12 ODDS RATIOS FOR MULTI-LEVEL FACTORS; EXAMPLES

12 Odds Ratios for Multi-level Factors; Examples

The Framingham Study

The Framingham study was a prospective (follow-up, cohort) study of the occurrence of coronary
heart disease (CHD) in Framingham, Mass. The study involved 2187 men and 2669 women aged
between 30 and 62. More details on the study are given as a supplement to the lecture. Variables
and values of the variables are as follows:

Variable Name Codes

Gender 0 = Female, 1 = male

Age Group 0 is 30-49, 1 is 50-62

SCL (Serum Cholesterol) 1is < 190, 2 is 190-219, 3 is 220-249, 4 is 250+
CHD (Coronary Heart Disease) 1 is Yes, 0 is No

Freq Count

I will consider a simple analysis of the association between serum cholesterol level (SCL) at the
start of the study and whether a subject had, or developed CHD, during the 12 year follow-up
period. A table with Stata analysis of counts relating CHD to SCL is given below.

tabulate chd scl [fw=frequency],chi2 lrchi2 exp col
| frequency |

| expected frequency |
| column percentage |

e +
| SCL
CHD l 1 2 3 4 l Total
0 | 1,022 1,203 1,119 1,125 | 4,469
| 978.3 1,169.7 1,127.4 1,193.6 | 4,469.0
l 96.14 94.65 91.35 86.74 l 92.03
1| 41 68 106 172 | 387
I 84.7 101.3 97.6 103.4 | 387.0
l 3.86 5.35 8.65 13.26 l 7.97
Total | 1,063 1,271 1,225 1,297 | 4,856
| 1,063.0 1,271.0 1,225.0 1,297.0 |  4,856.0
I 100.00 100.00 100.00 100.00 | 100.00

Pearson chi2(3) = 86.7040 Pr = 0.000
likelihood-ratio chi2(3) = 85.8644 Pr =

The Pearson x? statistic, which can be viewed as testing that the probability of developing CHD
is independent of SCL, is highly significant (p-value < .001). Clearly observed counts of CHD are
below expected counts for this hypothesis with low SCL, and above with high SCL, so it looks like
CHD increases as SCL increases.

Let us do a closer look at the data for CHD vs. SCL using odds ratios. There are a lot of
possible ways to do this. Since SCL categories are ordered, many analysts would compare SCL
level 2 to 1, then 3 to 2, then 4 to 3. It is a little more conventional (and slightly more direct to
implement in Stata) to consider all OR relative to a fixed baseline SCL category, say SCL < 190
(Cat. 1).
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SCL
CHD 2 1
Y 68 41

N 1203 1022 OR(2vs.1) = 39322 = 1.409

3 1
Y 106 41

—

N 1119 1022 OR(3vs.l) = 1001022 — 2 361

4 1
Y 172 41

—

N 1125 1022 OR(4vs.1) = 121022 — 3811

Any OR may be computed from this set of OR’s. For example,

SCL
CHD 4 2
Y 172 68

N 1125 1203 OR(4vs.2) = 21208 _ 9 705 — 3811 gggzg

Think of this relationship as % = %. An important point to recognize is that the effect of SCL on

CHD can be captured through 3 effects (ORs), which is #SC levels - 1.

To get these ORs directly from Stata, we need to use xi. Actually, there are other, better,
options you can download and install, like xi3 and desmat. Since xi is built-in and commonly
used, we will stick with it but it does not allow higher order interaction terms in models, unlike
xi3 and desmat.

The code and output follow:

. xi:logistic chd i.scl [fweight=frequency]

i.scl _Iscl_1-4 (naturally coded;_Iscl_1 omitted)
Logistic regression Number of obs = 4856
LR chi2(3) = 85.86
. . Prob > chi2 = 0.0000
Log likelihood = -1307.1541 Pseudo R2 = 0.0318
chd l Odds Ratio  Std. Err z P>|z| [95% Conf. Intervall
Iscl_2 | 1.408998 .2849726 1.70 0.090 .9478795 2.094438
Iscl_3 | 2.361255 .446123 4.55 0.000 1.630502 3.419514
Iscl_ 4 | 3.811035  .6825005 7.47 0.000 2.682905 5.413532

xi:logistic chd i.scl [fweight=frequency],coef

chd l Coef. Std. Err z P>|z]| [95% Conf. Intervall
Iscl_2 | .3428787 .202252 1.70  0.090 -.0535279 .7392852
Iscl_3 | .8591931 .1889347 4.55  0.000 .4888878 1.229498
Iscl_4 | 1.337901 .1790853 7.47 0.000 .9869 1.688902
cons | -3.215945 .1592756 -20.19 0.000 -3.528119 -2.90377
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Remember what xi is doing. It creates indicator variables with the first omitted, so we are
fitting a model for p = probability of CHD of

