estimated to have a risk of dying in the next instant about 2.5
times as great as those with negative staining. Note that the p-value for H0 : β = 0 is small but not
significant at the 5% level. There is definitely some indication that staining affects survival, with
positive staining decreasing survival. A 95% C.I. for the risk may be obtained by exponentiating the
endpoints for the C.I. for β. Here, we estimate the relative risk of expiring (for positive compared
to negative staining) to be within (e−0.073, e1.89) = (0.93, 6.62) with 95% confidence.

Remark: The hazard function for individual i can be defined to be a scale multiple exiβ of a
baseline hazard function denoted h0(t). The model may be recast as hi(t) = h(t|xi) = exiβh0(t).
This baseline hazard function h0(t) and β together thus completely determine the model. The
baseline hazard h0(t) may be estimated from the data as well as survival curves, median and mean
survival, et cetera, for any covariate value x. These sorts of inferences are quite easy to get out of
Stata but a bit beyond what is comfortable to cover in this class.

Checking the Proportional Hazards Assumption

The assumption matters because estimates and inferences based on them may be completely invalid
if hazards are not proportional, and we have no easy way to assess that from the regression output.
There are standard diagnostics that often work pretty well but are not at all easy to derive without
some mathematics.

What you would like to do is estimate the hazard functions from the data, and plot them on
the same scale to assess proportionality. That is very similar to estimating a population frequency
distribution, and is a fairly hard problem that takes quite a bit of data (Stata will do it, but that
doesn’t mean it works well). What works better and is much easier to estimate (effectively from
Kaplan-Meier) is the integrated or cumulative hazard H(t) =

∫ t
0 h(s)ds. If hazard functions are

proportional then so are cumulative hazard functions. A very fortunate mathematical relationship
is that the survival curve is related to the cumulative hazard as H(t) = − log S(t) so log H(t) =
log [− log S(t)]. If h0(t) is the baseline hazard function, then the proportional hazards assumptions
says the cumulative hazard function for individual i is exiβH0(t), and log [−logSi(t)] = xiβ +
log [−logS0(t)]. What this says is that if x is a group indicator as above then plots of log [− log S(t)]
for groups should be parallel (and separated by the β’s for groups). Stata does (almost) this in its
stphplot command.

Another approach is to compare the completely nonparametric Kaplan-Meier curve to the curve
predicted under proportional hazards. That is the stcoxkm command. Stata’s description of these
commands from the help system is as follows:
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Description

stphplot plots -ln{-ln(survival)} curves for each category of a nominal or
ordinal covariate versus ln(analysis time). These are often referred to as
"log-log" plots. Optionally, these estimates can be adjusted for
covariates. The proportional-hazards assumption is not violated when the
curves are parallel.

stcoxkm plots Kaplan-Meier observed survival curves and compares them to the
Cox predicted curves for the same variable. The closer the observed values
are to the predicted, the less likely it is that the proportional-hazards
assumption has been violated. Do not run stcox prior to this command;
stcoxkm will execute stcox itself to estimate the model and obtain predicted
values.

Doing this with the breast cancer data using these commands yields the following graph:

. stphplot,by(group) name(loglog)

. stcoxkm,by(group) name(phkm)

. graph combine loglog phkm
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This all looks great. We do not have any evidence that the proportional hazards assumption is not
reasonable.

A final example

We examine a data set consisting of the time spent running on a treadmill for 14 people aged 15
and older. Each subject’s gender and age were recorded. It is of interest to the experimenter how
age and gender affect ones endurance.

When fitting the PH model with gender and age as main effects,

h(t|age, gender) = eage×β1+gender×β2h0(t),

we are going to let xi determine the gender indicator (it will set the first group alphabetically,
females, to 0 and males to 1). The baseline group (i.e. those with covariates age = 0 and
gender indicator = 0, and thus a hazard function of e0β1+0β2 = e0h0(t) = h0(t)) consists of fe-
males of age zero, which is not interpretable in this context. Observations were censored due to a
subject having to leave the treadmill for reasons other than being tired. The data follow:
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gender age minutes cens weight
1. male 34 16 1 215
2. male 15 35 0 135
3. female 22 55 0 145
4. female 18 95 1 97
5. male 18 55 0 225
6. female 32 55 1 185
7. female 37 25 1 155
8. female 67 15 1 142
9. female 55 22 1 132

