
13 INTRODUCTION TO SURVIVAL ANALYSIS

13 Introduction to Survival Analysis

In many biomedical studies, the outcome variable is a survival time, or more generally a time to
an event. We will describe some of the standard tools for analyzing survival data.

Most studies of survival last a few years, and at completion many subjects may still be alive.
For those individuals, the actual survival time is not known – all we know is how long they survived
from their entry in the study. Similarly, certain individuals may drop out from the study or be lost
to follow-up. Each of these cases is said to be censored, and the recorded time for such individuals
is their time until the censoring event.

Example: HPA staining for breast cancer survival

We consider data from a retrospective study of 45 women who had surgery for breast cancer. Tumor
cells, surgically removed from each woman, were classified according to the results of staining on
a marker taken from the Roman snail, the Helix pomatia agglutinin (HPA). The marker binds to
cancer cells associated with metastasis to nearby lymph nodes. Upon microscopic examination, the
cancer cells stained with HPA are classified as positive, corresponding to a tumor with the potential
for metastasis, or negative. It is of interest to determine the relationship of HPA staining and the
survival of women with breast cancer.

The survival times in months timei and staining results (groupi = 0 for negative and groupi = 1
for positive) for the 45 women are presented in the following table. Also included is a censoring
indicator censi. Contrary to the normal definition of an indicator variable, the censoring indicator
is zero if the observation is right-censored, and one if the observation is uncensored. So it’s really
a non-censoring indicator! A woman’s survival time was right censored if the woman was alive at
the end of the study or if the woman died of causes unrelated to breast cancer.

time group cens time group cens
1. 23 0 1 24. 40 1 1
2. 47 0 1 25. 41 1 1
3. 69 0 1 26. 48 1 1
4. 70 0 0 27. 50 1 1
5. 71 0 0 28. 59 1 1
6. 100 0 0 29. 61 1 1
7. 101 0 0 30. 68 1 1
8. 148 0 1 31. 71 1 1
9. 181 0 1 32. 76 1 0

10. 198 0 0 33. 105 1 0
11. 208 0 0 34. 107 1 0
12. 212 0 0 35. 109 1 0
13. 224 0 0 36. 113 1 1
14. 5 1 1 37. 116 1 0
15. 8 1 1 38. 118 1 1
16. 10 1 1 39. 143 1 1
17. 13 1 1 40. 154 1 0
18. 18 1 1 41. 162 1 0
19. 24 1 1 42. 188 1 0
20. 26 1 1 43. 212 1 0
21. 26 1 1 44. 217 1 0
22. 31 1 1 45. 225 1 0
23. 35 1 1

This is the format the data should be in to work with it in Stata, but succinctly, the sorted
survival times for the negative stained women are

23, 47, 69, 70∗, 71∗, 100∗, 101∗, 148, 181, 198∗, 208∗, 212∗, 224∗,

where ∗ denotes a right-censored observation. The survival times for the positive stained group are

5, 8, 10, 13, 18, 24, 26, 26, 31, 35, 40, 41, 48, 50, 59, 61, 68, 71, 76∗, 105∗,

107∗, 109∗, 113, 116∗, 118, 143, 154∗, 162∗, 188∗, 212∗, 217∗, 225∗.
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13 INTRODUCTION TO SURVIVAL ANALYSIS

In the breast cancer study, 8 individuals in the negative stained group, and 11 in the positive
stained group are censored. Although it is common for studies to have right-censored cases, such
as we have here, left-censoring and interval-censoring are found in other clinical studies.

Survival Curves

A first step in survival analysis is often to estimate the survival curve, or survival time distribution.
Suppose we are considering a single (homogeneous) population. Let T be the survival time (from
some reference point) for a randomly selected individual from the population. Where t is any
arbitrary positive value, the survival time distribution is defined to be

S(t) = Pr(T ≥ t)
= probability randomly selected individual survives at least until time t

= proportion of population that survives at least until time t.

The function might look like Figure 1.
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Figure 1: S(t) versus t;median survival time for population is 5.