1 SCL=j,j>2
log <1p) = o+ (3; Isclj, whereIsclj=4¢ 0 SCL#yj,7>2
P 0 j =1 (i.e.naturally coded; Iscl.1 omitted)

and proceeding as in the last lecture, for j > 1,

Bi= (a+fj) -«
= log(Odds for SCL = j) — log(Odds for SCL = 1)
= log(OR(for SCL =j vs. SCL =1))

which yields the result that
e’ = OR(for SCL=jvs. SCL=1) j>1

with confidence intervals for ORs produced by exponentiating limits /(ﬁ conﬁdenge\ intervals for
coefficients. The Stata output above gives us exactly the values of OR(2vs.1), OR(3vs.1), and
OR(4vs.1) we calculated previously, along with confidence limits. We also saw that OR(4vs.2) =

ORUvsl) _ 3811 _ 9 705 byt this does not produce a confidence interval for OR(4vs.2). In order

to get full information about this OR, note that

OR(2vs.1) 1.409

M % — PP

OR(2vs.1) €%
This looks like 1incom should work, and it is exactly the solution.

. lincom _b[_Iscl_4] - _bl[_Iscl_2]
(1) - _Iscl 2 + _Iscl 4 =0

chd _L Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

1) | 2.704784 .4033665 6.67 0.000 2.01926 3.623039

lincom reports OR after logistic. If you actually want the difference in coefficients, you need to
use the logit form of the command, and then lincom reports

. lincom _b[_Iscl_4] - _bl[_Iscl_2]
(1) - _Iscl. 2 + _Iscl 4 =0

This section has shown you how to generate unadjusted ORs in Stata. In practice we would add
confounding variables, such as Age and Sex, to the model and then evaluate adjusted ORs for the
SCL levels. You will get to do this in lab.

Model Building

There are a variety of systematic approaches to logistic regression models. Automated methods such
as the backward elimination approach described below are well suited for producing good predictive
models. Systematic approaches such as those advocated in Kleinbaum’s book on Logistic Regression
focus more attention on understanding the complex interdependencies among the predictors, and
their impact on odds ratios.
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Backward Elimination

1. Identify predictors or factors for which an association with outcome is biologically plausible
(based on literature, science, knowledge, etc.).

2. Identify biologically plausible interactions.
3. Fit the logistic model with all candidate effects identified in the first 2 steps.

4. Following the hierarchy principle, identify the least significant effect in the model, and se-
quentially eliminate the least significant effect until the step where the least significant effect
is “too important” to omit.

e The hierarchy principle implies that a main effect in a model can only be considered for
exclusion if the model does not contain an interaction involving the main effect.

e The impact of an effect is measured by a p-value for testing that the regression coefficient for

the effect is zero.
< « effect stays in model

— val )
p—va ue{ > o effect is removed

In backwards elimination it is not uncommon to set o = .10 or .15 rather than o = .05.

Example: UNM Trauma Data

Response : Death (1=yes, 0 = no)
Predictors : ISS

Age

RTS

BP (0=Blunt, 1=Penetratin)
The surgeon who collected the data, Dr. Turner Osler, believes that all these effects are associ-
ated with the probability of death and that the three interactions involving BP (BP*ISS, BP*Age,
BP*RTS) are plausible.
Steps
0. Fit full model

log (1€p> = a+311SS+52BP+B3RTS+ 54 Age+ G5 (BP  ISS)+ 06 (BP * RTS)+57(BP * Age)

where p=probability of death from injuries. Stata does not allow specification of interaction
terms directly with logit or logistic, so we need to use xi.

