
14 POISSON REGRESSION

14 Poisson Regression

In class we will cover Chapter 12 (Analysis of Rates with Poisson Regression) from Steve Selvin’s
text Practical Biostatistical Methods (1995, Wadsworth). There are many more applications of
Poisson regression than covered there, but this chapter has a treatment quite relevant to you.

The appendix in Selvin discusses the Poisson distribution mostly as an approximation to the
binomial distribution when n is large and p is small. A broader more detailed perspective can be
found at Wikipedia (http://en.wikipedia.org/wiki/Poisson_distribution). One entry there
states that

The word law is sometimes used as a synonym of probability distribution, and conver-
gence in law means convergence in distribution. Accordingly, the Poisson distribution is
sometimes called the law of small numbers because it is the probability distribution
of the number of occurrences of an event that happens rarely but has very many op-
portunities to happen. The Law of Small Numbers is a book by Ladislaus Bortkiewicz
about the Poisson distribution, published in 1898. Some historians of mathematics have
argued that the Poisson distribution should have been called the Bortkiewicz distribu-
tion.

Wikipedia provides several examples of the Poisson as well:

The Poisson distribution arises in connection with Poisson processes. It applies to
various phenomena of discrete nature (that is, those that may happen 0, 1, 2, 3, ...
times during a given period of time or in a given area) whenever the probability of the
phenomenon happening is constant in time or space. Examples of events that can be
modelled as Poisson distributions include:

• The number of cars that pass through a certain point on a road during a given
period of time.

• The number of spelling mistakes a secretary makes while typing a single page.

• The number of phone calls at a call center per minute.

• The number of times a web server is accessed per minute. For instance, the num-
ber of edits per hour recorded on Wikipedia’s Recent Changes page follows an
approximately Poisson distribution.

• The number of roadkill found per unit length of road.

• The number of mutations in a given stretch of DNA after a certain amount of
radiation.

• The number of unstable nuclei that decayed within a given period of time in a piece
of radioactive substance. The radioactivity of the substance will weaken with time,
so the total time interval used in the model should be significantly less than the
mean lifetime of the substance.

• The number of pine trees per unit area of mixed forest.

• The number of stars in a given volume of space.

• The number of soldiers killed by horse-kicks each year in each corps in the Prus-
sian cavalry. This example was made famous by a book of Ladislaus Josephovich
Bortkiewicz (1868-1931).

• The distribution of visual receptor cells in the retina of the human eye.
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• The number of V2 rocket attacks per area in England, according to the fictionalized
account in Thomas Pynchon’s Gravity’s Rainbow.

• The number of light bulbs that burn out in a certain amount of time.

For our purposes two more interesting examples probably are number of deaths in a subpopu-
lation in a certain amount of time and number of cases of a disease in a subpopulation in a fixed
period of time. What is key in these and the other examples is that the Poisson distribution de-
scribes random counts. Selvin deals with rates (proportions) which probably are more common but
require some special consideration.

Mathematical Background

Let the random variable Y have a Poisson distribution with parameter λ. This means that

P (Y = k) =
e−λλk

k!
; k = 0, 1, 2, 3, . . .

and both the mean E(Y ) and variance V ar(Y ) of Y are λ. As with the binomial distribution where
we found the logit function and logistic regression to be more useful than considering the binomial
distribution directly, we fit regression models to log Y (natural log), so we get models of the form

log E(Y ) = β0 + β1x1 + . . . + βpxp

where there are good theoretical reasons for logit with binomial and log for the Poisson. These are
special cases of a large class of such models called generalized linear models (handled with the glm
command in Stata in general, more easily handled with the poisson command for this case).

Poisson regression fits linear models to log(counts of number of events) – remember, fitting
linear models means looking for group differences, interactions, adjusting for covariates and con-
founders,etc.. The events we are looking at probably will be deaths or diagnosis of disease. In the
applications you are likely to encounter most often, we actually want to fit linear models to rates,
where rates are usually of the form

r =
count of events
population size

, or r =
count of events
total exposure

.

Either way, we probably want to model r more than we want to model counts directly. The way
we do this is to fit a linear model to log of r

log r = β̂0 + β̂1x1 + . . . + β̂pxp (1)

log
(

count of events
population size

)
= β̂0 + β̂1x1 + . . . + β̂pxp (2)

log (count of events)− log (population size) = β̂0 + β̂1x1 + . . . + β̂pxp (3)

log (count of events) = β̂0 + β̂1x1 + . . . + β̂pxp + log (population size) (4)

Equation (4) shows that we model log r by writing a linear model for log (count of events), which
is regular Poisson regression, except that we have a special new variable with a known coefficient
of 1, i.e. log (population size). Such a variable is called an offset. The general form would be the
same if we had a rate using exposure instead of population size.