Estimating the Survival Curve

Case I: No censoring

If we have a random sample from the population, we use the empirical survival function:

Ŝ(t) = sample proportion that survive at least until time t

to estimate S(t). This is easy to compute and plot as a function of t.
Suppose we have a sample of 5 survival times (in days): 5, 8, 20, 30, and 33. Ŝ(t) has “jumps”

of size 1/5 (i.e. 1 divided by the sample size) at each survival time; see Figure 2.

Case II: Right censoring

Recall the data on the survival of women with breast cancer whose cells were negatively stained
with HPA:

23, 47, 69, 70∗, 71∗, 100∗, 101∗, 148, 181, 198∗, 208∗, 212∗, 224∗,

where the ∗ superscript identifies a right-censored observation.
The following algorithm describes the Kaplan-Meier (KM) method for estimating the survival

curve (Kaplan-Meier product-limit estimate).

138



13 INTRODUCTION TO SURVIVAL ANALYSIS

5 8 10 15 20 25 30 3335
days

0.2

0.4

0.6

0.8

1

Figure 2: Empirical survival function Ŝ(t) for the data 5, 8, 20, 30, and 33.

1. Identify times for non-censored cases 0 = t0 < t1 < t2 < · · · < tr. That is, t1 is the smallest
non-censored survival time, t2 is the second smallest, et cetera. For the example r = 5 and
t0 = 0, t1 = 23, t2 = 47, t3 = 69, t4 = 148, and t5 = 181.

2. For the jth interval, where tj−1 ≤ t < tj , evaluate

nj = number at risk (of dying) at beginning of interval,
dj = number of deaths in interval,

nj − dj

nj
= estimated probability of surviving past tj−1, given survival to tj−1

= P̂ (T ≥ tj−1|T ≥ tj−2).

3. For tj−1 ≤ t < tj ,

Ŝ(t) = P̂ (T ≥ t)
= P̂ (T ≥ tj−1|T ≥ tj−2)×

P̂ (T ≥ tj−2|T ≥ tj−3)× · · · ×
P̂ (T ≥ t1|T ≥ t0)

=
nj − dj

nj
× nj−1 − dj−1

nj−1
× · · · × n1 − d1

n1
.

Remark: Censored observations are taken into account by being treated as cases at risk at the
beginning of the interval in which they fail.

To illustrate the calculation for our data, consider the table:
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j Interval nj dj
nj−dj

nj
Ŝ(t)

1 0 ≤ t < 23 13 0 13−0
13 = 1 1.0

2 23 ≤ t < 47 13 1 13−1
13 = 12

13
.= 0.923 1.0× 0.923 = 0.923

3 47 ≤ t < 69 12 1 12−1
12 = 11

12
.= 0.917 0.923× 0.917 = 0.846

4 69 ≤ t < 148 11 1 10
11

.= 0.909 0.846× 0.909 = 0.769

5 148 ≤ t < 181 6 1 5
6

.= 0.833 0.769× 0.833 = 0.641

6 181 ≤ t 5 1 4
5 = 0.8 0.641× 0.8 = 0.513

To obtain the KM estimate in Stata we must declare the data we are working with to be
survival data. Stata then uses the survival time variable and the censoring variable together in
analyses. For the breast cancer data we first read in the variables using something like infile time
group cens using c:/breast.txt. We declare the data to be survival data using stset time,
failure(cens). Stata creates several internal variables when we do this. Note that the option
,failure(cens) makes the variable cens into an indicator of known death (“failure”). Finally
we obtain the KM survival curve estimates across the two groups with the command sts graph,
by(group). In Figure 3 we have a picture of Ŝ(t) from the negatively stained group as well as the
estimate from the positively stained group. Note that the negatively stained group tends to live
longer, as we would expect.
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Figure 3: KM survival curves for positively and negatively stained groups.

The estimated quartiles for survival across the two groups are obtained by stsum, by(group).
Annotated output follows; for example, we see that the median survival in the positive stained
group is estimated to be 61 months.
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. stsum,by(group)
failure _d: cens

analysis time _t: time
| incidence no. of |------ Survival time -----|

group | time at risk rate subjects 25% 50% 75%
---------+---------------------------------------------------------------------

0 | 1652 .0030266 13 148 . .
1 | 2679 .0078387 32 26 61 .

---------+---------------------------------------------------------------------
total | 4331 .0060032 45 40 113 .

Some remarks:

• The estimated survival curve “drops to zero” only if the last case is not censored.