. xi:logistic death iss i.bp rts age i.bp*iss i.bp*rts i.bp*age

i.bp _Ibp_0-1 (naturally coded; _Ibp_O omitted)

i.bp*iss _IbpXiss_# (coded as above)
i.bp*rts _IbpXrts_# (coded as above)
i.bp*age _IbpXage_# (coded as above)

Logistic regression Number of obs = 3132

LR chi2(7) = 937.59

Prob > chi2 = 0.0000

Log likelihood = -443.88603 Pseudo R2 = 0.5136

death | Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall

iss | 1.070319 .0090198 8.06 0.000 1.052785 1.088144

age | 1.047169 .0058718 8.22 0.000 1.035724 1.058741

_IbpXiss_1 | .9927199 .0161392 -0.45 0.653 .9615863 1.024861
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rts | .4714732 .0285804 -12.40 0.000 .4186563 .53095633
_TbpXrts_1 | . 7540543 .1137513 -1.87 0.061 .5610433 1.013465
_Ibp_1 | 12.53281 14.3303 2.21 0.027 1.3328 117.8506
_IbpXage_1 | 1.013542 .0148866 0.92 0.360 .9847811 1.043143

. estat gof,group(10)
Logistic model for death, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 3132
number of groups = 10
Hosmer-Lemeshow chi2(8) = 16.84
Prob > chi2 = 0.0318

At this point I am not happy about the goodness-of-fit test. The objection raised earlier in
class that age probably does not have a strictly linear effect may be coming back to bite us
here. I hate to proceed with a full model that does not seem to fit well. I experimented
with a couple of approaches to be more flexible with age. One was to create age groupings,
the other was to fit an additional term that allowed curvature in age in the logit scale. The
latter approach is more parsimonious and I liked the results more, although there was not a
lot of difference (older patients are fit with greatly reduced odds of survival either way). The
distribution of age already is skewed right in this data set, so instead of introducing a term
for square of age I introduced a term for square root of age — the difference in logit fits being
slight for older patients but substantial for very young ones. Now I fit the model above with
this new age term introduced along with the interaction:

log <lfp> = «a+ (11ISS + 52BP + B3RTS + B4Age + 51/ Age + (s(BP * ISS)
+37(BP * RTS) + Bs(BP * Age) + Bo(BP * \/Age)

xi:logistic death iss i.bp rts age agesqrt i.bp*iss i.bp*rts i.bp*age i.bp*agesqrt

i.bp _Ibp_0-1 (naturally coded; _Ibp_O omitted)

i.bp*iss _IbpXiss_# (coded as above)
i.bp*rts _TbpXrts_# (coded as above)
i.bp*age _IbpXage_# (coded as above)
i.bp*agesqrt _IbpXagesq_# (coded as above)

Logistic regression Number of obs = 3132

LR chi2(9) = 944.90

Prob > chi2 = 0.0000

Log likelihood = -440.23492 Pseudo R2 = 0.5176

death l 0dds Ratio  Std. Err z P>|z| [95% Conf. Intervall

iss | 1.073518 .0092108 8.27  0.000 1.055616 1.091723

age | 1.110938 .0256408 4.56 0.000 1.061802 1.162347

agesqrt | .4900429 .1303889 -2.68 0.007 .2909038 .8255033

_IbpXiss_1 | .9906573 .0161779 -0.57 0.565 .9594513 1.022878

rts | 4779762 .0289156 -12.20 0.000 .4245337 .5381464

_TbpXrts_1 | . 7347408 .1127582 -2.01 0.045 .5438801 .9925791

_IbpXage_1 | .872296 .0932179 -1.28 0.201 . 7074574 1.075542

_Ibp_1 | .0760752 .3033795 -0.65 0.518 .0000307 188.6858

_IbpXagesq_1 | 6.322103 8.321638 1.40 0.161 .4791204 83.4216

. estat gof,group(10)
Logistic model for death, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 3132
number of groups = 10
Hosmer-Lemeshow chi2(8) = 11.61
Prob > chi2 = 0.1695

We will look shortly at what is being fit in terms of age, but note how much larger is the
p-value for the goodness-of-fit test. We should be ready to proceed with reducing the model.

I will consider a backward elimination with o = .10. Following the hierarchy principle, the
only candidates for exclusion at step 1 are the interactions. Each of the 5 main effects is
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involved in 1 or more interactions, so we cannot eliminate any main effects initially. The least
significant interaction is BP*ISS with a p-value of .565, so this effect is removed (.565 > .10).

