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Consider the simple problem from last semester where we sample from a normal population with
a known σ and want to test a hypothesis of the form H0 : µ = µ0 vs. HA : µ 6= µ0. The
rule for the test is to reject H0 if |Z| > zcritical where Z = X−µ0

σ/
√

n
. zcritical is chosen to satisfy

P (|Z| > zcritical|H0 is true) = α, where α is the probability of a Type I Error, or the significance
level. A Type I Error is rejecting H0 when H0 is actually true, i.e. claiming something important
is going on when actually nothing important is going on. Usually we take α = .05 which forces
zcritical=1.96.

The significance level is the chance of rejecting H0 when we should not do so. If HA is true
then of course we should reject H0. The probability that we correctly reject H0 when HA is true
is defined as the Power of the test. Power is a lot more complicated than α, though.

The extra complication comes from two sources. First, HA is not simple like H0 is, so if HA is
true there are many possible values of µ other than µ0. If the actual µ is a long way from µ0 then
it should be fairly easy to tell that H0 is not true and the power should be high. If the actual µ
is close to µ0, though, it should be pretty hard to tell that we are not sampling from the situation
described by H0, and the power may be low. Second, the sample size has a lot to do with the
power. If n is large then we have a lot of information and it should be easy to tell if HA is true, but
if n is small it may be very difficult to tell that H0 is not true. By contrast, the test is structured
so that α does not depend upon the sample size – it is always the fixed number we choose (usually
.05).

We can actually tell exactly how the Z-statistic above behaves if we specify exactly which of
the values of µ is true. X−µ

σ/
√

n
is standard normal if we used the right µ, and we are using Z = X−µ0
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(which is standard normal if we used the right µ, i.e. if H0 is true). If HA is true write

Z =
X − µ0

σ/
√

n
=

X − µ + (µ− µ0)
σ/
√

n
=

X − µ
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n
+

µ− µ0

σ/
√
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which tells us that Z is a normal random variable with standard deviation 1 and mean
√

n(µ−µ0

σ )
if HA is true.
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Normal Populations with µ = 10, 11, 16 and σ = 8

Figure 1: Three normal populations with σ = 8.
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Example: Let σ = 8 and test H0 : µ = 10 vs. HA : µ 6= 10. There are infinitely many possible
values of µ under HA, but for purposes of illustration let us consider only µ = 11 and µ = 16.
Figure 1 graphs all three populations. Clearly it is going to be fairly hard to tell whether we
sampled from the population with µ = 11 or the population with µ = 10, since they are so little
different, but it should be quite a bit easier to tell if we sampled from the population with µ = 16
or the population with µ = 10 (although that is not trivial either).

Consider a fixed sample size of n = 16. P (|Z| > 1.96|µ = 10) = α = .05. The power when
µ = 11 is P (|Z| > 1.96|µ = 11) while the power when µ = 16 is P (|Z| > 1.96|µ = 16). Figure 2 (a)
shows the distribution of the Z-statistic for sampling from each of these populations, (b) shows the
calculation of α, (c) shows the power (.08) for µ = 11 and (d) shows the power (.85) for µ = 16.
As expected, we have a good chance with this sample size of telling µ = 16 from µ = 10 but a slim
chance of telling µ = 11 from µ = 10.
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(c) Power at µ = 11 is .08

H0 : µ = 10

HA : µ = 11

HA : µ = 16

−4 −2 0 2 4 6

z

(d) Power at µ = 16 is .85
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Figure 2: Power for a test of H0 : µ = 10 vs. HA : µ 6= 10 for a random sample of 16 from a normal
population with σ = 8.
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For a given alternative µ, the power also increases with n. Figure 3 demonstrates this behavior
for the example using µ = 16 and sample sizes of 5, 15, and 25.

Stata will do calculations like these for you. Follow the menu path
Summaries, tables, & tests

→ Classical tests of hypotheses
→ Sample size and power determination

and fill in the boxes. Here we are doing “One-sample comparison of mean to hypothesized value”
so check that, give hypothesized value of 10, Std. deviation one of 8, and Postulated mean of 16.
Next click on the Options box, ask to compute power, specify significance level of .05 and a two
sided test with sample size 15. Stata returns the following:

. sampsi 10 16, alpha(.05) n1(15) sd1(8) onesample
Estimated power for one-sample comparison of mean
to hypothesized value

Test Ho: m = 10, where m is the mean in the population
Assumptions:

alpha = 0.0500 (two-sided)
alternative m = 16

sd = 8
sample size n = 15

Estimated power:
power = 0.8276

This is exactly what you find on Figure 3 for n = 15.
Much more common is the inverse of this problem, where we specify the power and ask for

the sample size. Conceptually this is not different from what we have been doing, but there are
some guidelines. Generally we specify some reasonable alternative, make a good guess based on
published literature or preliminary data of the standard deviation, specify a two-tailed procedure
at α = .05, and target power of .8. The goal is to find n to yield that power. If we do that for the
earlier problem with µ = 11 and σ = 8 where µ0 = 10, we get

. sampsi 10 11, alpha(.05) power(.80) sd1(8) onesample
Estimated sample size for one-sample comparison of mean
to hypothesized value

Test Ho: m = 10, where m is the mean in the population
Assumptions:

alpha = 0.0500 (two-sided)
power = 0.8000

alternative m = 11
sd = 8

Estimated required sample size:
n = 503

which says we need over 500 observations to have an 80% chance of telling populations as close as
the two closest in Figure 1 apart.

Stata does power analysis like the preceding on two-sample tests for means and both one- and
two-sample tests for proportions. There is not much conceptual difference, but you will get a chance
to experiment a bit in lab. There are specialized packages for more complex/complete calculation
(I usually use PASS in NCSS because I have it), but there is free software as well. Check out
UCLA’s nice little calculator (Power Calculator at http://calculators.stat.ucla.edu/) for
a wider variety of procedures.

The paper by Cohen on the web site is standard reading on this topic. His approach can be
very useful.
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(a) α = 0.05
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(b) Power at n = 5 is .39
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(c) Power at n = 15 is .83
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(d) Power at n = 25 is .96

Figure 3: Power for a test of H0 : µ = 10 vs. HA : µ = 16 for random samples of 5, 15, 25 from a
normal population with σ = 8.
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