• The KM curve allows us to estimate percentiles of the survival distribution, with a primary
interest being the median survival time (50th percentile). In the example above (group 0),
the 90th percentile is approximately 47 months (i.e. we estimate that 90% of the population
will survive at least 47 months). The median cannot be estimated here – all we can say is
that we estimate the median to be at least 181 months.

• The KM estimate is the usual empirical estimate if no cases are censored.

• Statistical methods are available to

– Estimate the mean survival time. This sounds good, but survival time distributions tend
to be highly skewed right, so usually we are much more interested in the median.

. stci,by(group) rmean
failure _d: cens

analysis time _t: time
| no. of restricted

group | subjects mean Std. Err. [95% Conf. Interval]
-------------+-------------------------------------------------------------

0 | 13 167.7436(*) 20.80779 126.961 208.526
1 | 32 104.0477(*) 15.6278 73.4177 134.678

-------------+-------------------------------------------------------------
total | 45 121.9075(*) 13.3793 95.6846 148.13

(*) largest observed analysis time is censored, mean is underestimated.

. stci,by(group) emean
failure _d: cens

analysis time _t: time
| no. of extended

group | subjects mean
-------------+----------------------

0 | 13 339.7513
1 | 32 158.5235

-------------+----------------------
total | 45 196.3361

– Get a C.I. for the survival curve. You need to ask for pointwise Greenwood confidence
bands.

. sts graph,by(group) gwood
failure _d: cens

analysis time _t: time
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– Compare survival curves across groups – you can think of this as the censored data
analogue of (non-parametric) ANOVA. There are a lot of available tests, though most
common probably is the log-rank test (Stata’s default). A few of them follow.

. sts test group
failure _d: cens

analysis time _t: time

Log-rank test for equality of survivor functions
| Events Events

group | observed expected
------+-------------------------
0 | 5 9.57
1 | 21 16.43
------+-------------------------
Total | 26 26.00

chi2(1) = 3.51
Pr>chi2 = 0.0608

. sts test group,wilc
failure _d: cens

analysis time _t: time

Wilcoxon (Breslow) test for equality of survivor functions
| Events Events Sum of

group | observed expected ranks
------+--------------------------------------
0 | 5 9.57 -159
1 | 21 16.43 159
------+--------------------------------------
Total | 26 26.00 0

chi2(1) = 4.18
Pr>chi2 = 0.0409

. sts test group,cox
failure _d: cens

analysis time _t: time

Cox regression-based test for equality of survival curves
| Events Events Relative

group | observed expected hazard
------+--------------------------------------
0 | 5 9.57 0.5633
1 | 21 16.43 1.3966
------+--------------------------------------
Total | 26 26.00 1.0000

LR chi2(1) = 3.87
Pr>chi2 = 0.0491

. sts test group,peto
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failure _d: cens
analysis time _t: time

Peto-Peto test for equality of survivor functions
| Events Events Sum of

group | observed expected ranks
------+--------------------------------------
0 | 5 9.57 -3.509069
1 | 21 16.43 3.509069
------+--------------------------------------
Total | 26 26.00 0

chi2(1) = 4.12
Pr>chi2 = 0.0425

. sts test group,tware
failure _d: cens

analysis time _t: time

Tarone-Ware test for equality of survivor functions
| Events Events Sum of

group | observed expected ranks
------+--------------------------------------
0 | 5 9.57 -26.921999
1 | 21 16.43 26.921999
------+--------------------------------------
Total | 26 26.00 0

chi2(1) = 4.05
Pr>chi2 = 0.0441

These tests do not necessarily all agree with each other – some emphasize different parts
of the distribution than others, and different principles for approximating distributions are
employed. In this case there is little difference, except the minor differences are right at the
0.05 significance level.

The Cox Proportional Hazards Model

The risk of failing at time t is defined to be the probability of an individual dying in the “next
instant” (e.g. in a time frame of length ∆) given this individual has survived at least until time t:

P (t ≤ T < t + ∆|t ≤ T ).

We define the hazard function h(t) such that for small enough ∆,

P (t ≤ T < t + ∆|t ≤ T ) = h(t)∆.

The hazard function is proportional to the instantaneous “risk of failing” at any time t, given that
an individual has lived at least to time t.