. Omit BP*ISS and fit the model

log (lfp> = «a+ (1ISS + BoBP + G3RTS + B4Age + 51/ Age
+67(BP % RTS) + B3(BP * Age) + (o(BP * \/Age)

. xi:logistic death iss i.bp rts age agesqrt i.bp*rts i.bp*age i.bp*agesqrt

i.bp _Ibp_0-1 (naturally coded; _Ibp_O omitted)

i.bp*rts _TbpXrts_# (coded as above)
i.bp*age _IbpXage_# (coded as above)
i.bp*agesqrt _IbpXagesq_# (coded as above)

Logistic regression Number of obs = 3132

LR chi2(8) = 944.57

Prob > chi2 = 0.0000

Log likelihood = -440.39915 Pseudo R2 = 0.5175

death l 0dds Ratio  Std. Err. z P>|z| [95% Conf. Intervall

iss | 1.070782 .007818 9.37 0.000 1.055568 1.086216

age | 1.109481 .0254389 4.53 0.000 1.060726 1.160478

agesqrt | .4963908 .1314641 -2.64 0.008 .2953871 .8341726

rts | .4751856 .0283819 -12.46 0.000 .4226906 .5342

_IbpXrts_1 | .7451743 .11272 -1.94 0.052 .5539868 1.002343

_IbpXage_1 | .8700633 .0941304 -1.29 0.198 .7038191 1.075575

_Tbp_1 | .0480244 .1897495 -0.77 0.442 .0000208 110.8277

_IbpXagesq_1 | 6.604057 8.789526 1.42 0.156 .4863207 89.68069

At this step the candidates for exclusion are ISS, BP*Age, BP*\/Age, and BP*RTS, of which
BP*Age is least significant with a p-value of .198. This interaction is then omitted. Why is
ISS a candidate for exclusion at this point?

. Omit BP*Age and fit

log (12) = a+ 1SS+ 3,BP + BsRTS + BiAge + B51/Age
+B7(BP % RTS) + B9(BP x \/Age)

. xi:logistic death iss i.bp rts age agesqrt i.bp*rts i.bp*agesqrt

i.bp _Ibp_0-1 (naturally coded; _Ibp_O omitted)

i.bp*rts _IbpXrts_# (coded as above)
i.bp*agesqrt _IbpXagesq_# (coded as above)

Logistic regression Number of obs = 3132

LR chi2(7) = 942.67

Prob > chi2 = 0.0000

Log likelihood = -441.34771 Pseudo R2 = 0.5164

death | Odds Ratio  Std. Err. z P>|z| [95% Conf. Interval]

iss | 1.070154 .0078046 9.30 0.000 1.054966 1.085561

rts | .475377 .0283584  -12.47  0.000 .4229219 .5343383

age | 1.100623 .0245862 4.29 0.000 1.053474 1.149881

_Ibp_1 | 5.772836 6.82775 1.48 0.138 .5683829 58.63236

_IbpXrts_1 | . 7505693 .1117116 -1.93 0.054 .5606625 1.004801

agesqrt | .5432324 .1411161 -2.35 0.019 .3264886 .9038644

_IbpXagesq_1 | 1.228323 .213722 1.18 0.237 .8733895 1.727497

At this step the candidates for exclusion are ISS, BP*\/Age, and BP*RTS, of which BP*,/Age
is least significant with a p-value of .237. This interaction is then omitted.

129



12 ODDS RATIOS FOR MULTI-LEVEL FACTORS; EXAMPLES

3. Omit BP*\/Age and fit

log <1fp> — o+ BiISS + BBP + B3RTS + fiAge + B5/Age + f:(BP # RTS)

. xi:logistic death iss i.bp rts age agesqrt i.bp*rts

i.bp _Ibp_0-1 (naturally coded; _Ibp_O omitted)
i.bp*rts _IbpXrts_# (coded as above)

note: _Ibp_1 dropped due to collinearity

note: rts dropped due to collinearity

Logistic regression Number of obs = 3132
LR chi2(6) = 941.24

Prob > chi2 = 0.0000

Log likelihood = -442.0633 Pseudo R2 = 0.5156
death l 0dds Ratio  Std. Err. z P>|z| [95% Conf. Intervall

iss | 1.070038 .007773 9.32 0.000 1.054912 1.085382

rts | .4705327 .0280666 -12.64 0.000 .4186169 .5288869

age | 1.102008 .0246182 4.35 0.000 1.054798 1.15133

agesqrt | .550232 .1433209 -2.29 0.022 .3302406 .916772
_Ibp_1 | 13.35317 12.52076 2.76 0.006 2.125423 83.89257
_IbpXrts_1 | .7906284 .1090461 -1.70 0.089 .6033535 1.036032

The candidates for exclusion at this point are ISS, Age, v/Age, and BP*RTS. The least
significant effect is BP*RTS with a p-value of .089, which is less than our criterion of .10.