10. male 55 13 1 183
11. male 62 13 1 168
12. female 33 57 0 132
13. female 17 52 0 112
14. male 24 54 1 175

We need to start by declaring a survival data set:

. stset minutes,failure(cens)
failure event: cens != 0 & cens < .

obs. time interval: (0, minutes]
exit on or before: failure
------------------------------------------------------------------------------

14 total obs.
0 exclusions

------------------------------------------------------------------------------
14 obs. remaining, representing
9 failures in single record/single failure data

562 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 95

The fit of the model with only gender h(t|gender) = egender indicator×β1h0(t):

. xi: stcox i.gender
i.gender _Igender_1-2 (_Igender_1 for gender==female omitted)

failure _d: cens
analysis time _t: minutes

Iteration 0: log likelihood = -18.061924
Iteration 1: log likelihood = -17.622711
Iteration 2: log likelihood = -17.620368
Refining estimates:
Iteration 0: log likelihood = -17.620368
Cox regression -- Breslow method for ties
No. of subjects = 14 Number of obs = 14
No. of failures = 9
Time at risk = 562

LR chi2(1) = 0.88
Log likelihood = -17.620368 Prob > chi2 = 0.3474
------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Igender_2 | 1.971276 1.411726 0.95 0.343 .4843518 8.022949

------------------------------------------------------------------------------

The test for a gender effect yields a p-value of 0.343. We would accept at any reasonable
significance level that there is not a gender effect. The estimated hazard ratio is

h(t|gender = male)/h(t|gender = female) = 1.97

for all t. That is, the probability of a randomly picked man failing (stepping off the treadmill) in
the next second is estimated be twice the probability of a randomly picked female. The confidence
interval for the hazard ratio is from 0.48 to 8.02, which includes 1 since the effect was not significant.

Let’s look at the model fit with only age h(t|age) = eage×β1h0(t):

. stcox age
failure _d: cens
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analysis time _t: minutes
Iteration 0: log likelihood = -18.061924
Iteration 1: log likelihood = -11.184791
Iteration 2: log likelihood = -11.184559
Refining estimates:
Iteration 0: log likelihood = -11.184559
Cox regression -- Breslow method for ties
No. of subjects = 14 Number of obs = 14
No. of failures = 9
Time at risk = 562

LR chi2(1) = 13.75
Log likelihood = -11.184559 Prob > chi2 = 0.0002
------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | 1.118133 .043125 2.90 0.004 1.036725 1.205934
------------------------------------------------------------------------------

A year from now, a randomly selected individual will be 1.118 times as likely to step off the
treadmill after 15 minutes (or any amount of time) than now. In ten years it will be 1.11810 =
3.05 times as likely. When we fit the model with both of these predictors h(t|age, gender) =
eage×β1+gender indicator×β2h0(t) we see that estimated regression effects, and therefore model
interpretation, change somewhat:

. xi: stcox i.gender age
i.gender _Igender_1-2 (_Igender_1 for gender==female omitted)

failure _d: cens
analysis time _t: minutes

Iteration 0: log likelihood = -18.061924
Iteration 1: log likelihood = -8.3270231
Iteration 2: log likelihood = -7.2765366
Iteration 3: log likelihood = -7.1238759
Iteration 4: log likelihood = -7.1166297
Iteration 5: log likelihood = -7.1166049
Refining estimates:
Iteration 0: log likelihood = -7.1166049
Cox regression -- Breslow method for ties
No. of subjects = 14 Number of obs = 14
No. of failures = 9
Time at risk = 562

LR chi2(2) = 21.89
Log likelihood = -7.1166049 Prob > chi2 = 0.0000
------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Igender_2 | 34.87809 55.05714 2.25 0.024 1.580812 769.529

age | 1.244367 .1064681 2.56 0.011 1.052251 1.471558
------------------------------------------------------------------------------

At a given age, a random male running alongside a random female is about 35 times as likely
to step off the treadmill at any time. A woman 20 years older than another woman is about
1.24420 .= 79 times as likely to step off compared to the younger woman. Note that in the presence
of age, gender is now significant, although by itself gender is not a significant factor. In this case
age is said to be a suppressor variable.