Now consider two individuals, 1 and 2, each with their own hazard functions h1(t) and h2(t). If
we assume that one individual’s instantaneous rate of failing is a constant multiple of the other’s, i.e.
h2(t) = ah1(t) for some constant a, then these two individuals have proportional hazard functions.
Figure 4 shows an example of this phenomenon where the hazard ratio is 1/2.

Proportional hazards may or may not be a reasonable assumption to make. For example,
consider two people, roughly the same age and demographic except that at the age of 20, person
2 takes up smoking while person 1 does not. You will hopefully agree with me that initially, the
smoker and the non-smoker will most likely have identical hazards. As the years roll by, and
smoking takes its toll, we would think that the smoker’s instantaneous rate of failing, which is
proportional to the probability of dying in the next minute, say, will increase relative to the hazard
for the non-smoker. In this example proportional hazards probably is an unreasonable assumption.

The proportional hazards model generalizes the above concept for n individuals, each with their
own covariate value xi or set of p covariate values xi = (xi1, xi2, . . . , xip). In the case where the
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Figure 4: An example of proportional hazard functions; here the constant of proportionality is 0.5.

n individuals only have one covariate, the model stipulates for individuals i and j, with hazard
functions hi(t) and hj(t) respectively, that

hi(t)e−βxi = hj(t)e−βxj .

Note that this implies
hi(t)
hj(t)

=
eβxi

eβxj
= eβ(xi−xj).

Here, eβ(xi−xj) is the relative risk of instantaneous failure at any time t for individuals i and
j. That is the power of the proportional hazards assumption: the relative risk of dying for two
individuals is a simple function of the model parameters and holds for all t, independent of the
value of t. If individual i has covariate value x + 1 and individual j has covariate value x, i.e. their
covariate values only differ by 1 unit on the covariate measurement scale, then

hi(t)
hj(t)

=
eβ(x+1)

eβx
= eβ.

Thus, eβ is the relative risk of failing in the next instant when we increase the covariate by one
unit. Note that if xi is a simple zero/one variable denoting which group individual i falls into, then
eβ is the relative risk of failing in the next instant for the group denoted by xi = 1 versus xi = 0.

The Cox PH model is fit as follows (everything had to be stset prior to this command). We
do not have to specify the dependent variable as in other regression routines because it is defined
(survival time) with stset.

. stcox group
failure _d: cens

analysis time _t: time
Iteration 0: log likelihood = -86.983777
Iteration 1: log likelihood = -85.087844
Iteration 2: log likelihood = -85.048003
Iteration 3: log likelihood = -85.047944
Refining estimates:
Iteration 0: log likelihood = -85.047944
Cox regression -- Breslow method for ties
No. of subjects = 45 Number of obs = 45
No. of failures = 26
Time at risk = 4331

144



13 INTRODUCTION TO SURVIVAL ANALYSIS

LR chi2(1) = 3.87
Log likelihood = -85.047944 Prob > chi2 = 0.0491
------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

group | 2.479398 1.241987 1.81 0.070 .9288808 6.618086
------------------------------------------------------------------------------
*************
************* Note: stcox group,nohr reports coefficients, not hazard ratios
------------------------------------------------------------------------------

_t | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

group | .9080157 .5009228 1.81 0.070 -.0737749 1.889806
------------------------------------------------------------------------------

We have an estimate of β̂ = 0.908 and the estimated relative risk is eβ̂ = e0.908 .= 2.5. That
is, those with positive staining are estimated to have a risk of dying in the next instant about 2.5
times as great as those with negative staining. Note that the p-value for H0 : β = 0 is small but not
significant at the 5% level. There is definitely some indication that staining affects survival, with
positive staining decreasing survival. A 95% C.I. for the risk may be obtained by exponentiating the
endpoints for the C.I. for β. Here, we estimate the relative risk of expiring (for positive compared
to negative staining) to be within (e−0.073, e1.89) = (0.93, 6.62) with 95% confidence.

Remark: The hazard function for individual i can be defined to be a scale multiple exiβ of a
baseline hazard function denoted h0(t). The model may be recast as hi(t) = h(t|xi) = exiβh0(t).
This baseline hazard function h0(t) and β together thus completely determine the model. The
baseline hazard h0(t) may be estimated from the data as well as survival curves, median and mean
survival, et cetera, for any covariate value x. These sorts of inferences are quite easy to get out of
Stata but a bit beyond what is comfortable to cover in this class.