4. If we stick to the algorithm, we would stop and conclude that the important predictors are
ISS, BP, RTS, AGE, and /Age with an interaction between BP and RTS. All these steps can
be automated with sw, as in the following output. I used logit here in order to see coefficients.
Since I cannot combine xi and sw, I need to use xi alone to create indicator variables and
then use those in sw for variable selection. lockterml forces the first term in parentheses to
stay in the model.

xi i.bp i.bp*iss i.bp*rts i.bp*age i.bp*agesqrt

i.bp _Ibp_0-1 (naturally coded; _Ibp_O omitted)
i.bp*iss _IbpXiss_# (coded as above)
i.bp*rts _TbpXrts_# (coded as above)
i.bp*age _IbpXage_# (coded as above)
i.bp*agesqrt _IbpXagesq_# (coded as above)

sw logit death (iss _Ibp_1 rts age agesqrt) _IbpXiss_1 _IbpXrts_1 _IbpXage_1

Vo

_IbpXagesq_1, pr(.1) lockterml
begin with full model
p = 0.5654 >= 0.1000 removing _IbpXiss_1
p = 0.1983 >= 0.1000 removing _IbpXage_1
p = 0.2372 >= 0.1000 removing _IbpXagesq_1
Logistic regression Number of obs = 3132
LR chi2(6) = 941.24
Prob > chi2 = 0.0000
Log likelihood = -442.0633 Pseudo R2 = 0.5156
death l Coef Std. Err z P>|z| [95% Conf. Interval]
iss | .0676945 .0072642 9.32 0.000 .053457 .0819321
_Ibp_1 | 2.591754 .9376617 2.76  0.006 .7539709 4.429537
rts | -.7538899 .05696486 -12.64  0.000 -.8707991  -.6369807
age | .0971337 .0223394 4.35 0.000 .0533494 .1409181
agesqrt | -.5974152 .2604735 -2.29 0.022 -1.107934 -.0868965
_IbpXrts_1 | -.2349272 .1379234 -1.70 0.089 -.505252 .0353977
_cons | .6877421 .8100227 0.85 0.396 -.8998732 2.275357

. estat gof,group(10)
Logistic model for death, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 3132
number of groups = 10
Hosmer-Lemeshow chi2(8) = 14.46
Prob > chi2 = 0.0704
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The fitted model is

log (1 fﬁ> = .688 + .068 ISS + 2.59 BP — .754 RTS + .097 Age — .597+/Age — .235 BP * RTS

The regression effect for ISS is easily interpreted as a risk factor for death (why?). The effect of age
needs to be examined graphically since it is not simply linear. In the plot below the solid line is for
the fitted model above, and the dotted line is what happens if we use AGE and AGE? instead. Can
you see why I preferred using vAGE to AGE?? The fitted model shows increased risk of death for
very young children, lowest risk for children and young adults, and substantially increased risk for
older adults.

0.6877 - 0.5974 * sqrt(age) + 0.0971 * age

age

The effects of BP and RTS are more difficult to interpret because they interact. For example,
for any fixed ISS and Age,

6\R odds of death for BP=1 (Penetrating)

odds of death for BP=0 (Blunt)
-688+.0681S8+2.59(1) — . 754RTS+.097Age—.5971/Age—.235(1)RTS
-688+.0681SS+2.59(0) —. 7T54RTS+.097Age—.5971/Age—.235(0)RTS
62.59—.235RTS

which decreases for increasing RTS. Looking at the ends of the RTS spectrum,

RTS OR
(no vitals) 0  13.35
(normal) 7.84 212

So, depending on ones RTS, the estimated odds of dying from a penetrating injury vary from 2 to
13 times the odds of dying from a blunt trauma, adjusting for ISS and Age. Before jumping on
this large difference very hard, though, let’s look at confidence intervals, which do overlap quite a
bit here.