In the model fit that included an interaction between age and gender, the interaction term was
not significant. Weight is not significant in the presence of gender and age (or by itself).

We should check on the proportional hazards assumption.

. sts graph,by(gender) name(km)

. stphplot,by(gender) name(loglog)

. stcoxkm,by(gender) name(phkm)

. graph combine km loglog phkm
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There is not a lot of data here, so we have to expect deviations from ideal patterns. The log-log
plot only needs to be parallel, not linear, and this is plausibly parallel. The PH model is not
disagreeing with the Kaplan-Meier fit. The survival curves by gender are consistent with the tests
we ran. There is no clear reason to question the PH assumptions.

149



14 POISSON REGRESSION

14 Poisson Regression

In class we will cover Chapter 12 (Analysis of Rates with Poisson Regression) from Steve Selvin’s
text Practical Biostatistical Methods (1995, Wadsworth). There are many more applications of
Poisson regression than covered there, but this chapter has a treatment quite relevant to you.

The appendix in Selvin discusses the Poisson distribution mostly as an approximation to the
binomial distribution when n is large and p is small. A broader more detailed perspective can be
found at Wikipedia (http://en.wikipedia.org/wiki/Poisson_distribution). One entry there
states that

The word law is sometimes used as a synonym of probability distribution, and conver-
gence in law means convergence in distribution. Accordingly, the Poisson distribution is
sometimes called the law of small numbers because it is the probability distribution
of the number of occurrences of an event that happens rarely but has very many op-
portunities to happen. The Law of Small Numbers is a book by Ladislaus Bortkiewicz
about the Poisson distribution, published in 1898. Some historians of mathematics have
argued that the Poisson distribution should have been called the Bortkiewicz distribu-
tion.

Wikipedia provides several examples of the Poisson as well:

The Poisson distribution arises in connection with Poisson processes. It applies to
various phenomena of discrete nature (that is, those that may happen 0, 1, 2, 3, ...
times during a given period of time or in a given area) whenever the probability of the
phenomenon happening is constant in time or space. Examples of events that can be
modelled as Poisson distributions include:

• The number of cars that pass through a certain point on a road during a given
period of time.

• The number of spelling mistakes a secretary makes while typing a single page.

• The number of phone calls at a call center per minute.

• The number of times a web server is accessed per minute. For instance, the num-
ber of edits per hour recorded on Wikipedia’s Recent Changes page follows an
approximately Poisson distribution.

• The number of roadkill found per unit length of road.

• The number of mutations in a given stretch of DNA after a certain amount of
radiation.

• The number of unstable nuclei that decayed within a given period of time in a piece
of radioactive substance. The radioactivity of the substance will weaken with time,
so the total time interval used in the model should be significantly less than the
mean lifetime of the substance.

• The number of pine trees per unit area of mixed forest.

• The number of stars in a given volume of space.

• The number of soldiers killed by horse-kicks each year in each corps in the Prus-
sian cavalry. This example was made famous by a book of Ladislaus Josephovich
Bortkiewicz (1868-1931).

• The distribution of visual receptor cells in the retina of the human eye.
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• The number of V2 rocket attacks per area in England, according to the fictionalized
account in Thomas Pynchon’s Gravity’s Rainbow.

• The number of light bulbs that burn out in a certain amount of time.

For our purposes two more interesting examples probably are number of deaths in a subpopu-
lation in a certain amount of time and number of cases of a disease in a subpopulation in a fixed
period of time. What is key in these and the other examples is that the Poisson distribution de-
scribes random counts. Selvin deals with rates (proportions) which probably are more common but
require some special consideration.

Mathematical Background

Let the random variable Y have a Poisson distribution with parameter λ. This means that

P (Y = k) =
e−λλk

k!
; k = 0, 1, 2, 3, . . .

and both the mean E(Y ) and variance V ar(Y ) of Y are λ. As with the binomial distribution where
we found the logit function and logistic regression to be more useful than considering the binomial
distribution directly, we fit regression models to log Y (natural log), so we get models of the form

log E(Y ) = β0 + β1x1 + . . . + βpxp

where there are good theoretical reasons for logit with binomial and log for the Poisson. These are
special cases of a large class of such models called generalized linear models (handled with the glm
command in Stata in general, more easily handled with the poisson command for this case).