Checking the Proportional Hazards Assumption

The assumption matters because estimates and inferences based on them may be completely invalid
if hazards are not proportional, and we have no easy way to assess that from the regression output.
There are standard diagnostics that often work pretty well but are not at all easy to derive without
some mathematics.

What you would like to do is estimate the hazard functions from the data, and plot them on
the same scale to assess proportionality. That is very similar to estimating a population frequency
distribution, and is a fairly hard problem that takes quite a bit of data (Stata will do it, but that
doesn’t mean it works well). What works better and is much easier to estimate (effectively from
Kaplan-Meier) is the integrated or cumulative hazard H(t) =

∫ t
0 h(s)ds. If hazard functions are

proportional then so are cumulative hazard functions. A very fortunate mathematical relationship
is that the survival curve is related to the cumulative hazard as H(t) = − log S(t) so log H(t) =
log [− log S(t)]. If h0(t) is the baseline hazard function, then the proportional hazards assumptions
says the cumulative hazard function for individual i is exiβH0(t), and log [−logSi(t)] = xiβ +
log [−logS0(t)]. What this says is that if x is a group indicator as above then plots of log [− log S(t)]
for groups should be parallel (and separated by the β’s for groups). Stata does (almost) this in its
stphplot command.

Another approach is to compare the completely nonparametric Kaplan-Meier curve to the curve
predicted under proportional hazards. That is the stcoxkm command. Stata’s description of these
commands from the help system is as follows:
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Description

stphplot plots -ln{-ln(survival)} curves for each category of a nominal or
ordinal covariate versus ln(analysis time). These are often referred to as
"log-log" plots. Optionally, these estimates can be adjusted for
covariates. The proportional-hazards assumption is not violated when the
curves are parallel.

stcoxkm plots Kaplan-Meier observed survival curves and compares them to the
Cox predicted curves for the same variable. The closer the observed values
are to the predicted, the less likely it is that the proportional-hazards
assumption has been violated. Do not run stcox prior to this command;
stcoxkm will execute stcox itself to estimate the model and obtain predicted
values.

Doing this with the breast cancer data using these commands yields the following graph:

. stphplot,by(group) name(loglog)

. stcoxkm,by(group) name(phkm)

. graph combine loglog phkm
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This all looks great. We do not have any evidence that the proportional hazards assumption is not
reasonable.

A final example

We examine a data set consisting of the time spent running on a treadmill for 14 people aged 15
and older. Each subject’s gender and age were recorded. It is of interest to the experimenter how
age and gender affect ones endurance.

When fitting the PH model with gender and age as main effects,

h(t|age, gender) = eage×β1+gender×β2h0(t),

we are going to let xi determine the gender indicator (it will set the first group alphabetically,
females, to 0 and males to 1). The baseline group (i.e. those with covariates age = 0 and
gender indicator = 0, and thus a hazard function of e0β1+0β2 = e0h0(t) = h0(t)) consists of fe-
males of age zero, which is not interpretable in this context. Observations were censored due to a
subject having to leave the treadmill for reasons other than being tired. The data follow:
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gender age minutes cens weight
1. male 34 16 1 215
2. male 15 35 0 135
3. female 22 55 0 145
4. female 18 95 1 97
5. male 18 55 0 225
6. female 32 55 1 185
7. female 37 25 1 155
8. female 67 15 1 142
9. female 55 22 1 132

10. male 55 13 1 183
11. male 62 13 1 168
12. female 33 57 0 132
13. female 17 52 0 112
14. male 24 54 1 175

We need to start by declaring a survival data set:

. stset minutes,failure(cens)
failure event: cens != 0 & cens < .

obs. time interval: (0, minutes]
exit on or before: failure
------------------------------------------------------------------------------

14 total obs.
0 exclusions

------------------------------------------------------------------------------
14 obs. remaining, representing
9 failures in single record/single failure data

562 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 95

The fit of the model with only gender h(t|gender) = egender indicator×β1h0(t):