. lincom _b[_Ibp_1],o0r
(1) _Ibp.1=0
death _!. 0dds Ratio  Std. Err. z P>|z| [95% Conf. Intervall

| 13.35317  12.52076 2.76 0.006 2.125423 83.89257
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. lincom _b[_Ibp_1]+7.84*_b[_IbpXrts_1],or
(1) _Ibp_1 + 7.84 _IbpXrts_1 =0

death l Odds Ratio  Std. Err. z P>|z| [95% Conf. Intervall]
) | 2.116841 .628437 2.53 0.012 1.183009 3.787814
Remarks

1. Some epidemiologists force confounders to be included in a logistic regression model regardless
of their statistical significance.

2. The BP*RTS interaction was barely significant at the o = .10 level. It might be interesting
to see whether ones conclusions change when this effect is omitted.

. xi:logistic death iss i.bp rts age agesqrt

i.bp _Ibp_0-1 (naturally coded; _Ibp_O omitted)
Logistic regression Number of obs = 3132
LR chi2(5) = 937.89
Prob > chi2 = 0.0000
Log likelihood = -443.73652 Pseudo R2 = 0.5138
death | Odds Ratio  Std. Err. z P>|z| [95% Conf. Interval]
iss | 1.069022 .0077489 9.21 0.000 1.053942 1.084318
_Ibp_1 | 2.911404 .6711942 4.64 0.000 1.852963 4.574443
rts | .4474509  .0239457 -15.03  0.000 .4028958 .4969333
age | 1.102117  .0249277 4.30 0.000 1.054327 1.152073
agesqrt | .5548027  .1463495 -2.23 0.026 .3308286 .9304094

. estat gof,group(10)
Logistic model for death, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 3132
number of groups = 10
Hosmer-Lemeshow chi2(8) = 14.77
Prob > chi2 = 0.0637

We see that remaining effects are highly significant and there is no evidence of gross deficien-
cies.

3. The ORs for ISS and Age are similar for the two models. If a primary interest was estimating
OR for ISS or Age, then it would not matter much which model we used. If BP is the
interesting effect, the simpler model yields an OR of 2.91, which is between the minimum
and maximum OR for the previous model.

4. The model without BP*RTS is simpler to interpret because it contains no interactions. How-
ever, most scientists are wary of omitting potentially important interactions, because of the
potentially misleading conclusions that might be reached in models that ignore them. I would
be inclined here to use the slightly more complex model with the BP*RTS interaction.

Case-Control Data

In epidemiological studies, the logistic model log (%) = a+ fix1 + Pawe + -+ - + Bray is used to
relate p, say the probability of disease or death, to the collection x1,z9,. ..,z of risk factors and
confounders. With prospective or cross-sectional studies, we have noted that risk (i.e. probability
of disease or death), relative risks, and ORs can be estimated using the logistic model — however
most of our focus has been on ORs.

In practice, data are often sampled retrospectively using a case-control design. Although it
is well known that risks and relative risks cannot be estimated using case-control data, ORs are
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estimable and agree with ORs defined from a prospective study. In terms of logistic regression, the
intercept cannot be estimated without bias using data from a case-control study, but regression
coeflicients for predictors and confounders, which correspond to adjusted ORs, are estimated ap-
propriately. Thus, we can use standard methods to estimate regression effects and build regression
models using case-control data.

Diverticular Disease Example
There is a description of this data set on the web page as a supplement to this lecture. The data
set also is provided there. The data set has 64 rows with this content:

Variable Name | Contents

Age Midpoint of age range (8 levels)

Sex Values are f and m

Cancer Colonic Cancer (1 is yes - case, 0 is no - control)
Lab Case - Control label (not used)

Disease Diverticular disease (values dd (yes) and ndd (no))
Count No. individuals with this combination of variables

There are a lot of possible strategies for building a model to predict Cancer. I proceeded this way:

1. The primary interest is the potential association with diverticular disease (DD) and colonic
cancer (CC). DD is considered an exposure variable.

2. Age and sex are viewed as confounders (potentially). Confounders are variables that are risk
factors for the disease and associated with, but not a consequence of, presence or absence of
the exposure variable.