Poisson regression fits linear models to log(counts of number of events) – remember, fitting
linear models means looking for group differences, interactions, adjusting for covariates and con-
founders,etc.. The events we are looking at probably will be deaths or diagnosis of disease. In the
applications you are likely to encounter most often, we actually want to fit linear models to rates,
where rates are usually of the form

r =
count of events
population size

, or r =
count of events
total exposure

.

Either way, we probably want to model r more than we want to model counts directly. The way
we do this is to fit a linear model to log of r

log r = β̂0 + β̂1x1 + . . . + β̂pxp (1)

log
(

count of events
population size

)
= β̂0 + β̂1x1 + . . . + β̂pxp (2)

log (count of events)− log (population size) = β̂0 + β̂1x1 + . . . + β̂pxp (3)

log (count of events) = β̂0 + β̂1x1 + . . . + β̂pxp + log (population size) (4)

Equation (4) shows that we model log r by writing a linear model for log (count of events), which
is regular Poisson regression, except that we have a special new variable with a known coefficient
of 1, i.e. log (population size). Such a variable is called an offset. The general form would be the
same if we had a rate using exposure instead of population size.

In order to interpret coefficients, consider the simple case of two groups (say F and M) where

x1 =

{
0 Group = F
1 Group = M

, the usual group indicator variable, and we fit a simple model to compare
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groups, log r = β̂0 + β̂1x1. Then F is the reference group and β̂1 is the difference between groups M
and F in the log scale, just as we usually have in linear models, i.e. log rF = β̂0 and log rM = β̂0+β̂1,
so log rM − log rF = β̂1 and rM

rF
= elog rM−log rF = eβ̂1 . Similar to the way we obtained estimated

Odds Ratios in logistic regression, we obtain estimated incidence-rate ratios by exponentiating
estimated regression coefficients. Factors with multiple levels and continuous predictor variables
are handled similarly to the way we have handled then in least squares regression and in logistic
regression.

Stata Implementation

A portion of the help viewer in Stata for the Poisson command shows

Syntax
poisson depvar [indepvars] [if] [in] [weight] [, options]

options description
--------------------------------------------------------------------------
Model
noconstant suppress constant term
exposure(varname_e) include ln(varname_e) in model with

coefficient constrained to 1
offset(varname_o) include varname_o in model with coefficient

Reporting
level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

irr reports estimated coefficients transformed to incidence-rate ratios,
that is, exp(b) rather than b. Standard errors and confidence
intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be
specified at estimation or when replaying previously estimated
results.

offset(varname) specifies that varname be included in the model with the
coefficient constrained to be 1.

exposure(varname) specifies a variable that reflects the amount of
exposure over which the depvar events were observed for each
observation; ln(varname) with coefficient constrained to be 1 is
entered into the log-link function.

From a practical perspective, what difference does it make if you declare a variable an offset or
an exposure? Read carefully – you need to already have taken the log for an offset, but Stata will
go ahead and take the log of an exposure variable. You can use either form, just be careful you
have the variable in the correct form.

Example

Consider the very simple data set

group deaths popsize
1. F 10 10000
2. M 15 8000

and compare mortality rates for the two groups. Define lpopsize from the command
gene lpopsize = log(popsize). We want to fit using both the offset and exposure forms of
the command to see they agree.
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. xi:poisson deaths i.group, exposure(popsize)
i.group _Igroup_1-2 (_Igroup_1 for group==F omitted)
Iteration 0: log likelihood = -4.35708
Iteration 1: log likelihood = -4.35708
Poisson regression Number of obs = 2

LR chi2(1) = 2.43
Prob > chi2 = 0.1188

Log likelihood = -4.35708 Pseudo R2 = 0.2183
------------------------------------------------------------------------------

deaths | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Igroup_2 | .6286087 .4082483 1.54 0.124 -.1715433 1.428761
_cons | -6.907755 .3162278 -21.84 0.000 -7.52755 -6.28796

popsize | (exposure)
------------------------------------------------------------------------------
. xi:poisson deaths i.group, offset(lpopsize)
i.group _Igroup_1-2 (_Igroup_1 for group==F omitted)
Iteration 0: log likelihood = -4.35708
Iteration 1: log likelihood = -4.35708
Poisson regression Number of obs = 2