In order to interpret coefficients, consider the simple case of two groups (say F and M) where

x1 =

{
0 Group = F
1 Group = M

, the usual group indicator variable, and we fit a simple model to compare
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groups, log r = β̂0 + β̂1x1. Then F is the reference group and β̂1 is the difference between groups M
and F in the log scale, just as we usually have in linear models, i.e. log rF = β̂0 and log rM = β̂0+β̂1,
so log rM − log rF = β̂1 and rM

rF
= elog rM−log rF = eβ̂1 . Similar to the way we obtained estimated

Odds Ratios in logistic regression, we obtain estimated incidence-rate ratios by exponentiating
estimated regression coefficients. Factors with multiple levels and continuous predictor variables
are handled similarly to the way we have handled then in least squares regression and in logistic
regression.

Stata Implementation

A portion of the help viewer in Stata for the Poisson command shows

Syntax
poisson depvar [indepvars] [if] [in] [weight] [, options]

options description
--------------------------------------------------------------------------
Model
noconstant suppress constant term
exposure(varname_e) include ln(varname_e) in model with

coefficient constrained to 1
offset(varname_o) include varname_o in model with coefficient

Reporting
level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

irr reports estimated coefficients transformed to incidence-rate ratios,
that is, exp(b) rather than b. Standard errors and confidence
intervals are similarly transformed. This option affects how results
are displayed, not how they are estimated or stored. irr may be
specified at estimation or when replaying previously estimated
results.

offset(varname) specifies that varname be included in the model with the
coefficient constrained to be 1.

exposure(varname) specifies a variable that reflects the amount of
exposure over which the depvar events were observed for each
observation; ln(varname) with coefficient constrained to be 1 is
entered into the log-link function.

From a practical perspective, what difference does it make if you declare a variable an offset or
an exposure? Read carefully – you need to already have taken the log for an offset, but Stata will
go ahead and take the log of an exposure variable. You can use either form, just be careful you
have the variable in the correct form.

Example

Consider the very simple data set

group deaths popsize
1. F 10 10000
2. M 15 8000

and compare mortality rates for the two groups. Define lpopsize from the command
gene lpopsize = log(popsize). We want to fit using both the offset and exposure forms of
the command to see they agree.
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. xi:poisson deaths i.group, exposure(popsize)
i.group _Igroup_1-2 (_Igroup_1 for group==F omitted)
Iteration 0: log likelihood = -4.35708
Iteration 1: log likelihood = -4.35708
Poisson regression Number of obs = 2

LR chi2(1) = 2.43
Prob > chi2 = 0.1188

Log likelihood = -4.35708 Pseudo R2 = 0.2183
------------------------------------------------------------------------------

deaths | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Igroup_2 | .6286087 .4082483 1.54 0.124 -.1715433 1.428761
_cons | -6.907755 .3162278 -21.84 0.000 -7.52755 -6.28796

popsize | (exposure)
------------------------------------------------------------------------------
. xi:poisson deaths i.group, offset(lpopsize)
i.group _Igroup_1-2 (_Igroup_1 for group==F omitted)
Iteration 0: log likelihood = -4.35708
Iteration 1: log likelihood = -4.35708
Poisson regression Number of obs = 2

LR chi2(1) = 2.43
Prob > chi2 = 0.1188

Log likelihood = -4.35708 Pseudo R2 = 0.2183
------------------------------------------------------------------------------

deaths | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Igroup_2 | .6286087 .4082483 1.54 0.124 -.1715433 1.428761
_cons | -6.907755 .3162278 -21.84 0.000 -7.52755 -6.28796

lpopsize | (offset)
------------------------------------------------------------------------------
. poisson,irr
Poisson regression Number of obs = 2

LR chi2(1) = 2.43
Prob > chi2 = 0.1188

Log likelihood = -4.35708 Pseudo R2 = 0.2183
------------------------------------------------------------------------------

deaths | IRR Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Igroup_2 | 1.875 .7654656 1.54 0.124 .8423638 4.173523
lpopsize | (offset)

------------------------------------------------------------------------------

But look what happens if you mix offset and exposure:

. xi:poisson deaths i.group, offset(popsize)
Poisson regression Number of obs = 2

Wald chi2(1) = 2.401e+07
Log likelihood = -4.35708 Prob > chi2 = 0.0000
------------------------------------------------------------------------------

deaths | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------

_Igroup_2 | 2000.405 .4082483 4899.97 0.000 1999.605 2001.206
_cons | -9997.697 .3162278 -3.2e+04 0.000 -9998.317 -9997.078

popsize | (offset)
------------------------------------------------------------------------------

We will do a number of the examples in Selvin’s chapter during class.
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