Because age and sex are likely to confound the relationship between the occurrence of DD
and CC, most epidemiologists would argue that the effect of DD has to be assessed after
adjusting for the effects of age and sex. As a result, many epidemiologists would include age
and sex effects in a model, regardless of their statistical significance. Others might adopt a
slightly different view and consider the effect of removing insignificant sex and age effect on
adjusted ORs for DD. If removing insignificant effects has little impact on the estimate and
precision of the adjusted OR for DD it does not matter much whether they are included or
excluded. If the adjusted OR for DD changes dramatically upon removal, the insignificant
effect would typically remain in the model.

3. We have the option of treating Age, using midpoint of the age range, as a categorical variable
or on a continuous scale. If we consider Age as categorical, the odds of CC will be allowed
to vary freely across age categories — that is, the odds is not required to vary smoothly with
Age. If we choose this approach, interpretation of Age effects and interactions with Age will
be cumbersome. However, almost every logistic model with Age, Sex, and DD effects fits
well (using goodness of fit measures) when Age is categorical but fits poorly when Age is
continuous. This implies that the log odds of CC does not change linearly with Age, but
follows a more complex pattern. Consequently, I considered adding a quadratic term in Age,
and this improved the fit dramatically.

4. 1 then posed a full model with the following effects: Sex, DD, Age, Age?, Sex*Age, Sex*DD,
Age*DD. I then proceeded with a Backward Elimination. I decided to force DD, Sex, and
Age to be included in the model, regardless of their significance, but all other effects were
candidates for exclusion. Note: Count must be defined as a frequency variable.
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5. Stata is not going to let us use character variables directly in logistic, but that’s no

problem here since we need to create appropriate indicator variables and interactions anyway.
xi is accommodating, though, so first we generate the indicators and then perform the sw
procedure with the constraints listed above.

xi i.sex i.disease i.sex*age i.sex*i.disease i.disease*age

i.sex _Isex_1-2 (_Isex_1 for sex==f omitted)
i.disease _Idisease_1-2 (_Idisease_1 for disease==dd omitted)
i.sex*age _IsexXage_# (coded as above)

i.sex*i.disease _IsexXdis_#_# (coded as above)

i.diseasex*age _IdisXage_# (coded as above)

. sw logit cancer (age _Isex_2 _Idisease_2) agesq _IsexXage_2 _IsexXdis_2_2
_IdisXage_2 [fweight=count],pr(.1) lockterml
begin with full model
p = 0.4841 >= 0.1000 removing _IsexXdis_2_2

Logit estimates Number of obs = 193
LR chi2(6) = 46.54

Prob > chi2 = 0.0000

Log likelihood = -104.72637 Pseudo R2 = 0.1818
cancer l Coef. Std. Err. z P>|z| [95% Conf. Intervall

age | -.6267873 .2185572 -2.87 0.004 -1.055151 -.1984232

_Isex_2 | 4.009058 2.022184 1.98 0.047 .0456503 7.972465
_Idisease_2 | -4.604635 3.183622 -1.45 0.148 -10.84442 1.635149
agesq | .0053892 .0016092 3.35 0.001 .0022352 .0085432
_IsexXage_2 | -.0737373 .0318366 -2.32 0.021 -.1361359 -.0113386
_IdisXage_2 | .0806418 .0479469 1.68 0.093 -.0133323 .1746159
_cons | 0.024 2.213853 31.65353

16.93369  7.510259 2.25

The lockterml option forces (age _Isex_2 _Idisease_2) to stay in the model no matter
what. Only the DD*Sex interaction term was removed in the backward elimination, so we
have a model left with Age, Sex, DD, Age?, Age*Sex, and Age*DD effects.

. The goodness of fit test for the final model shows no problems.

Logistic model for cancer, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)

number of observations = 193
number of groups = 10
Hosmer-Lemeshow chi2(8) = 10.80
Prob > chi2 = 0.2131

. The parameter estimates table is given only for the final model when using sw.

. A primary interest is the effect of disease on CC. xi produced _Idisease_2 and _IdisXage_2
where _Idisease_2 is 1 for ndd, 0 for dd; and _IdisXage_2 is O for dd and Age for ndd.
We want to measure odds of cancer for ndd and dd. Using the same reasoning as previously
(write the model, cancel common terms — the ones that are the same for dd and ndd),

6—}\% (NDD vs. DD) _ e—4.604635+.0806418Age

We could use this formula directly, but it is considerably easier to use lincom as before. I just
computed the estimated OR for each of the ages in the data set, with the following results.