LR chi2(1) = 2.43
Prob > chi2 = 0.1188

Log likelihood = -4.35708 Pseudo R2 = 0.2183
------------------------------------------------------------------------------

deaths | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Igroup_2 | .6286087 .4082483 1.54 0.124 -.1715433 1.428761
_cons | -6.907755 .3162278 -21.84 0.000 -7.52755 -6.28796

lpopsize | (offset)
------------------------------------------------------------------------------
. poisson,irr
Poisson regression Number of obs = 2

LR chi2(1) = 2.43
Prob > chi2 = 0.1188

Log likelihood = -4.35708 Pseudo R2 = 0.2183
------------------------------------------------------------------------------

deaths | IRR Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Igroup_2 | 1.875 .7654656 1.54 0.124 .8423638 4.173523
lpopsize | (offset)

------------------------------------------------------------------------------

But look what happens if you mix offset and exposure:

. xi:poisson deaths i.group, offset(popsize)
Poisson regression Number of obs = 2

Wald chi2(1) = 2.401e+07
Log likelihood = -4.35708 Prob > chi2 = 0.0000
------------------------------------------------------------------------------

deaths | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Igroup_2 | 2000.405 .4082483 4899.97 0.000 1999.605 2001.206
_cons | -9997.697 .3162278 -3.2e+04 0.000 -9998.317 -9997.078

popsize | (offset)
------------------------------------------------------------------------------

We will do a number of the examples in Selvin’s chapter during class.
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14 Power and Sample Size

Consider the simple problem from last semester where we sample from a normal population with
a known σ and want to test a hypothesis of the form H0 : µ = µ0 vs. HA : µ 6= µ0. The
rule for the test is to reject H0 if |Z| > zcritical where Z = X−µ0

σ/
√

n
. zcritical is chosen to satisfy

P (|Z| > zcritical|H0 is true) = α, where α is the probability of a Type I Error, or the significance
level. A Type I Error is rejecting H0 when H0 is actually true, i.e. claiming something important
is going on when actually nothing important is going on. Usually we take α = .05 which forces
zcritical=1.96.

The significance level is the chance of rejecting H0 when we should not do so. If HA is true
then of course we should reject H0. The probability that we correctly reject H0 when HA is true
is defined as the Power of the test. Power is a lot more complicated than α, though.

The extra complication comes from two sources. First, HA is not simple like H0 is, so if HA is
true there are many possible values of µ other than µ0. If the actual µ is a long way from µ0 then
it should be fairly easy to tell that H0 is not true and the power should be high. If the actual µ
is close to µ0, though, it should be pretty hard to tell that we are not sampling from the situation
described by H0, and the power may be low. Second, the sample size has a lot to do with the
power. If n is large then we have a lot of information and it should be easy to tell if HA is true, but
if n is small it may be very difficult to tell that H0 is not true. By contrast, the test is structured
so that α does not depend upon the sample size – it is always the fixed number we choose (usually
.05).

We can actually tell exactly how the Z-statistic above behaves if we specify exactly which of
the values of µ is true. X−µ

σ/
√

n
is standard normal if we used the right µ, and we are using Z = X−µ0

σ/
√

n

(which is standard normal if we used the right µ, i.e. if H0 is true). If HA is true write

Z =
X − µ0

σ/
√

n
=

X − µ + (µ− µ0)
σ/
√

n
=

X − µ

σ/
√

n
+

µ− µ0

σ/
√

n

which tells us that Z is a normal random variable with standard deviation 1 and mean
√

n(µ−µ0

σ )
if HA is true.

−20 −10 0 10 20 30 40
x

Normal Populations with µ = 10, 11, 16 and σ = 8

Figure 1: Three normal populations with σ = 8.
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Example: Let σ = 8 and test H0 : µ = 10 vs. HA : µ 6= 10. There are infinitely many possible
values of µ under HA, but for purposes of illustration let us consider only µ = 11 and µ = 16.
Figure 1 graphs all three populations. Clearly it is going to be fairly hard to tell whether we
sampled from the population with µ = 11 or the population with µ = 10, since they are so little
different, but it should be quite a bit easier to tell if we sampled from the population with µ = 16
or the population with µ = 10 (although that is not trivial either).