. xi: stcox i.gender
i.gender _Igender_1-2 (_Igender_1 for gender==female omitted)

failure _d: cens
analysis time _t: minutes

Iteration 0: log likelihood = -18.061924
Iteration 1: log likelihood = -17.622711
Iteration 2: log likelihood = -17.620368
Refining estimates:
Iteration 0: log likelihood = -17.620368
Cox regression -- Breslow method for ties
No. of subjects = 14 Number of obs = 14
No. of failures = 9
Time at risk = 562

LR chi2(1) = 0.88
Log likelihood = -17.620368 Prob > chi2 = 0.3474
------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Igender_2 | 1.971276 1.411726 0.95 0.343 .4843518 8.022949

------------------------------------------------------------------------------

The test for a gender effect yields a p-value of 0.343. We would accept at any reasonable
significance level that there is not a gender effect. The estimated hazard ratio is

h(t|gender = male)/h(t|gender = female) = 1.97

for all t. That is, the probability of a randomly picked man failing (stepping off the treadmill) in
the next second is estimated be twice the probability of a randomly picked female. The confidence
interval for the hazard ratio is from 0.48 to 8.02, which includes 1 since the effect was not significant.

Let’s look at the model fit with only age h(t|age) = eage×β1h0(t):

. stcox age
failure _d: cens
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analysis time _t: minutes
Iteration 0: log likelihood = -18.061924
Iteration 1: log likelihood = -11.184791
Iteration 2: log likelihood = -11.184559
Refining estimates:
Iteration 0: log likelihood = -11.184559
Cox regression -- Breslow method for ties
No. of subjects = 14 Number of obs = 14
No. of failures = 9
Time at risk = 562

LR chi2(1) = 13.75
Log likelihood = -11.184559 Prob > chi2 = 0.0002
------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

age | 1.118133 .043125 2.90 0.004 1.036725 1.205934
------------------------------------------------------------------------------

A year from now, a randomly selected individual will be 1.118 times as likely to step off the
treadmill after 15 minutes (or any amount of time) than now. In ten years it will be 1.11810 =
3.05 times as likely. When we fit the model with both of these predictors h(t|age, gender) =
eage×β1+gender indicator×β2h0(t) we see that estimated regression effects, and therefore model
interpretation, change somewhat:

. xi: stcox i.gender age
i.gender _Igender_1-2 (_Igender_1 for gender==female omitted)

failure _d: cens
analysis time _t: minutes

Iteration 0: log likelihood = -18.061924
Iteration 1: log likelihood = -8.3270231
Iteration 2: log likelihood = -7.2765366
Iteration 3: log likelihood = -7.1238759
Iteration 4: log likelihood = -7.1166297
Iteration 5: log likelihood = -7.1166049
Refining estimates:
Iteration 0: log likelihood = -7.1166049
Cox regression -- Breslow method for ties
No. of subjects = 14 Number of obs = 14
No. of failures = 9
Time at risk = 562

LR chi2(2) = 21.89
Log likelihood = -7.1166049 Prob > chi2 = 0.0000
------------------------------------------------------------------------------

_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_Igender_2 | 34.87809 55.05714 2.25 0.024 1.580812 769.529

age | 1.244367 .1064681 2.56 0.011 1.052251 1.471558
------------------------------------------------------------------------------

At a given age, a random male running alongside a random female is about 35 times as likely
to step off the treadmill at any time. A woman 20 years older than another woman is about
1.24420 .= 79 times as likely to step off compared to the younger woman. Note that in the presence
of age, gender is now significant, although by itself gender is not a significant factor. In this case
age is said to be a suppressor variable.

In the model fit that included an interaction between age and gender, the interaction term was
not significant. Weight is not significant in the presence of gender and age (or by itself).

We should check on the proportional hazards assumption.

. sts graph,by(gender) name(km)

. stphplot,by(gender) name(loglog)

. stcoxkm,by(gender) name(phkm)

. graph combine km loglog phkm
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There is not a lot of data here, so we have to expect deviations from ideal patterns. The log-log
plot only needs to be parallel, not linear, and this is plausibly parallel. The PH model is not
disagreeing with the Kaplan-Meier fit. The survival curves by gender are consistent with the tests
we ran. There is no clear reason to question the PH assumptions.
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