. lincom _b[ _Idisease_2]+44.5%_b[ _IdisXage_2],or
(1) _Idisease_2 + 44.5 _IdisXage_2 = 0

cancer l 0dds Ratio Std. Err. z P>lz| [95% Conf. Intervall

0 | .3620128 .3995044 -0.92 0.357 .0416264 3.148324

. lincom _b[ _Idisease_2]+52*_b[ _IdisXage_2],or
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(1) _Idisease_2 + 52 _IdisXage_2 = 0

0dds Ratio Std. Err. z P>zl [95% Conf. Intervall
.6628131 .5182929 -0.53 0.599 .1431482 3.068995

. lincom _b[ _Idisease_2]+57*_b[ _IdisXage_2],or
( 1) _Idisease_2 + 57 _IdisXage_2 = 0

0dds Ratio Std. Err. z P>zl [95% Conf. Intervall]
.991979 .5875997 -0.01 0.989 .3106651 3.16747

. lincom _b[ _Idisease_2]+62*_b[ _IdisXage_2],or
(1) _Idisease_2 + 62 _IdisXage_2 = 0

1 | 1.484615 .6725879 0.87 0.383 .6109234 3.607788

. lincom _b[ _Idisease_2]+67*_b[ _IdisXage_2],or
(1) _Idisease_2 + 67 _IdisXage_2 =0

. lincom _b[ _Idisease_2]+72*_b[ _IdisXage_2],or
(1) _Idisease_2 + 72 _IdisXage 2 =0

cancer | 0dds Ratio Std. Err. z P>|z| [95% Conf. Intervall
_____________ oo Al ARV gl

1 | 3.3256345  1.691708 2.36 0.018 1.226884 9.013008

. lincom _b[ _Idisease_2]+77*_b[ _IdisXage_2],or
(1) _Idisease_2 + 77 _IdisXage_ 2 = 0

cancer | 0dds Ratio Std. Err. z P>|z| [95% Conf. Intervall

. lincom _b[ _Idisease_2]+84.5*%_b[ _IdisXage_2],or
(1) _Idisease_2 + 84.5 _IdisXage_2 =0

cancer | Odds Ratio Std. Err. z P>|z| [95% Conf. Intervall

9.112032  8.985077 2.24 0.025 1.319086 62.94442

The confidence intervals indicate that OR really doesn’t differ significantly between DD and
NDD for patients under 70, but for older patients DD appears actually to be protective. We
should check to see if this is a real pattern in the data, or a fluke of the model we have fit.
How would you do such an analysis? We also need to make sure it makes some sense to
someone who knows the medicine.

I hope you see the value in including terms like Disease in the model, even though it is not
actually significant in this case. We needed to assess the potential for this variable to affect
CC through adjusted ORs, and we did find an interesting relationship (because age is so
important).

As an aside, I will note that if you remove the effect for Sex (and its interaction with age),
this has little effect on adjusted OR for DD. If age is completely ignored in the analysis
the adjusted OR for DD is reduced dramatically, implying that age is clearly an important
confounding variable in the relationship between DD and CC.

You can calculate any estimated adjusted OR using the above method. Remember, however,
that this is a case-control study, so risks or odds should not be evaluated!
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In-Lab Exercise

Return to the Framingham study data. Run the following code (make sure you understand what I
am doing here):

graph bar chd [fw=freq],over(scl, ///
relabel (1 "<190" 2 "190-219" 3 "220-249" 4 "250+")) ///
over (agegroup, relabel(1l "30-49" 2 "50-62")) ///
over (gender, relabel(1l "Female" 2 "Male")) ///
ytitle("Proportion CHD") ///
title("CHD vs. Gender, Age, and SCL")

bysort gender agegroup:tabulate chd scl [fw=frequency],chi2 exp col

Examine the output of the bar graphs and chi-squared tests.
1. What main effects appear to be present?
2. What interactions appear to be present?
3. Find a suitable model using logistic regression.
4. Summarize important odds ratios from your logistic regression model.

5. Give an overall summary of the analysis.
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