Consider a fixed sample size of n = 16. P (|Z| > 1.96|µ = 10) = α = .05. The power when
µ = 11 is P (|Z| > 1.96|µ = 11) while the power when µ = 16 is P (|Z| > 1.96|µ = 16). Figure 2 (a)
shows the distribution of the Z-statistic for sampling from each of these populations, (b) shows the
calculation of α, (c) shows the power (.08) for µ = 11 and (d) shows the power (.85) for µ = 16.
As expected, we have a good chance with this sample size of telling µ = 16 from µ = 10 but a slim
chance of telling µ = 11 from µ = 10.
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(a) Sampling Distr. of Z =
X − µ0

σ n
=

X − 10

8 16

H0 : µ = 10

HA : µ = 11

HA : µ = 16
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z

(b) Significance Level α = 0.05

H0 : µ = 10

HA : µ = 11

HA : µ = 16

−4 −2 0 2 4 6

z

(c) Power at µ = 11 is .08

H0 : µ = 10

HA : µ = 11

HA : µ = 16

−4 −2 0 2 4 6

z

(d) Power at µ = 16 is .85

H0 : µ = 10

HA : µ = 11

HA : µ = 16

Figure 2: Power for a test of H0 : µ = 10 vs. HA : µ 6= 10 for a random sample of 16 from a normal
population with σ = 8.
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For a given alternative µ, the power also increases with n. Figure 3 demonstrates this behavior
for the example using µ = 16 and sample sizes of 5, 15, and 25.

Stata will do calculations like these for you. Follow the menu path
Summaries, tables, & tests

→ Classical tests of hypotheses
→ Sample size and power determination

and fill in the boxes. Here we are doing “One-sample comparison of mean to hypothesized value”
so check that, give hypothesized value of 10, Std. deviation one of 8, and Postulated mean of 16.
Next click on the Options box, ask to compute power, specify significance level of .05 and a two
sided test with sample size 15. Stata returns the following:

. sampsi 10 16, alpha(.05) n1(15) sd1(8) onesample
Estimated power for one-sample comparison of mean
to hypothesized value

Test Ho: m = 10, where m is the mean in the population
Assumptions:

alpha = 0.0500 (two-sided)
alternative m = 16

sd = 8
sample size n = 15

Estimated power:
power = 0.8276

This is exactly what you find on Figure 3 for n = 15.
Much more common is the inverse of this problem, where we specify the power and ask for

the sample size. Conceptually this is not different from what we have been doing, but there are
some guidelines. Generally we specify some reasonable alternative, make a good guess based on
published literature or preliminary data of the standard deviation, specify a two-tailed procedure
at α = .05, and target power of .8. The goal is to find n to yield that power. If we do that for the
earlier problem with µ = 11 and σ = 8 where µ0 = 10, we get

. sampsi 10 11, alpha(.05) power(.80) sd1(8) onesample
Estimated sample size for one-sample comparison of mean
to hypothesized value

Test Ho: m = 10, where m is the mean in the population
Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000

alternative m = 11
sd = 8

Estimated required sample size:
n = 503

which says we need over 500 observations to have an 80% chance of telling populations as close as
the two closest in Figure 1 apart.

Stata does power analysis like the preceding on two-sample tests for means and both one- and
two-sample tests for proportions. There is not much conceptual difference, but you will get a chance
to experiment a bit in lab. There are specialized packages for more complex/complete calculation
(I usually use PASS in NCSS because I have it), but there is free software as well. Check out
UCLA’s nice little calculator (Power Calculator at http://calculators.stat.ucla.edu/) for
a wider variety of procedures.

The paper by Cohen on the web site is standard reading on this topic. His approach can be
very useful.
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14 POWER AND SAMPLE SIZE
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(b) Power at n = 5 is .39

−4 −2 0 2 4 6

x

H0

n = 5

n = 15

n = 25

(c) Power at n = 15 is .83

−4 −2 0 2 4 6

x

H0

n = 5

n = 15

n = 25

(d) Power at n = 25 is .96

Figure 3: Power for a test of H0 : µ = 10 vs. HA : µ = 16 for random samples of 5, 15, 25 from a
normal population with σ = 8.
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